

CSS:	The	Definitive	Guide

FIFTH	EDITION

Visual	Styling	for	the	Web

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

Eric	A.	Meyer	and	Estelle	Weyl

CSS:	The	Definitive	Guide
by	Eric	A.	Meyer	and	Estelle	Weyl

Copyright	©	2023	Eric	Meyer.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are
also	available	for	most	titles	(http://oreilly.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Acquisitions	Editor:	Amanda	Quinn

Development	Editor:	Rita	Fernando

Production	Editor:	Elizabeth	Faerm

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Kate	Dullea

May	2000:	First	Edition

March	2004:	Second	Edition

November	2006:	Third	Edition

November	2017:	Fourth	Edition

Revision	History	for	the	Fifth	Edition

2022-07-25:	First	Release

2022-08-25:	Second	Release

2022-11-22:	Third	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781449393199	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	CSS:	The	Definitive	Guide,	the
cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	authors	have	used	good	faith	efforts	to	ensure	that	the	information	and
instructions	contained	in	this	work	are	accurate,	the	publisher	and	the	authors	disclaim	all	responsibility
for	errors	or	omissions,	including	without	limitation	responsibility	for	damages	resulting	from	the	use	of
or	reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in	this	work	is	at	your	own
risk.	If	any	code	samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449393199

licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-098-11755-9

[TO	COME]

Chapter	1.	CSS	Fundamentals

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	1st	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

Cascading	Style	Sheets	(CSS)	is	a	powerful	programming	language	that	transforms	the	presentation	of	a
document	or	a	collection	of	documents,	and	it	has	spread	to	nearly	every	corner	of	the	web	as	well	as
many	ostensibly	non-web	environments.	For	example,	embedded-device	displays	often	use	CSS	to	style
their	user	interfaces,	many	RSS	clients	let	you	apply	CSS	to	feeds	and	feed	entries,	and	some	instant
message	clients	use	CSS	to	format	chat	windows.	Aspects	of	CSS	can	be	found	in	the	syntax	used	by
JavaScript	frameworks,	and	even	in	JavaScript	itself.	It’s	everywhere!

A	Brief	History	of	(Web)	Style
CSS	was	first	proposed	in	1994,	just	as	the	web	was	beginning	to	really	catch	on.	At	the	time,	browsers
gave	all	sorts	of	styling	power	to	the	user—the	presentation	preferences	in	Mosaic,	for	example,
permitted	font	family,	size,	and	color	to	be	defined	by	the	user	on	a	per-element	basis.	None	of	this	was
available	to	document	authors;	all	they	could	do	was	mark	a	piece	of	content	as	a	paragraph,	as	a	heading
of	some	level,	as	preformatted	text,	or	one	of	a	dozen	other	element	types.	If	a	user	configured	their
browser	to	make	all	level-one	headings	tiny	and	pink	and	all	level-six	headings	huge	and	red,	well,	that
was	their	lookout.

It	was	into	this	milieu	that	CSS	was	introduced.	Its	goal	was	to	provide	a	simple,	declarative	styling
language	that	was	flexible	for	authors	and,	most	importantly,	provided	styling	power	to	authors	and	users
alike.	By	means	of	the	“cascade,”	these	styles	could	be	combined	and	prioritized	so	that	both	authors	and
readers	had	a	say—though	readers	always	had	the	last	say.

Work	quickly	advanced,	and	by	late	1996,	CSS1	was	finished.	While	the	newly	established	CSS	Working
Group	moved	forward	with	CSS2,	browsers	struggled	to	implement	CSS1	in	an	interoperable	way.
Although	each	piece	of	CSS	was	fairly	simple	on	its	own,	the	combination	of	those	pieces	created	some
surprisingly	complex	behaviors.	There	were	also	some	unfortunate	missteps	in	early	implementations,
such	as	the	infamous	discrepancy	in	box	model	implementations.	These	problems	threatened	to	derail
CSS	altogether,	but	fortunately	some	clever	proposals	were	implemented,	and	browsers	began	to
harmonize.	Within	a	few	years,	thanks	to	increasing	interoperability	and	high-profile	developments	such

mailto:rfernando@oreilly.com

as	the	CSS-based	redesign	of	Wired	magazine	and	the	CSS	Zen	Garden,	CSS	began	to	catch	on.

Before	all	that	happened,	though,	the	CSS	Working	Group	had	finalized	the	CSS2	specification	in	early
1998.	Once	CSS2	was	finished,	work	immediately	began	on	CSS3,	as	well	as	a	clarified	version	of	CSS2
called	CSS2.1.	In	keeping	with	the	spirit	of	the	times,	CSS3	was	constructed	as	a	series	of	(theoretically)
standalone	modules	instead	of	a	single	monolithic	specification.	This	approach	reflected	the	then-active
XHTML	specification,	which	was	split	into	modules	for	similar	reasons.

The	rationale	for	modularizing	CSS3	was	that	each	module	could	be	worked	on	at	its	own	pace,	and
particularly	critical	(or	popular)	modules	could	be	advanced	along	the	W3C’s	progress	track	without
being	held	up	by	others.	Indeed,	this	has	turned	out	to	be	the	case.	By	early	2012,	three	CSS3	modules
(along	with	CSS1	and	CSS	2.1)	had	reached	full	Recommendation	status—CSS	Color	Level	3,	CSS
Namespaces,	and	Selectors	Level	3.	At	that	same	time,	seven	modules	were	at	Candidate
Recommendation	status,	and	several	dozen	others	were	in	various	stages	of	Working	Draft-ness.	Under
the	old	approach,	colors,	selectors,	and	namespaces	would	have	had	to	wait	for	every	other	part	of	the
specification	to	be	done	or	cut	before	they	could	be	part	of	a	completed	specification.	Thanks	to
modularization,	they	didn’t	have	to	wait.

The	flip	side	of	that	advantage	is	that	it’s	hard	to	speak	of	a	single	“CSS3	specification.”	There	isn’t	any
such	thing,	nor	can	there	be.	Even	if	every	other	CSS	module	had	reached	level	3	by,	say,	late	2016	(they
didn’t),	there	was	already	a	Selectors	Level	4	in	process.	Would	we	then	speak	of	it	as	CSS4?	What
about	all	the	“CSS3”	features	still	coming	into	play?	Or	Grid	Layout,	which	had	not	then	even	reached
Level	1?	That’s	why	this	book	is	a	definitive	guide	for	“CSS”	as	a	whole	—	because	there	really	is	no
such	thing	as	CSS3.

So	while	we	can’t	really	point	to	a	single	tome	and	say,	“There	is	CSS3,”	we	can	talk	of	features	by	the
module	name	under	which	they	are	introduced.	The	flexibility	permitted	by	modules	more	than	makes	up
for	the	semantic	awkwardness	they	sometimes	create.	(If	you	want	something	approximating	a	single
monolithic	specification,	the	CSS	Working	Group	publishes	yearly	“Snapshot”	documents.)

With	that	established,	we’re	ready	to	start	understanding	CSS.	Let’s	start	by	covering	the	basics	of	what
goes	inside	a	stylesheet.

Stylesheet	Contents
Inside	a	stylesheet,	you’ll	find	a	number	of	rules	which	are	comprised	of	selectors	and	declaration
blocks,	the	latter	of	which	are	made	up	of	one	or	more	declarations	that	are	themselves	made	up	of
property	and	value	combinations.	All	put	together,	they	look	a	little	something	like	this:

h1	{color:	maroon;}

body	{background:	yellow;}

Styles	such	as	these	comprise	the	bulk	of	any	stylesheet—simple	or	complex,	short	or	long.	But	which
parts	are	which,	and	what	do	they	represent?

Rule	Structure

To	illustrate	the	concept	of	rules	in	more	detail,	let’s	break	down	the	structure.

Each	rule	has	two	fundamental	parts:	the	selector	and	the	declaration	block.	The	declaration	block	is
composed	of	one	or	more	declarations,	and	each	declaration	is	a	pairing	of	a	property	and	a	value.
Every	stylesheet	is	made	up	of	a	series	of	rules.	Figure	1-1	shows	the	parts	of	a	rule.

Figure	1-1.	The	structure	of	a	rule

The	selector,	shown	on	the	left	side	of	the	rule,	defines	which	piece	of	the	document	will	be	selected	for
styling.	In	Figure	1-1,	h1	(heading	level	1)	elements	are	selected.	If	the	selector	were	p,	then	all	p
(paragraph)	elements	would	be	selected.

The	right	side	of	the	rule	contains	the	declaration	block,	which	is	made	up	of	one	or	more	declarations.
Each	declaration	is	a	combination	of	a	CSS	property	and	a	value	of	that	property.	In	Figure	1-1,	the
declaration	block	contains	two	declarations.	The	first	states	that	this	rule	will	cause	parts	of	the	document
to	have	a	color	of	red,	and	the	second	states	that	part	of	the	document	will	have	a	background	of
yellow.	So,	all	of	the	h1	elements	in	the	document	(defined	by	the	selector)	will	be	styled	in	red	text
with	a	yellow	background.

Vendor	prefixing
Sometimes	you’ll	see	pieces	of	CSS	with	dashes	and	labels	in	front	of	them,	like	this:	-o-border-
image.	These	are	called	vendor	prefixes,	and	are	a	way	for	browser	vendors	to	mark	properties,	values,
or	other	bits	of	CSS	as	being	experimental	or	proprietary	(or	both).	As	of	early	2022,	there	were	a	few
vendor	prefixes	in	the	wild,	with	the	most	common	being	shown	in	Table	1-1.

Table	1-1.	Some	common	vendor	prefixes

Prefix Vendor

-epub- International	Digital	Publishing	Forum	ePub	format

-moz- Mozilla-based	browsers	(e.g.,	Firefox)

-ms- Microsoft	Internet	Explorer

-o- Opera-based	browsers

-webkit- WebKit-based	browsers	(e.g.,	Safari	and	Chrome)

As	Table	1-1	implies,	the	generally	accepted	format	of	a	vendor	prefix	is	a	dash,	a	label,	and	a	dash,
although	a	few	prefixes	erroneously	omit	the	first	dash.

The	uses	and	abuses	of	vendor	prefixes	are	long,	tortuous,	and	beyond	the	scope	of	this	book.	Suffice	to
say	that	they	started	out	as	a	way	for	vendors	to	test	out	new	features,	thus	helping	speed	interoperability
without	worrying	about	being	locked	into	legacy	behaviors	that	were	incompatible	with	other	browsers.
This	avoided	a	whole	class	of	problems	that	nearly	strangled	CSS	in	its	infancy.	Unfortunately,	prefixed
properties	were	then	publicly	deployed	by	web	authors	and	ended	up	causing	a	whole	new	class	of
problems.

As	of	early	2022,	vendor-prefixed	CSS	features	are	nearly	non-existent,	with	old	prefixed	properties	and
values	being	slowly	but	steadily	removed	from	browser	implementations.	It’s	quite	likely	that	you’ll
never	write	prefixed	CSS,	but	you	may	encounter	it	in	the	wild,	or	inherit	it	in	a	legacy	codebase.	Here’s
an	example:

-webkit-transform-origin:	0	0;

-moz-transform-origin:	0	0;

-o-transform-origin:	0	0;

transform-origin:	0	0;

That’s	saying	the	same	thing	four	times:	once	each	for	the	WebKit,	Mozilla	(Firefox),	and	Opera	browser
lines,	and	then	finally	the	CSS-standard	way.	Again,	this	is	no	longer	really	necessary.	We’re	only
including	it	here	to	give	you	an	idea	of	what	it	might	look	like,	should	you	come	across	this	in	the	future.

Whitespace	Handling
CSS	is	basically	insensitive	to	whitespace	between	rules,	and	largely	insensitive	to	whitespace	within
rules,	although	there	are	a	few	exceptions.

In	general,	CSS	treats	whitespace	just	like	HTML	does:	any	sequence	of	whitespace	characters	is
collapsed	to	a	single	space	for	parsing	purposes.	Thus,	you	can	format	the	hypothetical	rainbow	rule	in
the	following	ways:

rainbow:	infrared		red		orange		yellow		green		blue		indigo		violet		ultraviolet;

rainbow:

			infrared		red		orange		yellow		green		blue		indigo		violet		ultraviolet;

rainbow:

			infrared

			red

			orange

			yellow

			green

			blue

			indigo

			violet

			ultraviolet

			;

…as	well	as	any	other	separation	patterns	you	can	think	up.	The	only	restriction	is	that	the	separating
characters	be	whitespace:	an	empty	space,	a	tab,	or	a	newline,	alone	or	in	combination,	as	many	as	you
like.

Similarly,	you	can	format	series	of	rules	with	whitespace	in	any	fashion	you	like.	These	are	just	five
examples	out	of	an	effectively	infinite	number	of	possibilities:

html{color:black;}

body	{background:	white;}

p	{

		color:	gray;}

h2	{

					color	:	silver	;

			}

ol

			{

						color

									:

						silver

									;

}

As	you	can	see	from	the	first	rule,	whitespace	can	be	largely	omitted.	Indeed,	this	is	usually	the	case	with
minified	CSS,	which	is	CSS	that’s	had	every	last	possible	bit	of	extraneous	whitespace	removed,	usually
by	an	automated	server-side	script	of	some	sort.	The	rules	after	the	first	two	use	progressively	more
extravagant	amounts	of	whitespace	until,	in	the	last	rule,	pretty	much	everything	that	can	be	separated	onto
its	own	line	has	been.

All	of	these	approaches	are	valid,	so	you	should	pick	the	formatting	that	makes	the	most	sense—that	is,	is
easiest	to	read—in	your	eyes,	and	stick	with	it.

CSS	Comments
CSS	does	allow	for	comments.	These	are	very	similar	to	C/C++	comments	in	that	they	are	surrounded	by
/*	and	*/:

/*	This	is	a	CSS1	comment	*/

Comments	can	span	multiple	lines,	just	as	in	C++:

/*	This	is	a	CSS1	comment,	and	it

can	be	several	lines	long	without

any	problem	whatsoever.	*/

It’s	important	to	remember	that	CSS	comments	cannot	be	nested.	So,	for	example,	this	would	not	be
correct:

/*	This	is	a	comment,	in	which	we	find

	another	comment,	which	is	WRONG

			/*	Another	comment	*/

	and	back	to	the	first	comment	*/

WARNING
One	way	to	create	“nested”	comments	accidentally	is	to	temporarily	comment	out	a	large	block	of	a	stylesheet	that	already	contains	a
comment.	Since	CSS	doesn’t	permit	nested	comments,	the	“outside”	comment	will	end	where	the	“inside”	comment	ends.

Unfortunately,	there	is	no	“rest	of	the	line”	comment	pattern	such	as	//	or	#	(the	latter	of	which	is
reserved	for	ID	selectors	anyway).	The	only	comment	pattern	in	CSS	is	/*	*/.
Therefore,	if	you	wish	to	place	comments	on	the	same	line	as	markup,	then	you	need	to	be	careful	about
how	you	place	them.	For	example,	this	is	the	correct	way	to	do	it:

h1	{color:	gray;}			/*	This	CSS	comment	is	several	lines	*/

h2	{color:	silver;}	/*	long,	but	since	it	is	alongside	*/

p	{color:	white;}			/*	actual	styles,	each	line	needs	to	*/

pre	{color:	gray;}		/*	be	wrapped	in	comment	markers.	*/

Given	this	example,	if	each	line	isn’t	marked	off,	then	most	of	the	stylesheet	will	become	part	of	the
comment	and	thus	will	not	work:

h1	{color:	gray;}			/*	This	CSS	comment	is	several	lines

h2	{color:	silver;}		long,	but	since	it	is	not	wrapped

p	{color:	white;}				in	comment	markers,	the	last	three

pre	{color:	gray;}			styles	are	part	of	the	comment.	*/

In	this	example,	only	the	first	rule	(h1	{color:	gray;})	will	be	applied	to	the	document.	The	rest
of	the	rules,	as	part	of	the	comment,	are	ignored	by	the	browser’s	rendering	engine.

NOTE
CSS	comments	are	treated	by	the	CSS	parser	as	if	they	do	not	exist	at	all,	and	so	do	not	count	as	whitespace	for	parsing	purposes.	This
means	you	can	put	them	into	the	middle	of	rules—even	right	inside	declarations!

Markup
There	is	no	markup	in	stylesheets.	This	might	seem	obvious,	but	you’d	be	surprised.	The	one	exception	is
HTML	comment	markup,	which	is	permitted	inside	style	elements	for	historical	reasons:

<style><!--

h1	{color:	maroon;}

body	{background:	yellow;}

--></style>

That’s	it,	and	even	that	isn’t	recommended	any	more	—	the	browsers	that	needed	it	have	faded	into	near-
oblivion.

Speaking	of	markup,	it’s	time	to	take	a	very	slight	detour	to	talk	about	the	elements	that	our	CSS	will	be
used	to	style,	and	how	those	can	be	affected	by	CSS	in	the	most	fundamental	ways.

Elements
Elements	are	the	basis	of	document	structure.	In	HTML,	the	most	common	elements	are	easily
recognizable,	such	as	p,	table,	span,	a,	and	article.	Every	single	element	in	a	document	plays	a
part	in	its	presentation.

Replaced	and	Nonreplaced	Elements
Although	CSS	depends	on	elements,	not	all	elements	are	created	equally.	For	example,	images	and
paragraphs	are	not	the	same	type	of	element.	In	CSS,	elements	generally	take	two	forms:	replaced	and
nonreplaced.

Replaced	elements
Replaced	elements	are	those	where	the	element’s	content	is	replaced	by	something	that	is	not	directly
represented	by	document	content.	Probably	the	most	familiar	HTML	example	is	the	img	element,	which
is	replaced	by	an	image	file	external	to	the	document	itself.	In	fact,	img	has	no	actual	content,	as	you	can
see	in	this	simple	example:

This	markup	fragment	contains	only	an	element	name	and	an	attribute.	The	element	presents	nothing	unless
you	point	it	to	some	external	content	(in	this	case,	an	image	file	whose	location	is	given	by	the	src
attribute).	If	you	point	to	a	valid	image	file,	the	image	will	be	placed	in	the	document.	If	not,	the	browser
will	either	display	nothing	or	will	show	a	“broken	image”	placeholder.

Similarly,	the	input	element	can	also	be	replaced—by	a	radio	button,	checkbox,	text	input	box,	or	other,
depending	on	its	type.

Nonreplaced	elements
The	majority	of	HTML	elements	are	nonreplaced	elements.	This	means	that	their	content	is	presented	by
the	user	agent	(generally	a	browser)	inside	a	box	generated	by	the	element	itself.	For	example,
hi	there	is	a	nonreplaced	element,	and	the	text	“hi	there”	will	be	displayed	by	the
user	agent.	This	is	true	of	paragraphs,	headings,	table	cells,	lists,	and	almost	everything	else	in	HTML.

Element	Display	Roles
CSS	has	two	basic	display	roles:	block	formatting	context	and	inline	formatting	context.	There	are
many	more	display	types,	but	these	are	the	most	basic,	and	the	types	to	which	most	if	not	all	other	display
types	refer.	The	block	and	inline	contexts	will	be	familiar	to	authors	who	have	spent	time	with	HTML
markup	and	its	display	in	web	browsers.	The	elements	are	illustrated	in	Figure	1-2.

Figure	1-2.	Block-	and	inline-level	elements	in	an	HTML	document

Block-level	elements
By	default,	block-level	elements	generate	an	element	box	that	(by	default)	fills	its	parent	element’s
content	area	and	cannot	have	other	elements	at	its	sides.	In	other	words,	it	generates	“breaks”	before	and
after	the	element	box.	The	most	familiar	block	elements	from	HTML	are	p	and	div.	Replaced	elements
can	be	block-level	elements,	but	usually	they	are	not.

In	CSS,	this	is	referred	to	as	an	element	generating	a	block	formatting	context.	It	also	means	that	the
element	generates	a	block	outer	display	type.	The	parts	inside	the	element	may	have	different	display
types.

Inline-level	elements
By	default,	inline-level	elements	generate	an	element	box	within	a	line	of	text	and	do	not	break	up	the
flow	of	that	line.	The	best	inline	element	example	is	the	a	element	in	HTML.	Other	candidates	are
strong	and	em.	These	elements	do	not	generate	a	“break”	before	or	after	themselves,	so	they	can
appear	within	the	content	of	another	element	without	disrupting	its	display.

In	CSS,	this	is	referred	to	as	an	element	generating	an	inline	formatting	context.	It	also	means	that	the
element	generated	an	inline	outer	display	type.	The	parts	inside	the	element	may	have	different	display
types.	(In	CSS,	there	is	no	restriction	on	how	display	roles	can	be	nested	within	each	other.)

To	see	how	this	works,	let’s	consider	the	CSS	property	display.

DISPLAY

Values [<display-outside>	ǁ	<display-inside>]	|	<display-listitem>	|	<display-internal>	|	<display-box>	|	
<display-legacy>

Definitions See	below

Initial	value inline

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

<display-outside>

block	|	inline	|	run-in

<display-inside>

flow	|	flow-root	|	table	|	flex	|	grid	|	ruby

<display-listitem>

list-item	&&	<display-outside>?	&&	[flow	|	flow-root]?

<display-internal>

table-row-group	|	table-header-group	|	table-footer-group	|	table-row	|
table-cell	|	table-column-group	|	table-column	|	table-caption	|	ruby-
base	|	ruby-text	|	ruby-base-container	|	ruby-text-container

<display-box>

contents	|	none

<display-legacy>

inline-block	|	inline-list-item	|	inline-table	|	inline-flex	|	inline-
grid

You	may	have	noticed	that	there	are	a	lot	of	values	here,	only	two	of	which	we’ve	mentioned:	block	and
inline.	Most	of	these	values	will	be	dealt	with	elsewhere	in	the	book;	for	example,	grid	and
inline-grid	will	be	covered	in	a	separate	chapter	about	grid	layout,	and	the	table-related	values	are
all	covered	in	a	chapter	on	CSS	table	layout.

For	now,	let’s	just	concentrate	on	block	and	inline.	Consider	the	following	markup:

<body>

<p>This	is	a	paragraph	with	an	inline	element	within	it.</p>

</body>

Here	we	have	two	elements	(body	and	p)	that	are	generating	block	formatting	contexts,	and	one	element
(em)	with	an	inline	formatting	context.	According	to	the	HTML	specification,	em	can	descend	from	p,	but
the	reverse	is	not	true.	Typically,	the	HTML	hierarchy	works	out	so	that	inlines	descend	from	blocks,	but
not	the	other	way	around.

CSS,	on	the	other	hand,	has	no	such	restrictions.	You	can	leave	the	markup	as	it	is	but	change	the	display
roles	of	the	two	elements	like	this:

p	{display:	inline;}

em	{display:	block;}

This	causes	the	elements	to	generate	a	block	box	inside	an	inline	box.	This	is	perfectly	legal	and	violates
no	part	of	CSS.

While	changing	the	display	roles	of	elements	can	be	useful	in	HTML	documents,	it	becomes	downright
critical	for	XML	documents.	An	XML	document	is	unlikely	to	have	any	inherent	display	roles,	so	it’s	up
to	the	author	to	define	them.	For	example,	you	might	wonder	how	to	lay	out	the	following	snippet	of	XML:

<book>

	<maintitle>The	Victorian	Internet</maintitle>

	<subtitle>The	Remarkable	Story	of	the	Telegraph	and	the	Nineteenth	Century's	On-Line	

Pioneers</subtitle>

	<author>Tom	Standage</author>

	<publisher>Bloomsbury	Pub	Plc	USA</publisher>

	<pubdate>February	25,	2014</pubdate>

	<isbn	type="isbn-13">9781620405925</isbn>

	<isbn	type="isbn-10">162040592X</isbn>

</book>

Since	the	default	value	of	display	is	inline,	the	content	would	be	rendered	as	inline	text	by	default,
as	illustrated	in	Figure	1-3.	This	isn’t	a	terribly	useful	display.

Figure	1-3.	Default	display	of	an	XML	document

You	can	define	the	basics	of	the	layout	with	display:

book,	maintitle,	subtitle,	author,	isbn	{display:	block;}

publisher,	pubdate	{display:	inline;}

We’ve	now	set	five	of	the	seven	elements	to	be	block	and	two	to	be	inline.	This	means	each	of	the	block
elements	will	generate	its	own	block	formatting	context,	and	the	two	inlines	will	generate	their	own	inline
formatting	contexts.

We	could	take	the	preceding	rules	as	a	starting	point,	add	a	few	other	styles	for	greater	visual	impact,	and
get	the	result	shown	in	Figure	1-4.

Figure	1-4.	Styled	display	of	an	XML	document

That	said,	before	learning	how	to	write	CSS	in	detail,	we	need	to	look	at	how	one	can	associate	CSS	with
a	document.	After	all,	without	tying	the	two	together,	there’s	no	way	for	the	CSS	to	affect	the	document.
We’ll	explore	this	in	an	HTML	setting	since	it’s	the	most	familiar.

Bringing	CSS	and	HTML	Together
We’ve	mentioned	that	HTML	documents	have	an	inherent	structure,	and	that’s	a	point	worth	repeating.	In
fact,	that’s	part	of	the	problem	with	web	pages	of	old:	too	many	of	us	forgot	that	documents	are	supposed
to	have	an	internal	structure,	which	is	altogether	different	than	a	visual	structure.	In	our	rush	to	create	the
coolest-looking	pages	on	the	web,	we	bent,	warped,	and	generally	ignored	the	idea	that	pages	should
contain	information	with	some	structural	meaning.

That	structure	is	an	inherent	part	of	the	relationship	between	HTML	and	CSS;	without	it,	there	couldn’t	be
a	relationship	at	all.	To	understand	it	better,	let’s	look	at	an	example	HTML	document	and	break	it	down
by	pieces:

<!DOCTYPE	html>

<html>

<head>

		<title>Eric's	World	of	Waffles</title>

		<meta	charset="utf-8">

		<link	rel="stylesheet"	media="screen,	print"	href="sheet1.css">

		<style>

				/*	These	are	my	styles!	Yay!	*/

				@import	url(sheet2.css);

		</style>

</head>

<body>

		<h1>Waffles!</h1>

		<p	style="color:	gray;">The	most	wonderful	of	all	breakfast	foods	is

		the	waffle—a	ridged	and	cratered	slab	of	home-cooked,	fluffy	goodness

		that	makes	every	child's	heart	soar	with	joy.	And	they're	so	easy	to	make!

		Just	a	simple	waffle-maker	and	some	batter,	and	you're	ready	for	a	morning

		of	aromatic	ecstasy!

		</p>

</body>

</html>

The	result	of	this	markup	and	the	applied	styles	is	shown	in	Figure	1-5.

Figure	1-5.	A	simple	document

Now,	let’s	examine	the	various	ways	this	document	connects	to	CSS.

The	link	Tag
First,	consider	the	use	of	the	link	tag:

<link	rel="stylesheet"	href="sheet1.css"	media="screen,	print">

The	link	tag’s	basic	purpose	is	to	allow	HTML	authors	to	associate	other	documents	with	the	document
containing	the	link	tag.	CSS	uses	it	to	link	stylesheets	to	the	document;	in	Figure	1-6,	a	stylesheet	called
sheet1.css	is	linked	to	the	document.

These	stylesheets,	which	are	not	part	of	the	HTML	document	but	are	still	used	by	it,	are	referred	to	as
external	stylesheets.	This	is	because	they’re	stylesheets	that	are	external	to	the	HTML	document.	(Go
figure.)

To	successfully	load	an	external	stylesheet,	link	should	be	placed	inside	the	head	element,	though	it
can	also	appear	inside	the	body	element.	This	will	cause	the	web	browser	to	locate	and	load	the
stylesheet	and	use	whatever	styles	it	contains	to	render	the	HTML	document	in	the	manner	shown	in
Figure	1-6.

Also	shown	in	Figure	1-6	is	the	loading	of	the	external	sheet2.css	via	an	@import	declaration.	Imports

must	be	placed	at	the	beginning	of	the	stylesheet	that	contains	them.

Figure	1-6.	A	representation	of	how	external	stylesheets	are	applied	to	documents

And	what	is	the	format	of	an	external	stylesheet?	It’s	a	list	of	rules,	just	like	those	we	saw	in	the	previous
section	and	in	the	example	HTML	document;	but	in	this	case,	the	rules	are	saved	into	their	own	file.	Just
remember	that	no	HTML	or	any	other	markup	language	can	be	included	in	the	stylesheet—only	style	rules.
Here	are	the	contents	of	an	external	stylesheet:

h1	{color:	red;}

h2	{color:	maroon;	background:	white;}

h3	{color:	white;	background:	black;

		font:	medium	Helvetica;}

That’s	all	there	is	to	it—no	HTML	markup	or	comments	at	all,	just	plain-and-simple	style	declarations.
These	are	saved	into	a	plain-text	file	and	are	usually	given	an	extension	of	.css,	as	in	sheet1.css.

WARNING
An	external	stylesheet	cannot	contain	any	document	markup	at	all,	only	CSS	rules	and	CSS	comments.	The	presence	of	markup	in	an
external	stylesheet	can	cause	some	or	all	of	it	to	be	ignored.

Attributes
For	the	rest	of	the	link	tag,	the	attributes	and	values	are	fairly	straightforward.	rel	stands	for
“relation,”	and	in	this	case,	the	relation	is	stylesheet.	Note	that	the	rel	attribute	is	required.	There
is	an	optional	type	attribute	whose	default	value	is	text/css,	so	you	can	include
type="text/css"	or	leave	it	out,	whichever	you	prefer.

These	attribute	values	describe	the	relationship	and	type	of	data	that	will	be	loaded	using	the	link	tag.
That	way,	the	web	browser	knows	that	the	stylesheet	is	a	CSS	stylesheet,	a	fact	that	will	determine	how
the	browser	will	deal	with	the	data	it	imports.	(There	may	be	other	style	languages	used	in	the	future.	In
such	a	future,	if	you	are	using	a	different	style	language,	the	type	attribute	will	need	to	be	declared.)

Next,	we	find	the	href	attribute.	The	value	of	this	attribute	is	the	URL	of	your	stylesheet.	This	URL	can
be	either	absolute	or	relative;	that	is,	either	relative	to	the	URL	of	the	document	containing	the	URL,	or
else	a	complete	URL	that	points	to	a	unique	location	on	the	web.	In	our	example,	the	URL	is	relative.	It
just	as	easily	could	have	been	something	absolute,	like	http://meyerweb.com/sheet1.css.

Finally,	we	have	a	media	attribute.	The	value	of	this	attribute	is	one	or	more	media	descriptors,	which
are	rules	regarding	media	types	and	the	features	of	those	media,	with	each	rule	separated	by	a	comma.
Thus,	for	example,	you	can	use	a	linked	stylesheet	in	both	screen	and	print	media:

<link	rel="stylesheet"	href="visual-sheet.css"	media="screen,	print">

Media	descriptors	can	get	quite	complicated,	and	are	explained	in	detail	later	in	the	chapter.	For	now,
we’ll	stick	with	the	basic	media	types	shown.	The	default	value	is	all,	which	means	the	CSS	will	be
applied	in	all	media.

Note	that	there	can	be	more	than	one	linked	stylesheet	associated	with	a	document.	In	these	cases,	only
those	link	tags	with	a	rel	of	stylesheet	will	be	used	in	the	initial	display	of	the	document.	Thus,	if
you	wanted	to	link	two	stylesheets	named	basic.css	and	splash.css,	it	would	look	like	this:

<link	rel="stylesheet"	href="basic.css">

<link	rel="stylesheet"	href="splash.css">

This	will	cause	the	browser	to	load	both	stylesheets,	combine	the	rules	from	each,	and	apply	them	all	to
the	document	in	all	media	types	(because	the	media	attribute	was	omitted,	its	default	value	all	is	used).
For	example:

<link	rel="stylesheet"	href="basic.css">

<link	rel="stylesheet"	href="splash.css">

<p	class="a1">This	paragraph	will	be	gray	only	if	styles	from	the

stylesheet	'basic.css'	are	applied.</p>

<p	class="b1">This	paragraph	will	be	gray	only	if	styles	from	the

stylesheet	'splash.css'	are	applied.</p>

The	one	attribute	that	isn’t	in	this	example	markup,	but	could	be,	is	the	title	attribute.	This	attribute	is
not	often	used,	but	it	could	become	important	in	the	future	and,	if	used	improperly,	can	have	unexpected
effects.	Why?	We’ll	explore	that	in	the	next	section.

Alternate	stylesheets
It’s	also	possible	to	define	alternate	stylesheets	that	users	can	select	in	some	browsers.	These	are
defined	by	making	the	value	of	the	rel	attribute	alternate	stylesheet,	and	they	are	used	in
document	presentation	only	if	selected	by	the	user.

Should	a	browser	be	able	to	use	alternate	stylesheets,	it	will	use	the	values	of	the	link	element’s
title	attributes	to	generate	a	list	of	style	alternatives.	So	you	could	write	the	following:

<link	rel="stylesheet"	href="sheet1.css"	title="Default">

<link	rel="alternate	stylesheet"	href="bigtext.css"	title="Big	Text">

<link	rel="alternate	stylesheet"	href="zany.css"	title="Crazy	colors!">

Users	could	then	pick	the	style	they	want	to	use,	and	the	browser	would	switch	from	the	first	one,	labeled
“Default”	in	this	case,	to	whichever	the	user	picked.	Figure	1-7	shows	one	way	in	which	this	selection
mechanism	might	be	accomplished	(and	in	fact	was,	early	in	the	resurgence	of	CSS).

Figure	1-7.	A	browser	offering	alternate	stylesheet	selection

NOTE
As	of	early	2022,	alternate	stylesheets	were	supported	in	most	Gecko-based	browsers	like	Firefox,	and	in	Opera.	The	Chromium	and
WebKit	families	did	not	support	selecting	alternate	stylesheets.	Compare	this	to	the	build	date	of	the	browser	shown	in	Figure	1-7,	which	is
late	2002.

It’s	also	possible	to	group	alternate	stylesheets	together	by	giving	them	the	same	title	value.	Thus,	you
make	it	possible	for	the	user	to	pick	a	different	presentation	for	your	site	in	both	screen	and	print	media:

<link	rel="stylesheet"

			href="sheet1.css"	title="Default"	media="screen">

<link	rel="stylesheet"

			href="print-sheet1.css"	title="Default"	media="print">

<link	rel="alternate	stylesheet"

			href="bigtext.css"	title="Big	Text"	media="screen">

<link	rel="alternate	stylesheet"

			href="print-bigtext.css"	title="Big	Text"	media="print">

If	a	user	selects	“Big	Text”	from	the	alternate	stylesheet	selection	mechanism	in	a	conforming	user	agent,
then	bigtext.css	will	be	used	to	style	the	document	in	the	screen	medium,	and	print-bigtext.css	will	be
used	in	the	print	medium.	Neither	sheet1.css	nor	print-sheet1.css	will	be	used	in	any	medium.

Why	is	that?	Because	if	you	give	a	link	with	a	rel	of	stylesheet	a	title,	then	you	are	designating
that	stylesheet	as	a	preferred	stylesheet.	This	means	that	its	use	is	preferred	to	alternate	stylesheets,	and	it
will	be	used	when	the	document	is	first	displayed.	Once	you	select	an	alternate	stylesheet,	however,	the
preferred	stylesheet	will	not	be	used.

Furthermore,	if	you	designate	a	number	of	stylesheets	as	preferred,	then	all	but	one	of	them	will	be
ignored.	Consider	the	following	code	example:

<link	rel="stylesheet"

			href="sheet1.css"	title="Default	Layout">

<link	rel="stylesheet"

			href="sheet2.css"	title="Default	Text	Sizes">

<link	rel="stylesheet"

			href="sheet3.css"	title="Default	Colors">

All	three	link	elements	now	refer	to	preferred	stylesheets,	thanks	to	the	presence	of	a	title	attribute
on	all	three,	but	only	one	of	them	will	actually	be	used	in	that	manner.	The	other	two	will	be	ignored
completely.	Which	two?	There’s	no	way	to	be	certain,	as	HTML	doesn’t	provide	a	method	of	determining
which	preferred	stylesheets	should	be	ignored	and	which	should	be	used.

If	you	don’t	give	a	stylesheet	a	title,	then	it	becomes	a	persistent	stylesheet	and	is	always	used	in	the
display	of	the	document.	Often,	this	is	exactly	what	an	author	wants,	especially	since	alternate	stylesheets
are	not	widely	supported,	and	almost	completely	unknown	to	users.

The	style	Element
The	style	element	is	one	way	to	include	a	stylesheet,	and	it	appears	in	the	document	itself:

<style>...</style>

The	styles	between	the	opening	and	closing	style	tags	are	referred	to	as	the	document	stylesheet	or	the
embedded	stylesheet	(because	this	kind	of	stylesheet	is	embedded	within	the	document).	It	contains	styles
that	apply	to	the	document,	but	it	can	also	contain	multiple	links	to	external	stylesheets	using	the
@import	directive,	discussed	in	the	next	section.

You	can	give	style	elements	a	media	attribute,	which	functions	in	the	same	manner	as	it	does	on
linked	stylesheets.	This,	for	example,	will	restrict	an	embedded	stylesheet’s	rules	to	be	applied	in	print
media	only.

<style	media="print">…</style>

You	can	also	label	an	embedded	stylesheet	with	a	title	element,	in	the	same	manner	and	for	the	same
reasons	discussed	in	the	previous	section	on	alternate	stylesheets.

As	with	the	link	element,	the	style	element	can	use	the	attribute	type;	in	the	case	of	a	CSS
document,	the	correct	value	is	"text/css".	The	type	attribute	is	optional	in	HTML5	as	long	as
you’re	loading	CSS,	because	the	default	value	for	the	type	attribute	on	the	style	element	is
text/css.	It	would	only	be	necessary	to	explicitly	declare	a	type	value	if	you	were	using	some	other
styling	language,	perhaps	in	a	future	where	such	a	thing	in	supported.	For	the	time	being,	though,	it
remains	wholly	optional.

The	@import	Directive
Now	we’ll	discuss	the	stuff	that	is	found	inside	the	style	tag.	First,	we	have	something	very	similar	to
link:	the	@import	directive:

@import	url(sheet2.css);

Just	like	link,	@import	can	be	used	to	direct	the	web	browser	to	load	an	external	stylesheet	and	use
its	styles	in	the	rendering	of	the	HTML	document.	The	only	major	difference	is	in	the	syntax	and
placement	of	the	command.	As	you	can	see,	@import	is	found	inside	the	style	element.	It	must	be

placed	first,	before	the	other	CSS	rules,	or	it	won’t	work	at	all.	Consider	this	example:

<style>

@import	url(styles.css);	/*	@import	comes	first	*/

h1	{color:	gray;}

</style>

Like	link,	there	can	be	more	than	one	@import	statement	in	a	document.	Unlike	link,	however,	the
stylesheets	of	every	@import	directive	will	be	loaded	and	used;	there	is	no	way	to	designate	alternate
stylesheets	with	@import.	So,	given	the	following	markup:

@import	url(sheet2.css);

@import	url(blueworld.css);

@import	url(zany.css);

…all	three	external	stylesheets	will	be	loaded,	and	all	of	their	style	rules	will	be	used	in	the	display	of
the	document.

As	with	link,	you	can	restrict	imported	stylesheets	to	one	or	more	media	by	providing	media
descriptors	after	the	stylesheet’s	URL:

@import	url(sheet2.css)	all;

@import	url(blueworld.css)	screen;

@import	url(zany.css)	screen,	print;

As	noted	in	“The	link	Tag”,	media	descriptors	can	get	quite	complicated,	and	are	explained	in	detail	in
XREF	HERE.

@import	can	be	highly	useful	if	you	have	an	external	stylesheet	that	needs	to	use	the	styles	found	in	other
external	stylesheets.	Since	external	stylesheets	cannot	contain	any	document	markup,	the	link	element
can’t	be	used—but	@import	can.	Therefore,	you	might	have	an	external	stylesheet	that	contains	the
following:

@import	url(http://example.org/library/layout.css);

@import	url(basic-text.css);

@import	url(printer.css)	print;

body	{color:	red;}

h1	{color:	blue;}

Well,	maybe	not	those	exact	styles,	but	hopefully	you	get	the	idea.	Note	the	use	of	both	absolute	and
relative	URLs	in	the	previous	example.	Either	URL	form	can	be	used,	just	as	with	link.

Note	also	that	the	@import	directives	appear	at	the	beginning	of	the	stylesheet,	as	they	did	in	the
example	document.	CSS	requires	the	@import	directive	to	come	before	any	other	rules	in	a	stylesheet.
An	@import	that	comes	after	other	rules	(e.g.,	body	{color:	red;})	will	be	ignored	by	conforming
user	agents.

WARNING
Older	versions	of	Internet	Explorer	for	Windows	do	not	ignore	any	@import	directive,	even	those	that	come	after	other	rules.	Since	other
browsers	do	ignore	improperly	placed	@import	directives,	it	is	easy	to	mistakenly	place	the	@import	directive	incorrectly	and	thus	alter
the	display	in	other	browsers.

There	is	another	descriptor	that	can	be	added	to	an	@import	directive,	which	is	a	cascade	layer
identifier.	This	assigns	all	of	the	styles	in	the	imported	stylesheet	to	a	cascade	layer,	which	is	a	concept
we’ll	explore	in	Chapter	4.	It	looks	like	this:

@import	url(basic-text.css)	screen	layer(basic);

That	assigns	the	styles	from	basic-text.css	to	the	basic	cascade	layer.	If	you	want	to	just	assign
the	styles	to	an	un-named	layer,	use	layer	without	the	parenthetical	naming,	like	so:

@import	url(basic-text.css)	screen	layer;

Note	that	this	ability	is	a	difference	between	@import	and	link,	as	the	latter	cannot	be	labeled	with	a
cascade	layer.

HTTP	Linking
There	is	another,	far	more	obscure	way	to	associate	CSS	with	a	document:	you	can	link	the	two	via	HTTP
headers.

Under	Apache,	this	can	be	accomplished	by	adding	a	reference	to	the	CSS	file	in	a	.htaccess	file.	For
example:

Header	add	Link	"</ui/testing.css>;rel=stylesheet;type=text/css"

This	will	cause	supporting	browsers	to	associate	the	referenced	stylesheet	with	any	documents	served
from	under	that	.htaccess	file.	The	browser	will	then	treat	it	as	if	it	were	a	linked	stylesheet.
Alternatively,	and	probably	more	efficiently,	you	can	add	an	equivalent	rule	to	the	server’s	httpd.conf
file:

<Directory	/path/to/	/public/html/directory>

Header	add	Link	"</ui/testing.css>;rel=stylesheet;type=text/css"

</Directory>

The	effect	is	exactly	the	same	in	supporting	browsers.	The	only	difference	is	in	where	you	declare	the
linking.

You	probably	noticed	the	use	of	the	term	“supporting	browsers.”	As	of	early	2022,	the	widely	used
browsers	that	support	HTTP	linking	of	stylesheets	are	the	Firefox	family	and	Opera.	That	restricts	this
technique	mostly	to	development	environments	based	on	one	of	those	browsers.	In	such	a	situation,	you
can	use	HTTP	linking	on	the	test	server	to	mark	when	you’re	on	the	development	site	as	opposed	to	the

public	site.	It’s	also	an	interesting	way	to	hide	styles	from	the	Chromium,	WebKit,	and	Internet	Explorer
families,	assuming	you	have	a	reason	to	do	so.

NOTE
There	are	equivalents	to	this	technique	in	common	scripting	languages	such	as	PHP	and	IIS,	both	of	which	allow	the	author	to	emit	HTTP
headers.	It’s	also	possible	to	use	such	languages	to	explicitly	write	link	elements	into	the	document	based	on	the	server	offering	up	the
document.	This	is	a	more	robust	approach	in	terms	of	browser	support:	every	browser	supports	the	link	element.

Inline	Styles
For	cases	where	you	want	to	just	assign	a	few	styles	to	one	individual	element,	without	the	need	for
embedded	or	external	stylesheets,	it’s	possible	to	employ	the	HTML	attribute	style:

<p	style="color:	gray;">The	most	wonderful	of	all	breakfast	foods	is

the	waffle—a	ridged	and	cratered	slab	of	home-cooked,	fluffy	goodness...

</p>

The	style	attribute	can	be	associated	with	any	HTML	tag	whatsoever,	even	tags	found	outside	of	body
(head	or	title,	for	instance).

The	syntax	of	a	style	attribute	is	fairly	ordinary.	In	fact,	it	looks	very	much	like	the	declarations	found
in	the	style	container,	except	here	the	curly	braces	are	replaced	by	double	quotation	marks.	So	<p
style="color:	maroon;	background:	yellow;">	will	set	the	text	color	to	be	maroon	and	the
background	to	be	yellow	for	that	paragraph	only.	No	other	part	of	the	document	will	be	affected	by	this
declaration.

Note	that	you	can	only	place	a	declaration	block,	not	an	entire	stylesheet,	inside	an	inline	style
attribute.	Therefore,	you	can’t	put	an	@import	into	a	style	attribute,	nor	can	you	include	any	complete
rules.	The	only	thing	you	can	put	into	the	value	of	a	style	attribute	is	what	might	go	between	the	curly
braces	of	a	rule.

Use	of	the	style	attribute	is	discouraged.	Many	of	the	primary	advantages	of	CSS—the	ability	to
organize	centralized	styles	that	control	an	entire	document’s	appearance	or	the	appearance	of	all
documents	on	a	web	server—are	negated	when	you	place	styles	into	a	style	attribute.	In	many	ways,
inline	styles	are	not	much	better	than	the	ancient	font	tag,	even	if	they	do	have	a	good	deal	more
flexibility	in	terms	of	what	visual	effects	they	can	apply.

Summary
With	CSS,	it	is	possible	to	completely	change	the	way	elements	are	presented	by	a	user	agent.	This	can	be
executed	at	a	basic	level	with	the	display	property,	and	in	a	different	way	by	associating	stylesheets
with	a	document.	The	user	will	never	know	whether	this	is	done	via	an	external	or	embedded	stylesheet,
or	even	with	an	inline	style.	The	real	importance	of	external	stylesheets	is	the	way	in	which	they	allow
authors	to	put	all	of	a	site’s	presentation	information	in	one	place,	and	point	all	of	the	documents	to	that

place.	This	not	only	makes	site	updates	and	maintenance	a	breeze,	but	it	helps	to	save	bandwidth,	since
all	of	the	presentation	is	removed	from	documents.

To	make	the	most	of	the	power	of	CSS,	authors	need	to	know	how	to	associate	a	set	of	styles	with	the
elements	in	a	document.	To	fully	understand	how	CSS	can	do	all	of	this,	authors	need	a	firm	grasp	of	the
way	CSS	selects	pieces	of	a	document	for	styling,	which	is	the	subject	of	the	next	few	chapters.

Chapter	2.	Selectors

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	2nd	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

One	of	the	primary	advantages	of	CSS	is	its	ability	to	easily	apply	a	set	of	styles	to	all	elements	of	the
same	type.	Unimpressed?	Consider	this:	by	editing	a	single	line	of	CSS,	you	can	change	the	colors	of	all
your	headings.	Don’t	like	the	blue	you’re	using?	Change	that	one	line	of	code,	and	they	can	all	be	purple,
yellow,	maroon,	or	any	other	color	you	desire.	That	lets	you,	the	author,	focus	on	design	and	user
experience	rather	than	tedious	find-and-replace	operations.	The	next	time	you’re	in	a	meeting	and
someone	wants	to	see	headings	with	a	different	shade	of	green,	just	edit	your	style	and	hit	Reload.	Voilà!
The	results	are	accomplished	in	seconds	and	there	for	everyone	to	see.

Basic	Style	Rules
As	stated,	a	central	feature	of	CSS	is	its	ability	to	apply	certain	rules	to	an	entire	set	of	element	types	in	a
document.	For	example,	let’s	say	that	you	want	to	make	the	text	of	all	h2	elements	appear	gray.	Before	we
had	CSS,	you’d	have	to	do	this	by	inserting	...	tags	inside	all
your	h2	elements.	Applying	inline	styles	using	the	style	attribute,	which	is	also	bad	practice,	would
require	you	to	include	style="color:	gray;"	in	all	your	h2	elements,	like	this:

<h2	style="color:	gray;">This	is	h2	text</h2>

This	will	be	a	tedious	process	if	your	document	contains	a	lot	of	h2	elements.	Worse,	if	you	later	decide
that	you	want	all	those	h2s	to	be	green	instead	of	gray,	you’d	have	to	start	the	manual	tagging	all	over
again.	(Yes,	this	is	really	how	it	used	to	be	done!)

CSS	allows	you	to	create	rules	that	are	simple	to	change,	edit,	and	apply	to	all	the	text	elements	you
define	(the	next	section	will	explain	how	these	rules	work).	For	example,	you	can	write	this	rule	once	to
make	all	your	h2	elements	gray:

h2	{color:	gray;}

mailto:rfernando@oreilly.com

Type	Selectors
A	type	selector,	previously	known	as	an	element	selector,	is	most	often	an	HTML	element,	but	not
always.	For	example,	if	a	CSS	file	contains	styles	for	an	XML	document,	the	type	selectors	might	look
something	like	this:

quote	{color:	gray;}

bib	{color:	red;}

booktitle	{color:	purple;}

myElement	{color:	red;}

In	other	words,	the	elements	of	the	document	are	the	node	types	being	selected.	In	XML,	a	selector	could
be	anything	because	XML	allows	for	the	creation	of	new	markup	languages	that	can	have	just	about
anything	as	an	element	name.	If	you’re	styling	an	HTML	document,	on	the	other	hand,	the	selector	will
generally	be	one	of	the	many	HTML	elements	such	as	p,	h3,	em,	a,	or	even	html	itself.	For	example:

html	{color:	black;}

h1	{color:	gray;}

h2	{color:	silver;}

The	results	of	this	stylesheet	are	shown	in	Figure	2-1.

Figure	2-1.	Simple	styling	of	a	simple	document

Once	you’ve	globally	applied	styles	directly	to	elements,	you	can	shift	those	styles	from	one	element	to
another.	Let’s	say	you	decide	that	the	paragraph	text,	not	the	h1	elements,	in	Figure	2-1	should	be	gray.
No	problem.	Just	change	the	h1	selector	to	p:

html	{color:	black;}

p	{color:	gray;}

h2	{color:	silver;}

The	results	are	shown	in	Figure	2-2.

Figure	2-2.	Moving	a	style	from	one	element	to	another

Grouping
So	far,	we’ve	seen	fairly	simple	techniques	for	applying	a	single	style	to	a	single	selector.	But	what	if	you
want	the	same	style	to	apply	to	multiple	elements?	Grouping	allows	an	author	to	drastically	compact
certain	types	of	style	assignments,	which	makes	for	a	shorter	stylesheet.

Grouping	Selectors
Let’s	say	you	want	both	h2	elements	and	paragraphs	to	have	gray	text.	The	easiest	way	to	accomplish	this
is	to	use	the	following	declaration:

h2,	p	{color:	gray;}

By	placing	the	h2	and	p	selectors	at	the	beginning	of	the	rule,	before	the	opening	curly	brace,	and
separating	them	with	a	comma,	you’ve	defined	a	rule	where	the	style	inside	the	curly	braces	(color:
gray;)	applies	to	the	elements	referenced	by	both	selectors.	The	comma	tells	the	browser	that	there	are
two	different	selectors	involved	in	the	rule.	Leaving	out	the	comma	would	give	the	rule	a	completely
different	meaning,	which	we’ll	explore	in	“Descendant	Selectors”.

The	following	alternatives	produce	exactly	the	same	result,	but	one	is	a	lot	easier	to	type:

h1	{color:	purple;}

h2	{color:	purple;}

h3	{color:	purple;}

h4	{color:	purple;}

h5	{color:	purple;}

h6	{color:	purple;}

h1,	h2,	h3,	h4,	h5,	h6	{color:	purple;}

The	second	alternative,	with	one	with	the	grouped	selector,	is	also	a	lot	easier	to	maintain	over	time.

The	universal	selector

The	universal	selector,	displayed	as	an	asterisk	(*),	matches	any	element	at	all,	much	like	a	wildcard.
For	example,	to	make	every	single	element	in	a	document	bold,	you	would	write:

*	{font-weight:	bold;}

This	declaration	is	equivalent	to	a	grouped	selector	that	lists	every	element	contained	within	the
document.	The	universal	selector	lets	you	assign	the	font-weight	value	bold	to	every	element	in	the
document	in	one	efficient	stroke.	Beware,	however:	although	the	universal	selector	is	convenient	because
it	targets	everything	within	its	declaration	scope,	it	can	have	unintended	consequences,	which	are
discussed	in	Chapter	4.

Grouping	Declarations
Just	as	you	can	group	selectors	together	into	a	single	rule,	you	can	also	group	declarations.	Assuming	that
you	want	all	h1	elements	to	appear	in	purple,	18-pixel-high	Helvetica	text	on	an	aqua	background	(and
you	don’t	mind	blinding	your	readers),	you	could	write	your	styles	like	this:

h1	{font:	18px	Helvetica;}

h1	{color:	purple;}

h1	{background:	aqua;}

But	this	method	is	inefficient—imagine	creating	such	a	list	for	an	element	that	will	carry	10	or	15	styles!
Instead,	you	can	group	your	declarations	together:

h1	{font:	18px	Helvetica;	color:	purple;	background:	aqua;}

This	will	have	exactly	the	same	effect	as	the	three-line	stylesheet	just	shown.

Note	that	using	semicolons	at	the	end	of	each	declaration	is	crucial	when	you’re	grouping	them.	Browsers
ignore	whitespace	in	stylesheets,	so	the	user	agent	must	rely	on	correct	syntax	to	parse	the	stylesheet.	You
can	fearlessly	format	styles	like	the	following:

h1	{

		font:	18px	Helvetica;

		color:	purple;

		background:	aqua;

}

You	can	also	minimize	your	CSS,	removing	all	non-required	spaces.

h1{font:18px	Helvetica;color:purple;background:aqua;}

The	last	three	examples	are	treated	equally	by	the	server,	but	the	second	one	is	generally	regarded	as	the
most	human-readable,	and	the	recommended	method	of	writing	your	CSS	during	development.	You	might
choose	to	minimize	your	CSS	for	network-performance	reasons,	but	this	is	usually	automatically	handled
by	a	build	tool,	server-side	script,	caching	network,	or	other	service,	so	you’re	usually	better	off	writing
your	CSS	in	a	human-readable	fashion.

If	the	semicolon	is	omitted	on	the	second	statement,	the	user	agent	will	interpret	the	stylesheet	as	follows:

h1	{

		font:	18px	Helvetica;

		color:	purple	background:	aqua;

}

Because	background:	is	not	a	valid	value	for	color,	a	user	agent	will	ignore	the	color	declaration
(including	the	background:	aqua	part)	entirely.	You	might	think	the	browser	would	at	least	render
h1s	as	purple	text	without	an	aqua	background,	but	not	so.	Instead,	they	will	be	the	default	color	(which
is	usually	black)	with	a	transparent	background	(which	is	also	a	default).	The	declaration	font:	18px
Helvetica	will	still	take	effect	since	it	was	correctly	terminated	with	a	semicolon.

TIP
Although	it	is	not	technically	necessary	to	follow	the	last	declaration	of	a	rule	with	a	semicolon	in	CSS,	it	is	generally	good	practice	to	do	so.
First,	it	will	keep	you	in	the	habit	of	terminating	your	declarations	with	semicolons,	the	lack	of	which	is	one	of	the	most	common	causes	of
rendering	errors.	Second,	if	you	decide	to	add	another	declaration	to	a	rule,	you	won’t	have	to	worry	about	forgetting	to	insert	an	extra
semicolon.

As	with	selector	grouping,	declaration	grouping	is	a	convenient	way	to	keep	your	stylesheets	short,
expressive,	and	easy	to	maintain.

Grouping	Everything
You	now	know	that	you	can	group	selectors	and	you	can	group	declarations.	By	combining	both	kinds	of
grouping	in	single	rules,	you	can	define	very	complex	styles	using	only	a	few	statements.	Now,	what	if
you	want	to	assign	some	complex	styles	to	all	the	headings	in	a	document,	and	you	want	the	same	styles	to
be	applied	to	all	of	them?	Here’s	how	to	do	it:

h1,	h2,	h3,	h4,	h5,	h6	{color:	gray;	background:	white;	padding:	0.5em;

		border:	1px	solid	black;	font-family:	Charcoal,	sans-serif;}

Here	we’ve	grouped	the	selectors,	so	the	styles	inside	the	curly	braces	will	be	applied	to	all	the	headings
listed;	grouping	the	declarations	means	that	all	of	the	listed	styles	will	be	applied	to	the	selectors	on	the
left	side	of	the	rule.	The	result	of	this	rule	is	shown	in	Figure	2-3.

Figure	2-3.	Grouping	both	selectors	and	rules

This	approach	is	preferable	to	the	drawn-out	alternative,	which	would	begin	with	something	like	this:

h1	{color:	gray;}

h2	{color:	gray;}

h3	{color:	gray;}

h4	{color:	gray;}

h5	{color:	gray;}

h6	{color:	gray;}

h1	{background:	white;}

h2	{background:	white;}

h3	{background:	white;}

…and	continue	for	many	lines.	You	can	write	out	your	styles	the	long	way,	but	we	don’t	recommend	it—
editing	them	would	be	about	as	tedious	as	using	style	attributes	everywhere!

Grouping	allows	for	some	interesting	choices.	For	example,	all	of	the	groups	of	rules	in	the	following
example	are	equivalent—each	merely	shows	a	different	way	of	grouping	both	selectors	and	declarations:

/*	group	1	*/

h1	{color:	silver;	background:	white;}

h2	{color:	silver;	background:	gray;}

h3	{color:	white;	background:	gray;}

h4	{color:	silver;	background:	white;}

b	{color:	gray;	background:	white;}

/*	group	2	*/

h1,	h2,	h4	{color:	silver;}

h2,	h3	{background:	gray;}

h1,	h4,	b	{background:	white;}

h3	{color:	white;}

b	{color:	gray;}

/*	group	3	*/

h1,	h4	{color:	silver;	background:	white;}

h2	{color:	silver;}

h3	{color:	white;}

h2,	h3	{background:	gray;}

b	{color:	gray;	background:	white;}

Any	of	these	three	approaches	to	grouping	selectors	and	declarations	will	yield	the	result	shown	in
Figure	2-4.

Figure	2-4.	The	result	of	equivalent	stylesheets

Class	and	ID	Selectors
So	far,	we’ve	been	grouping	selectors	and	declarations	together	in	a	variety	of	ways,	but	the	selectors
we’ve	been	using	are	very	simple	ones	that	refer	only	to	document	elements.	Type	selectors	are	fine	up	to
a	point,	but	there	are	times	when	you	need	something	a	little	more	focused.

In	addition	to	type	selectors,	there	are	class	selectors	and	ID	selectors,	which	let	you	assign	styles	in	a
way	that	is	independent	of	element	type.	These	selectors	can	be	used	on	their	own	or	in	conjunction	with
type	selectors.	However,	they	only	work	if	you’ve	marked	up	your	document	appropriately,	so	using	them
generally	involves	a	little	forethought	and	planning.

For	example,	say	a	document	contains	a	number	of	warnings.	You	want	each	warning	to	appear	in
boldface	text	so	that	it	will	stand	out.	However,	you	don’t	know	which	elements	these	warnings	will	be.
Some	warnings	could	be	entire	paragraphs,	while	others	could	be	a	single	item	within	a	lengthy	list	or	a
few	words	in	a	section	of	text.	So,	you	can’t	define	a	rule	using	type	selectors	of	any	kind.	Suppose	you
tried	this	route:

p	{

		font-weight:	bold;

		color:	red;

}

All	paragraphs	would	be	red	and	bold,	not	just	those	that	contain	warnings.	You	need	a	way	to	select	only
the	text	that	contains	warnings	—	or,	more	precisely,	a	way	to	select	only	those	elements	that	are

warnings.	How	do	you	do	it?	You	apply	styles	to	parts	of	the	document	that	have	been	marked	in	a	certain
way,	independent	of	the	elements	involved,	by	using	class	selectors.

Class	Selectors
The	most	common	way	to	apply	styles	without	worrying	about	the	elements	involved	is	to	use	class
selectors.	Before	you	can	use	them,	however,	you	need	to	modify	your	actual	document	markup	so	that	the
class	selectors	will	work.	Enter	the	class	attribute:

<p	class="warning">When	handling	plutonium,	care	must	be	taken	to	avoid

the	formation	of	a	critical	mass.</p>

<p>With	plutonium,	the	possibility	of	implosion	is

very	real,	and	must	be	avoided	at	all	costs.	This	can	be	accomplished

by	keeping	the	various	masses	separate.</p>

To	associate	the	styles	of	a	class	selector	with	an	element,	you	must	assign	a	class	attribute	the
appropriate	value.	In	the	previous	code	block,	a	class	value	of	warning	was	assigned	to	two
elements:	the	first	paragraph	and	the	span	element	in	the	second	paragraph.

To	apply	styles	to	these	classed	elements,	you	can	use	a	compact	notation	where	the	name	of	a	class	is
preceded	by	a	period	(.):

*.warning	{font-weight:	bold;}

When	combined	with	the	example	markup	shown	earlier,	this	simple	rule	has	the	effect	shown	in	Figure	2-
5.	That	is,	the	declaration	font-weight:	bold	will	be	applied	to	every	element	that	carries	a
class	attribute	with	a	value	of	warning.

Figure	2-5.	Using	a	class	selector

As	Figure	2-5	illustrates,	the	class	selector	works	by	directly	referencing	a	value	that	will	be	found	in	the
class	attribute	of	an	element.	This	reference	is	always	preceded	by	a	period	(.),	which	marks	it	as	a
class	selector.	The	period	helps	keep	the	class	selector	separate	from	anything	with	which	it	might	be
combined,	such	as	a	type	selector.	For	example,	you	may	want	boldface	warning	text	only	when	an	entire

paragraph	is	a	warning:

p.warning	{font-weight:	bold;}

The	selector	now	matches	any	p	elements	that	have	a	class	attribute	containing	the	word	warning,	but
no	other	elements	of	any	kind,	classed	or	otherwise.	Since	the	span	element	is	not	a	paragraph,	the	rule’s
selector	doesn’t	match	it,	and	it	won’t	be	displayed	using	boldfaced	text.

If	you	wanted	to	assign	different	styles	to	the	span	element,	you	could	use	the	selector
span.warning:

p.warning	{font-weight:	bold;}

span.warning	{font-style:	italic;}

In	this	case,	the	warning	paragraph	is	boldfaced,	while	the	warning	span	is	italicized.	Each	rule	applies
only	to	a	specific	type	of	element/class	combination,	so	it	does	not	leak	over	to	other	elements.

Another	option	is	to	use	a	combination	of	a	general	class	selector	and	an	element-specific	class	selector
to	make	the	styles	even	more	useful,	as	in	the	following	markup:

.warning	{font-style:	italic;}

span.warning	{font-weight:	bold;}

The	results	are	shown	in	Figure	2-6.

Figure	2-6.	Using	generic	and	specific	selectors	to	combine	styles

In	this	situation,	any	warning	text	will	be	italicized,	but	only	the	text	within	a	span	element	with	a
class	of	warning	will	be	both	boldfaced	and	italicized.

TIP
Notice	the	format	of	the	general	class	selector	used	in	the	previous	example:	it’s	a	class	name	preceded	by	a	period,	and	without	an
element	name	or	universal	selector.	In	cases	where	you	only	want	to	select	all	elements	that	share	a	class	name,	you	can	omit	the	universal
selector	from	a	class	selector	without	any	ill	effects.	Thus,	*.warning	and	.warning	will	have	exactly	the	same	effect.

Another	thing	about	class	names:	they	should	never	begin	with	a	number.	Browsers	will	allow	you	to	get
away	with	this,	but	CSS	validators	will	complain,	and	it’s	a	bad	habit	to	get	into.	Thus,	you	should	write
.c8675	in	your	CSS	and	class="c8675"	in	your	HTML,	rather	than	.8675	and	class="8675".
If	you	must	refer	to	classes	that	begin	with	numbers,	put	a	backslash	between	the	period	and	the	first
number,	like	so:	.\8675.

Multiple	Classes
In	the	previous	section,	we	dealt	with	class	values	that	contained	a	single	word.	In	HTML,	it’s	possible
to	have	a	space-separated	list	of	words	in	a	single	class	value.	For	example,	if	you	want	to	mark	a
particular	element	as	being	both	urgent	and	a	warning,	you	could	write:

<p	class="urgent	warning">When	handling	plutonium,	care	must	be	taken	to

avoid	the	formation	of	a	critical	mass.</p>

<p>With	plutonium,	the	possibility	of	implosion	is

very	real,	and	must	be	avoided	at	all	costs.	This	can	be	accomplished

by	keeping	the	various	masses	separate.</p>

The	order	of	the	words	doesn’t	matter;	warning	urgent	would	also	work	and	would	yield	precisely
the	same	results	no	matter	how	your	CSS	is	written.

Now	let’s	say	you	want	all	elements	with	a	class	of	warning	to	be	boldfaced,	those	with	a	class	of
urgent	to	be	italic,	and	those	elements	with	both	values	to	have	a	silver	background.	This	would	be
written	as	follows:

.warning	{font-weight:	bold;}

.urgent	{font-style:	italic;}

.warning.urgent	{background:	silver;}

By	chaining	two	class	selectors	together,	you	can	select	only	those	elements	that	have	both	class	names,	in
any	order.	As	you	can	see,	the	HTML	source	contains	class="urgent	warning"	but	the	CSS
selector	is	written	.warning.urgent.	Regardless,	the	rule	will	still	cause	the	“When	handling
plutonium…	”	paragraph	to	have	a	silver	background,	as	illustrated	in	Figure	2-7.	This	happens	because
the	order	the	words	are	written	in	the	source	document,	or	in	the	CSS,	doesn’t	matter.	(This	is	not	to	say
the	order	of	classes	is	always	irrelevant,	but	we’ll	get	to	that	later	in	the	chapter.)

Figure	2-7.	Selecting	elements	with	multiple	class	names

If	a	multiple	class	selector	contains	a	name	that	is	not	in	the	space-separated	list,	then	the	match	will	fail.
Consider	the	following	rule:

p.warning.help	{background:	red;}

As	you	might	expect,	the	selector	will	match	only	those	p	elements	with	a	class	containing	the	words
warning	and	help.	Therefore,	it	will	not	match	a	p	element	with	just	the	words	warning	and
urgent	in	its	class	attribute.	It	would,	however,	match	the	following:

<p	class="urgent	warning	help">Help	me!</p>

ID	Selectors
In	some	ways,	ID	selectors	are	similar	to	class	selectors,	but	there	are	a	few	crucial	differences.	First,	ID
selectors	are	preceded	by	an	octothorpe	(#)—also	known	as	a	pound	sign	(in	the	US),	hash	sign,	hash
mark,	or	tic-tac-toe	board—instead	of	a	period.	Thus,	you	might	see	a	rule	like	this	one:

*#first-para	{font-weight:	bold;}

This	rule	produces	boldfaced	text	in	any	element	whose	id	attribute	has	a	value	of	first-para.

The	second	difference	is	that	instead	of	referencing	values	of	the	class	attribute,	ID	selectors	refer,
sensibly	enough,	to	values	found	in	id	attributes.	Here’s	an	example	of	an	ID	selector	in	action:

*#lead-para	{font-weight:	bold;}

<p	id="lead-para">This	paragraph	will	be	boldfaced.</p>

<p>This	paragraph	will	NOT	be	bold.</p>

Note	that	the	value	lead-para	could	have	been	assigned	to	any	element	within	the	document.	In	this
particular	case,	it	is	applied	to	the	first	paragraph,	but	we	could	have	applied	it	just	as	easily	to	the

second	or	third	paragraph.	Or	an	unordered	list.	Or	anything.

The	third	difference	is	that	there	should	only	be	one	instance	of	a	given	ID	value	in	a	document.	If	you	find
yourself	wanting	to	apply	the	same	ID	to	multiple	elements	in	a	document,	make	it	a	class	instead.

As	with	class	selectors,	it	is	possible	(and	very	much	the	norm)	to	omit	the	universal	selector	from	an	ID
selector.	In	the	previous	example,	we	could	also	have	written	with	the	exact	same	effect:

#lead-para	{font-weight:	bold;}

This	is	useful	for	circumstances	where	you	know	that	a	certain	ID	value	will	appear	in	a	document,	but
you	don’t	know	the	element	type	on	which	it	will	appear.	For	example,	you	may	know	that	in	any	given
document,	there	will	be	an	element	with	an	ID	value	of	mostImportant.	You	don’t	know	whether	that
most	important	thing	will	be	a	paragraph,	a	short	phrase,	a	list	item,	or	a	section	heading.	You	know	only
that	it	will	exist	in	each	document,	occur	in	an	arbitrary	element,	and	appear	no	more	than	once.	In	that
case,	you	would	write	a	rule	like	this:

#mostImportant	{color:	red;	background:	yellow;}

This	rule	would	match	any	of	the	following	elements	(which,	as	noted	before,	should	not	appear	together
in	the	same	document	because	they	all	have	the	same	ID	value):

<h1	id="mostImportant">This	is	important!</h1>

<em	id="mostImportant">This	is	important!

<ul	id="mostImportant">This	is	important!

While	HTML	standards	say	each	id	must	be	unique	in	a	document,	CSS	doesn’t	care.	If	we	had
erroneously	included	the	HTML	shown	just	now,	all	three	would	likely	be	red	with	a	yellow	background
because	all	three	match	the	#mostImportant	selector.

NOTE
As	with	class	names,	IDs	should	never	start	with	numbers.	If	you	must	refer	to	an	ID	that	begins	with	a	number	and	you	cannot	change	the
ID	value	in	the	markup,	use	a	backslash	before	the	first	number,	as	in	#\309.

Deciding	Between	Class	and	ID
You	may	assign	classes	to	any	number	of	elements,	as	demonstrated	earlier;	the	class	name	warning
was	applied	to	both	a	p	and	a	span	element,	and	it	could	have	been	applied	to	many	more	elements.	ID
values,	on	the	other	hand,	should	be	used	once,	and	only	once,	within	an	HTML	document.	Therefore,	if
you	have	an	element	with	an	id	value	of	lead-para,	no	other	element	in	that	document	should	have	an
id	value	of	lead-para.

That’s	according	to	the	HTML	specification,	anyway.	As	noted	previously,	CSS	doesn’t	care	if	your
HTML	is	valid	or	not:	it	should	find	however	many	elements	a	selector	can	match.	That	means	that	if	you
sprinkle	an	HTML	document	with	several	elements,	all	of	which	have	the	same	value	for	their	ID

attributes,	you	should	get	the	same	styles	applied	to	each.

NOTE
Having	more	than	one	of	the	same	ID	value	in	a	document	also	makes	DOM	scripting	more	difficult,	since	functions	like
getElementById()	depend	on	there	being	one,	and	only	one,	element	with	a	given	ID	value.

Unlike	class	selectors,	ID	selectors	can’t	be	combined	with	other	IDs,	since	ID	attributes	do	not	permit	a
space-separated	list	of	words.	An	ID	selector	can	be	combined	with	itself,	though:
#warning#warning	will	match	the	element	with	an	id	value	of	warning.	This	should	rarely,	if
ever,	be	done,	but	it	is	possible.

Another	difference	between	class	and	id	names	is	that	IDs	carry	more	weight	when	you’re	trying	to
determine	which	styles	should	be	applied	to	a	given	element.	This	will	be	explained	in	greater	detail	in
Chapter	4.

Also	note	that	HTML	defines	class	and	ID	values	to	be	case-sensitive,	so	the	capitalization	of	your	class
and	ID	values	must	match	what’s	found	in	your	documents.	Thus,	in	the	following	pairing	of	CSS	and
HTML,	the	element’s	text	will	not	be	boldfaced:

p.criticalInfo	{font-weight:	bold;}

<p	class="criticalinfo">Don't	look	down.</p>

Because	of	the	change	in	case	for	the	letter	i,	the	selector	will	not	match	the	element	shown.

On	a	purely	syntactical	level,	the	dot-class	notation	(e.g.,	.warning)	is	not	guaranteed	to	work	for	XML
documents.	As	of	this	writing,	the	dot-class	notation	works	in	HTML,	SVG,	and	MathML,	and	it	may	well
be	permitted	in	future	languages,	but	it’s	up	to	each	language’s	specification	to	decide	that.	The	hash-ID
notation	(e.g.,	#lead)	should	work	in	any	document	language	that	has	an	attribute	whose	value	is
supposed	to	be	unique	within	a	document.

Attribute	Selectors
With	both	class	and	ID	selectors,	what	you’re	really	doing	is	selecting	values	of	elements’	attributes.	The
syntax	used	in	the	previous	two	sections	is	particular	to	HTML,	SVG,	and	MathML	documents	as	of	this
writing.	In	other	markup	languages,	these	class	and	ID	selectors	may	not	be	available	(as,	indeed,	those
attributes	may	not	be	present).	To	address	this	situation,	CSS2	introduced	attribute	selectors,	which	can
be	used	to	select	elements	based	on	their	attributes	and	the	values	of	those	attributes.	There	are	four
general	types	of	attribute	selectors:	simple	attribute	selectors,	exact	attribute	value	selectors,	partial-
match	attribute	value	selectors,	and	leading-value	attribute	selectors.

Simple	Attribute	Selectors
If	you	want	to	select	elements	that	have	a	certain	attribute,	regardless	of	that	attribute’s	value,	you	can	use

a	simple	attribute	selector.	For	example,	to	select	all	h1	elements	that	have	a	class	attribute	with	any
value	and	make	their	text	silver,	write:

h1[class]	{color:	silver;}

So,	given	the	following	markup:

<h1	class="hoopla">Hello</h1>

<h1>Serenity</h1>

<h1	class="fancy">Fooling</h1>

you	get	the	result	shown	in	Figure	2-8.

Figure	2-8.	Selecting	elements	based	on	their	attributes

This	strategy	is	very	useful	in	XML	documents,	as	XML	languages	tend	to	have	element	and	attribute
names	that	are	specific	to	their	purpose.	Consider	an	XML	language	that	is	used	to	describe	planets	of	the
solar	system	(we’ll	call	it	PlanetML).	If	you	want	to	select	all	pml-planet	elements	with	a	moons
attribute	and	make	them	boldface,	thus	calling	attention	to	any	planet	that	has	moons,	you	would	write:

pml-planet[moons]	{font-weight:	bold;}

This	would	cause	the	text	of	the	second	and	third	elements	in	the	following	markup	fragment	to	be
boldfaced,	but	not	the	first:

<pml-planet>Venus</pml-planet>

<pml-planet	moons="1">Earth</pml-planet>

<pml-planet	moons="2">Mars</pml-planet>

In	HTML	documents,	you	can	use	this	feature	in	a	number	of	creative	ways.	For	example,	you	could	style
all	images	that	have	an	alt	attribute,	thus	highlighting	those	images	that	are	correctly	formed:

img[alt]	{outline:	3px	solid	forestgreen;}

This	particular	example	is	generally	useful	more	for	diagnostic	purposes—that	is,	determining	whether
images	are	indeed	correctly	marked	up—than	for	design	purposes.

If	you	wanted	to	boldface	any	element	that	includes	title	information,	which	most	browsers	display	as
a	“tool	tip”	when	a	cursor	hovers	over	the	element,	you	could	write:

*[title]	{font-weight:	bold;}

Similarly,	you	could	style	only	those	anchors	(a	elements)	that	have	an	href	attribute,	thus	applying	the
styles	to	any	hyperlink	but	not	to	any	placeholder	anchors.

It	is	also	possible	to	select	elements	based	on	the	presence	of	more	than	one	attribute.	You	do	this	by
chaining	the	attribute	selectors	together.	For	example,	to	boldface	the	text	of	any	HTML	hyperlink	that	has
both	an	href	and	a	title	attribute,	you	would	write:

a[href][title]	{font-weight:	bold;}

This	would	boldface	the	first	link	in	the	following	markup,	but	not	the	second	or	third:

W3C

Standards	Info

dead.letter

Selection	Based	on	Exact	Attribute	Value
You	can	further	narrow	the	selection	process	to	encompass	only	those	elements	whose	attributes	are	a
certain	value.	For	example,	let’s	say	you	want	to	boldface	any	hyperlink	that	points	to	a	certain	document
on	the	web	server.	This	would	look	something	like:

a[href="http://www.css-discuss.org/about.html"]	{font-weight:	bold;}

This	will	boldface	the	text	of	any	a	element	that	has	an	href	attribute	with	exactly	the	value
http://www.css-discuss.org/about.html.	Any	change	at	all,	even	dropping	the	www.	part	or	changing	to	a
secure	protocol	with	https,	will	prevent	a	match.

Any	attribute	and	value	combination	can	be	specified	for	any	element.	However,	if	that	exact	combination
does	not	appear	in	the	document,	then	the	selector	won’t	match	anything.	Again,	XML	languages	can
benefit	from	this	approach	to	styling.	Let’s	return	to	our	PlanetML	example.	Suppose	you	want	to	select
only	those	planet	elements	that	have	a	value	of	1	for	the	attribute	moons:

planet[moons="1"]	{font-weight:	bold;}

This	would	boldface	the	text	of	the	second	element	in	the	following	markup	fragment,	but	not	the	first	or
third:

<planet>Venus</planet>

<planet	moons="1">Earth</planet>

<planet	moons="2">Mars</planet>

As	with	attribute	selection,	you	can	chain	together	multiple	attribute-value	selectors	to	select	a	single
document.	For	example,	to	double	the	size	of	the	text	of	any	HTML	hyperlink	that	has	both	an	href	with
a	value	of	https://www.w3.org/	and	a	title	attribute	with	a	value	of	W3C	Home,	you	would	write:

a[href="https://www.w3.org/"][title="W3C	Home"]	{font-size:	200%;}

http://www.css-discuss.org/about.html
https://www.w3.org/

This	would	double	the	text	size	of	the	first	link	in	the	following	markup,	but	not	the	second	or	third:

W3C

<a	href="https://developer.mozilla.org"

		title="Mozilla	Developer	Network">Standards	Info

confused.link

The	results	are	shown	in	Figure	2-9.

Figure	2-9.	Selecting	elements	based	on	attributes	and	their	values

Again,	this	format	requires	an	exact	match	for	the	attribute’s	value.	Matching	becomes	an	issue	when	an
attribute	selector	encounters	values	that	can,	in	turn,	contain	a	space-separated	list	of	values	(e.g.,	the
HTML	attribute	class).	For	example,	consider	the	following	markup	fragment:

<planet	type="barren	rocky">Mercury</planet>

The	only	way	to	match	this	element	based	on	its	exact	attribute	value	is	to	write:

planet[type="barren	rocky"]	{font-weight:	bold;}

If	you	were	to	write	planet[type="barren"],	the	rule	would	not	match	the	example	markup	and
thus	would	fail.	This	is	true	even	for	the	class	attribute	in	HTML.	Consider	the	following:

<p	class="urgent	warning">When	handling	plutonium,	care	must	be	taken	to

avoid	the	formation	of	a	critical	mass.</p>

To	select	this	element	based	on	its	exact	attribute	value,	you	would	have	to	write:

p[class="urgent	warning"]	{font-weight:	bold;}

This	is	not	equivalent	to	the	dot-class	notation	covered	earlier,	as	we	will	see	in	the	next	section.	Instead,
it	selects	any	p	element	whose	class	attribute	has	exactly	the	value	"urgent	warning",	with	the
words	in	that	order	and	a	single	space	between	them.	It’s	effectively	an	exact	string	match,	whereas	when
using	class	selector,	the	class	order	doesn’t	matter.

Also,	be	aware	that	ID	selectors	and	attribute	selectors	that	target	the	id	attribute	are	not	precisely	the
same.	In	other	words,	there	is	a	subtle	but	crucial	difference	between	h1#page-title	and
h1[id="page-title"].	This	difference	is	explained	in	Chapter	4.

Selection	Based	on	Partial	Attribute	Values
Odds	are	that	you’ll	sometimes	want	to	select	elements	based	on	portions	of	their	attribute	values,	rather
than	the	full	value.	For	such	situations,	CSS	offers	a	variety	of	options	for	matching	substrings	in	an
attribute’s	value.	These	are	summarized	in	Table	2-1.

Table	2-1.	Substring	matching	with	attribute	selectors

Type Description

[foo~="bar"] Selects	any	element	with	an	attribute	foo	whose	value	contains	the	word	bar	in	a	space-separated	list	of	words

[foo*="bar"] Selects	any	element	with	an	attribute	foo	whose	value	contains	the	substring	bar

[foo^="bar"] Selects	any	element	with	an	attribute	foo	whose	value	begins	with	bar

[foo$="bar"] Selects	any	element	with	an	attribute	foo	whose	value	ends	with	bar

[foo|="ba

r"]

Selects	any	element	with	an	attribute	foo	whose	value	starts	with	bar	followed	by	a	dash	(U+002D)	or	whose	value	
is	exactly	equal	to	bar

The	last	of	these	attribute	selectors	that	match	on	a	partial	subset	of	an	element’s	attribute	value	is	actually
easier	to	show	than	it	is	to	describe.	Consider	the	following	rule:

*[lang|="en"]	{color:	white;}

This	rule	will	select	any	element	whose	lang	attribute	is	equal	to	en	or	begins	with	en-.	Therefore,	the
first	three	elements	in	the	following	example	markup	would	be	selected,	but	the	last	two	would	not:

<h1	lang="en">Hello!</h1>

<p	lang="en-us">Greetings!</p>

<div	lang="en-au">G'day!</div>

<p	lang="fr">Bonjour!</p>

<h4	lang="cy-en">Jrooana!</h4>

In	general,	the	form	[att|="val"]	can	be	used	for	any	attribute	and	its	values.	Let’s	say	you	have	a
series	of	figures	in	an	HTML	document,	each	of	which	has	a	filename	like	figure-1.gif	and	figure-3.jpg.
You	can	match	all	of	these	images	using	the	following	selector:

img[src|="figure"]	{border:	1px	solid	gray;}

Or,	if	you’re	creating	a	CSS	framework	or	pattern	library,	instead	of	creating	redundant	classes	like
"btn	btn-small	btn-arrow	btn-active",	you	can	declare	"btn-small-arrow-
active",	and	target	the	class	of	elements	with:

*[class|="btn"]	{	border-radius:	5px;}

<button	class="btn-small-arrow-active">Click	Me</button>

The	most	common	use	for	this	type	of	attribute	selector	is	to	match	language	values,	as	demonstrated	in	an
upcoming	section,	“The	:lang	and	:dir	Pseudo-Classes”.

Matching	one	word	in	a	space-separated	list
For	any	attribute	that	accepts	a	space-separated	list	of	words,	it	is	possible	to	select	elements	based	on
the	presence	of	any	one	of	those	words.	The	classic	example	in	HTML	is	the	class	attribute,	which	can
accept	one	or	more	words	as	its	value.	Consider	our	usual	example	text:

<p	class="urgent	warning">When	handling	plutonium,	care	must	be	taken	to

avoid	the	formation	of	a	critical	mass.</p>

Let’s	say	you	want	to	select	elements	whose	class	attribute	contains	the	word	warning.	You	can	do
this	with	an	attribute	selector:

p[class~="warning"]	{font-weight:	bold;}

Note	the	presence	of	the	tilde	(~)	in	the	selector.	It	is	the	key	to	selection	based	on	the	presence	of	a
space-separated	word	within	the	attribute’s	value.	If	you	omit	the	tilde,	you	would	have	an	exact	value-
matching	attribute	selector,	as	discussed	in	the	previous	section.

This	selector	construct	is	equivalent	to	the	dot-class	notation	discussed	in	“Deciding	Between	Class	and
ID”.	Thus,	p.warning	and	p[class~="warning"]	are	equivalent	when	applied	to	HTML
documents.	Here’s	an	example	that	is	an	HTML	version	of	the	“PlanetML”	markup	seen	earlier:

Mercury

Venus

Earth

To	italicize	all	elements	with	the	word	barren	in	their	class	attribute,	you	write:

span[class~="barren"]	{font-style:	italic;}

This	rule’s	selector	will	match	the	first	two	elements	in	the	example	markup	and	thus	italicize	their	text,
as	shown	in	Figure	2-10.	This	is	the	same	result	we	would	expect	from	writing	span.barren
{font-style:	italic;}.

Figure	2-10.	Selecting	elements	based	on	portions	of	attribute	values

So	why	bother	with	the	tilde-equals	attribute	selector	in	HTML?	Because	it	can	be	used	for	any	attribute,
not	just	class.	For	example,	you	might	have	a	document	that	contains	a	number	of	images,	only	some	of
which	are	figures.	You	can	use	a	partial-match	value	attribute	selector	aimed	at	the	title	text	to	select
only	those	figures:

img[title~="Figure"]	{border:	1px	solid	gray;}

This	rule	selects	any	image	whose	title	text	contains	the	word	Figure	(but	not	figure,	as	class
names	are	case-sensitive).	Therefore,	as	long	as	all	your	figures	have	title	text	that	looks	something
like	“Figure	4.	A	bald-headed	elder	statesman,”	this	rule	will	match	those	images.	For	that	matter,	the
selector	img[title~="Figure"]	will	also	match	a	title	attribute	with	the	value	“How	to	Figure	Out
Who’s	in	Charge.”	Any	image	that	does	not	have	a	title	attribute,	or	whose	title	value	doesn’t
contain	the	word	“Figure,”	won’t	be	matched.

Matching	a	substring	within	an	attribute	value
Sometimes	you	want	to	select	elements	based	on	a	portion	of	their	attribute	values,	but	the	values	in
question	aren’t	space-separated	lists	of	words.	In	these	cases,	you	can	use	the	asterisk-equals	substring
matching	form	[attr*="val"]	to	match	substrings	that	appear	anywhere	inside	the	attribute	values.
For	example,	the	following	CSS	matches	any	span	element	whose	class	attribute	contains	the
substring	cloud,	so	both	“cloudy”	planets	are	matched,	as	shown	in	Figure	2-11:

span[class*="cloud"]	{font-style:	italic;}

Mercury

Venus

Earth

Figure	2-11.	Selecting	elements	based	on	substrings	within	attribute	values

Note	the	presence	of	the	asterisk	(*)	in	the	selector.	It’s	the	key	to	selecting	elements	based	on	the
presence	of	a	substring	within	an	attribute’s	value.	To	be	clear,	it	is	not	related	to	the	universal	selector,
other	than	it	uses	the	same	character.

As	you	can	imagine,	there	are	many	useful	applications	for	this	particular	capability.	For	example,
suppose	you	wanted	to	specially	style	any	links	to	the	World	Wide	Web	Consortium’s	website.	Instead	of
classing	them	all	and	writing	styles	based	on	that	class,	you	could	instead	write	the	following	rule:

a[href*="w3.org"]	{font-weight:	bold;}

You	aren’t	confined	to	the	class	and	href	attributes.	Any	attribute	is	up	for	grabs	here:	title,	alt,
src,	id…if	the	attribute	has	a	value,	you	can	style	based	on	a	substring	within	that	value.	The	following
rule	draws	attention	to	any	image	with	the	string	“space”	in	its	source	URL:

img[src*="space"]	{outline:	5px	solid	red;}

Similarly,	the	following	rule	draws	attention	to	<input>	elements	that	have	a	title	telling	the	user	what
to	do,	along	with	any	other	input	whose	title	contains	the	substring	“format”	in	its	title:

input[title*="format"]	{background-color:	#dedede;}

<input	type="tel"

				title="Telephone	number	should	be	formatted	as	XXX-XXX-XXXX"

				pattern="\d{3}\-\d{3}\-\d{4}">

A	common	use	for	the	general	substring	attribute	selector	is	to	match	a	section	of	a	class	in	pattern	library
class	names.	Elaborating	on	the	last	example,	we	can	target	any	class	name	that	starts	with	"btn"
followed	by	a	dash,	and	that	contains	the	substring	“arrow”	preceded	by	a	dash,	by	using	the	pipe-
equals	attribute	selector:

[class|="btn"][class="-arrow"]:after	{	content:	"▼";}

<button	class="btn-small-arrow-active">Click	Me</button>

The	matches	are	exact:	if	you	include	whitespace	in	your	selector,	then	whitespace	must	also	be	present	in
an	attribute’s	value.	The	attribute	names	and	values	must	be	case-sensitive	only	if	the	underlying
document	language	requires	case	sensitivity.	Class	names,	titles,	URLs,	and	ID	values	are	all	case-
sensitive,	but	HTML	attribute	keyword	values,	such	as	input	types,	are	not:

input[type="CHeckBoX"]	{margin-right:	10px;}

<input	type="checkbox"	name="rightmargin"	value="10px">

Matching	a	substring	at	the	beginning	of	an	attribute	value
In	cases	where	you	want	to	select	elements	based	on	a	substring	at	the	beginning	of	an	attribute	value,	then
the	caret-equals	attribute	selector	pattern	[att^="val"]	is	what	you’re	seeking.	This	can	be
particularly	useful	in	a	situation	where	you	want	to	style	types	of	links	differently,	as	illustrated	in
Figure	2-12.

a[href^="https:"]	{font-weight:	bold;}

a[href^="mailto:"]	{font-style:	italic;}

Figure	2-12.	Selecting	elements	based	on	substrings	that	begin	attribute	values

Another	use	case	is	when	you	want	to	style	all	images	in	an	article	that	are	also	figures,	as	in	the	figures
you	see	throughout	this	text.	Assuming	that	the	alt	text	of	each	figure	begins	with	text	in	the	pattern	“Figure
5”—which	is	an	entirely	reasonable	assumption	in	this	case—then	you	can	select	only	those	images	with
the	caret-equals	attribute	selector:

img[alt^="Figure"]	{border:	2px	solid	gray;		display:	block;	margin:	2em	auto;}

The	potential	drawback	here	is	that	any	img	element	whose	alt	starts	with	“Figure”	will	be	selected,
whether	or	not	it’s	meant	to	be	an	illustrative	figure.	The	likeliness	of	that	occurring	depends	on	the
document	in	question.

Another	use	case	is	selecting	all	of	the	calendar	events	that	occur	on	Mondays.	In	this	case,	let’s	assume
all	of	the	events	have	a	title	attribute	containing	a	date	in	the	format	“Monday,	March	5th,	2012.”
Selecting	them	all	is	a	simple	matter	of	[title^="Monday"].

Matching	a	substring	at	the	end	of	an	attribute	value
The	mirror	image	of	beginning-substring	matching	is	ending-substring	matching,	which	is	accomplished
using	the	[att$="val"]	pattern.	A	very	common	use	for	this	capability	is	to	style	links	based	on	the
kind	of	resource	they	target,	such	as	separate	styles	for	PDF	documents,	as	illustrated	in	Figure	2-13.

a[href$=".pdf"]	{font-weight:	bold;}

Figure	2-13.	Selecting	elements	based	on	substrings	that	end	attribute	values

Similarly,	you	could	(for	whatever	reason)	select	images	based	on	their	image	format	with	the	dollar-
equals	attribute	selector:

img[src$=".gif"]	{...}

img[src$=".jpg"]	{...}

img[src$=".png"]	{...}

To	continue	the	calendar	example	from	the	previous	section,	it	would	be	possible	to	select	all	of	the
events	occurring	within	a	given	year	using	a	selector	like	[title$="2015"].

NOTE
You	may	have	noticed	that	we’ve	quoted	all	the	attribute	values	in	the	attribute	selectors.	Quoting	is	required	if	the	value	includes	any
special	characters,	begins	with	a	dash	or	digit,	or	is	otherwise	invalid	as	an	identifier	and	needs	to	be	quoted	as	a	string.	To	be	safe,	we
recommend	always	quoting	attribute	values	in	attribute	selectors,	even	though	it	is	only	required	to	make	strings	out	of	invalid	identifiers.

The	Case	Insensitivity	Identifier
Including	an	i	before	the	closing	bracket	of	an	attribute	selector	will	allow	that	selector	to	match	attribute
values	case-insensitively,	regardless	of	document	language	rules.

For	example,	suppose	you	want	to	select	all	links	to	PDF	documents,	but	you	don’t	know	if	they’ll	end	in
.pdf,	.PDF,	or	even	.Pdf.	Here’s	how:

a[href$='.PDF'	i]

Adding	that	humble	little	i	means	the	selector	will	match	any	a	element	whose	href	attribute’s	value
ends	in	.pdf,	regardless	of	the	capitalization	of	the	letters	P,	D,	and	F.

This	case-insensitivity	option	is	available	for	all	the	attribute	selectors	we’ve	covered.	Note,	however,
that	this	only	applies	to	the	values	in	the	attribute	selectors.	It	does	not	enforce	case	insensitivity	on	the
attribute	names	themselves.	Thus,	in	a	case-sensitive	language,	planet[type*="rock"	i]	will
match	all	of	the	following:

<planet	type="barren	rocky">Mercury</planet>

<planet	type="cloudy	ROCKY">Venus</planet>

<planet	type="life-bearing	Rock">Earth</planet>

It	will	not	match	the	following	element,	because	the	attribute	TYPE	isn’t	matched	by	type	in	XML:

<planet	TYPE="dusty	rock">Mars</planet>

Again,	that’s	in	languages	that	enforce	case	sensitivity	in	the	element	and	attribute	syntax.	XHTML	was
one	such	language.	In	languages	that	are	case-insensitive,	like	HTML	5,	this	isn’t	an	issue.

NOTE
There	is	a	proposed	mirror	identifier,	s,	which	enforces	case	sensitivity.	As	of	early	2022,	it	was	only	supported	by	the	Firefox	family	of
browsers.

Using	Document	Structure
CSS	is	so	capable	because	it	uses	the	structure	of	documents	to	determine	appropriate	styles	and	how	to
apply	them.	Let’s	take	a	moment	to	discuss	structure	before	moving	on	to	more	powerful	forms	of
selection.

Understanding	the	Parent-Child	Relationship
To	understand	the	relationship	between	selectors	and	documents,	we	need	to	once	again	examine	how
documents	are	structured.	Consider	this	very	simple	HTML	document:

<!doctype	html>

<html>

<head>

	<meta	charset="utf-8">

	<title>Meerkat	Central</title>

</head>

<body>

	<h1>Meerkat	Central</h1>

	<p>

	Welcome	to	Meerkat	Central,	the	best	meerkat	web	site

	on	the	entire	Internet!</p>

	

		We	offer:

			

				Detailed	information	on	how	to	adopt	a	meerkat

				Tips	for	living	with	a	meerkat

				Fun	things	to	do	with	a	meerkat,	including:

					

						Playing	fetch

						Digging	for	food

						Hide	and	seek

					

				

			

		

		...and	so	much	more!

	

	<p>

	Questions?	Contact	us!

	</p>

</body>

</html>

Much	of	the	power	of	CSS	is	based	on	the	parent-child	relationship	of	elements.	HTML	documents
(actually,	most	structured	documents	of	any	kind)	are	based	on	a	hierarchy	of	elements,	which	is	visible	in
the	“tree”	view	of	the	document	(see	Figure	2-14).	In	this	hierarchy,	each	element	fits	somewhere	into	the
overall	structure	of	the	document.	Every	element	in	the	document	is	either	the	parent	or	the	child	of
another	element,	and	it’s	often	both.	If	a	parent	has	more	than	one	child,	those	children	are	siblings.

Figure	2-14.	A	document	tree	structure

An	element	is	said	to	be	the	parent	of	another	element	if	it	appears	directly	above	that	element	in	the
document	hierarchy.	For	example,	in	Figure	2-14,	the	first	p	element	from	the	left	is	parent	to	the	em	and
strong	elements,	while	strong	is	parent	to	an	anchor	(a)	element,	which	is	itself	parent	to	another
em	element.	Conversely,	an	element	is	the	child	of	another	element	if	it	is	directly	beneath	the	other
element.	Thus,	the	anchor	element	on	the	far	right	side	of	Figure	2-14	is	the	child	of	a	p	element,	which	is
in	turn	child	to	the	body	element,	and	so	on.

The	terms	“parent”	and	“child”	are	specific	applications	of	the	terms	ancestor	and	descendant.	There	is	a
difference	between	them:	in	the	tree	view,	if	an	element	is	exactly	one	level	above	or	below	another,	then
they	have	a	parent-child	relationship.	If	the	path	from	one	element	to	another	is	traced	through	two	or

more	levels,	the	elements	have	an	ancestor-descendant	relationship,	but	not	a	parent-child	relationship.	(A
child	is	also	a	descendant,	and	a	parent	is	also	an	ancestor.)	In	Figure	2-14,	the	uppermost	ul	element	is
parent	to	two	li	elements,	but	the	uppermost	ul	is	also	the	ancestor	of	every	element	descended	from	its
li	element,	all	the	way	down	to	the	most	deeply	nested	li	elements.	Those	li	elements,	children	of	the
ol,	are	siblings.

Also,	in	Figure	2-14,	there	is	an	anchor	that	is	a	child	of	strong,	but	also	a	descendant	of	the	p,	body,
and	html	elements.	The	body	element	is	an	ancestor	of	everything	that	the	browser	will	display	by
default,	and	the	html	element	is	ancestor	to	the	entire	document.	For	this	reason,	in	an	HTML	or	XHTML
document,	the	html	element	is	also	called	the	root	element.

Descendant	Selectors
The	first	benefit	of	understanding	this	model	is	the	ability	to	define	descendant	selectors.	Defining
descendant	selectors	is	the	act	of	creating	rules	that	operate	in	certain	structural	circumstances,	but	not
others.	As	an	example,	let’s	say	you	want	to	style	only	those	em	elements	that	are	descended	from	h1
elements.	To	do	so,	write	the	following:

h1	em	{color:	gray;}

This	rule	will	make	gray	any	text	in	an	em	element	that	is	the	descendant	of	an	h1	element.	Other	em	text,
such	as	that	found	in	a	paragraph	or	a	block	quote,	will	not	be	selected	by	this	rule.	Figure	2-15	illustrates
the	result.

Figure	2-15.	Selecting	an	element	based	on	its	context

In	a	descendant	selector,	the	selector	side	of	a	rule	is	composed	of	two	or	more	space-separated
selectors.	The	space	between	the	selectors	is	an	example	of	a	combinator.	Each	space	combinator	can	be
translated	as	“found	within,”	“which	is	part	of,”	or	“that	is	a	descendant	of,”	but	only	if	you	read	the
selector	right	to	left.	Thus,	h1	em	can	be	translated	as,	“Any	em	element	that	is	a	descendant	of	an	h1
element.”

To	read	the	selector	left	to	right,	you	might	phrase	it	something	like,	“Any	h1	that	contains	an	em	will
have	the	following	styles	applied	to	the	em.”	That’s	much	more	verbose	and	confusing,	and	it’s	why	we,
like	the	browser,	read	selectors	from	right	to	left.

You	aren’t	limited	to	two	selectors.	For	example:

ul	ol	ul	em	{color:	gray;}

In	this	case,	as	Figure	2-16	shows,	any	emphasized	text	that	is	part	of	an	unordered	list	that	is	part	of	an
ordered	list	that	is	itself	part	of	an	unordered	list	(yes,	this	is	correct)	will	be	gray.	This	is	obviously	a
very	specific	selection	criterion.

Figure	2-16.	A	very	specific	descendant	selector

Descendant	selectors	can	be	extremely	powerful.	Let’s	consider	a	common	example.	Assume	you	have	a
document	with	a	sidebar	and	a	main	area.	The	sidebar	has	a	blue	background,	the	main	area	has	a	white
background,	and	both	areas	include	lists	of	links.	You	can’t	set	all	links	to	be	blue	because	they’d	be
impossible	to	read	in	the	sidebar,	and	you	also	can’t	set	all	links	to	white	because	they’d	disappear	in	the
main	part	of	the	page.

The	solution:	descendant	selectors.	In	this	case,	you	give	the	element	that	contains	your	sidebar	a	class	of
sidebar	and	enclose	the	main	part	of	the	page	in	a	main	element.	Then,	you	write	styles	like	this:

.sidebar	{background:	blue;}

main	{background:	white;}

.sidebar	a:any-link	{color:	white;}

main	a:any-link	{color:	blue;}

Figure	2-17	shows	the	result.

Figure	2-17.	Using	descendant	selectors	to	apply	different	styles	to	the	same	type	of	element

NOTE
:any-link	refers	to	both	visited	and	unvisited	links.	We’ll	talk	about	it	in	detail	in	Chapter	3.

Here’s	another	example:	let’s	say	that	you	want	gray	to	be	the	text	color	of	any	b	(boldface)	element	that
is	part	of	a	blockquote	and	for	any	bold	text	that	is	found	in	a	normal	paragraph:

blockquote	b,	p	b	{color:	gray;}

The	result	is	that	the	text	within	b	elements	that	are	descended	from	paragraphs	or	block	quotes	will	be
gray.

One	overlooked	aspect	of	descendant	selectors	is	that	the	degree	of	separation	between	two	elements	can

be	practically	infinite.	For	example,	if	you	write	ul	em,	that	syntax	will	select	any	em	element
descended	from	a	ul	element,	no	matter	how	deeply	nested	the	em	may	be.	Thus,	ul	em	would	select
the	em	element	in	the	following	markup:

		List	item	1

				

						List	item	1-1

						List	item	1-2

						List	item	1-3

								

										List	item	1-3-1

										List	item	1-3-2

										List	item	1-3-3

								

						

						List	item	1-4

				

		

A	more	subtle	aspect	of	descendant	selectors	is	that	they	have	no	notion	of	element	proximity.	In	other
words,	the	closeness	of	two	elements	within	the	document	tree	has	no	bearing	on	whether	a	rule	applies
or	not.	This	is	important	when	it	comes	to	specificity	(which	we’ll	cover	in	the	next	chapter)	and	when
considering	rules	that	might	appear	to	cancel	each	other	out.

For	example,	consider	the	following	(which	contains	a	selector	type	we’ll	discuss	in	the	upcoming
section,	“The	Negation	Pseudo-Class”):

div:not(.help)	span	{color:	gray;}

div.help	span	{color:	red;}

<div	class="help">

			<div	class="aside">

						This	text	contains	a	span	element	within.

			</div>

</div>

What	the	CSS	says,	in	effect,	is	“any	span	inside	a	div	that	doesn’t	have	a	class	containing	the	word
help	should	be	gray”	in	the	first	rule,	and	“any	span	inside	a	div	whose	class	contains	the	word
help”	in	the	second	rule.	In	the	given	markup	fragment,	both	rules	apply	to	the	span	shown.

Because	the	two	rules	have	equal	weight	and	the	“red”	rule	is	written	last,	it	wins	out	and	the	span	is
red.	The	fact	that	the	div	class="aside"	is	“closer	to”	the	span	than	the	div	class="help"
is	irrelevant.	Again:	descendant	selectors	have	no	notion	of	element	proximity.	Both	rules	match,	only	one
color	can	be	applied,	and	due	to	the	way	CSS	works,	red	is	the	winner	here.	(We’ll	discuss	why	that’s	so
in	the	next	chapter.)

NOTE
As	of	early	2022,	there	were	proposals	to	add	element-proximity	awareness	to	CSS	via	“selector	scoping,”	but	the	proposals	were	still
being	actively	revised	and	may	not	come	to	fruition.

Selecting	Children
In	some	cases,	you	don’t	want	to	select	an	arbitrarily	descended	element.	Rather,	you	want	to	narrow	your
range	to	select	an	element	that	is	specifically	a	child	of	another	element.	You	might,	for	example,	want	to
select	a	strong	element	only	if	it	is	a	child	(as	opposed	to	any	other	level	of	descendant)	of	an	h1
element.	To	do	this,	you	use	the	child	combinator,	which	is	the	greater-than	symbol	(>):

h1	>	strong	{color:	red;}

This	rule	will	make	red	the	strong	element	shown	in	the	first	h1,	but	not	the	second:

<h1>This	is	very	important.</h1>

<h1>This	is	really	very	important.</h1>

Read	right	to	left,	the	selector	h1	>	strong	translates	as,	“Selects	any	strong	element	that	is	a
direct	child	of	an	h1	element.”	The	child	combinator	can	be	optionally	surrounded	by	whitespace.	Thus,
h1	>	strong,	h1>	strong,	and	h1>strong	are	all	equivalent.	You	can	use	or	omit	whitespace
as	you	wish.

When	viewing	the	document	as	a	tree	structure,	we	can	see	that	a	child	selector	restricts	its	matches	to
elements	that	are	directly	connected	in	the	tree.	Figure	2-18	shows	part	of	a	document	tree.

Figure	2-18.	A	document	tree	fragment

In	this	tree	fragment,	you	can	pick	out	parent-child	relationships.	For	example,	the	a	element	is	parent	to
the	strong,	but	it	is	child	to	the	p	element.	You	could	match	elements	in	this	fragment	with	the	selectors
p	>	a	and	a	>	strong,	but	not	p	>	strong,	since	the	strong	is	a	descendant	of	the	p	but	not	its
child.

You	can	also	combine	descendant	and	child	combinations	in	the	same	selector.	Thus,	table.summary
td	>	p	will	select	any	p	element	that	is	a	child	of	a	td	element	that	is	itself	descended	from	a	table

element	that	has	a	class	attribute	containing	the	word	summary.

Selecting	Adjacent	Sibling	Elements
Let’s	say	you	want	to	style	the	paragraph	immediately	after	a	heading,	or	give	a	special	margin	to	a	list
that	immediately	follows	a	paragraph.	To	select	an	element	that	immediately	follows	another	element	with
the	same	parent,	you	use	the	adjacent-sibling	combinator,	represented	as	a	plus	symbol	(+).	As	with	the
child	combinator,	the	symbol	can	be	surrounded	by	whitespace,	or	not,	at	the	author’s	discretion.

To	remove	the	top	margin	from	a	paragraph	immediately	following	an	h1	element,	write:

h1	+	p	{margin-top:	0;}

The	selector	is	read	as,	“Select	any	p	element	that	immediately	follows	an	h1	element	that	shares	a
parent	with	the	p	element.”

To	visualize	how	this	selector	works,	let’s	once	again	consider	a	fragment	of	a	document	tree,	shown	in
Figure	2-19.

Figure	2-19.	Another	document	tree	fragment

In	this	fragment,	a	pair	of	lists	descends	from	a	div	element,	one	ordered	and	the	other	not,	each
containing	three	list	items.	Each	list	is	an	adjacent	sibling,	and	the	list	items	themselves	are	also	adjacent
siblings.	However,	the	list	items	from	the	first	list	are	not	siblings	of	the	second,	as	the	two	sets	of	list
items	do	not	share	the	same	parent	element.	(At	best,	they’re	cousins,	and	CSS	has	no	cousin	selector.)

Remember	that	you	can	select	the	second	of	two	adjacent	siblings	only	with	a	single	combinator.	Thus,	if
you	write	li	+	li	{font-weight:	bold;},	only	the	second	and	third	items	in	each	list	will	be
boldfaced.	The	first	list	items	will	be	unaffected,	as	illustrated	in	Figure	2-20.

Figure	2-20.	Selecting	adjacent	siblings

To	work	properly,	CSS	requires	that	the	two	elements	appear	in	“source	order.”	In	our	example,	an	ol
element	is	followed	by	a	ul	element.	This	allows	us	to	select	the	second	element	with	ol	+	ul,	but	we
cannot	select	the	first	using	the	same	syntax.	For	ul	+	ol	to	match,	an	ordered	list	must	immediately
follow	an	unordered	list.

Keep	in	mind	that	text	content	between	two	elements	does	not	prevent	the	adjacent-sibling	combinator
from	working.	Consider	this	markup	fragment,	whose	tree	view	would	be	the	same	as	that	shown	in
Figure	2-18:

<div>

		

				List	item	1

				List	item	1

				List	item	1

		

		This	is	some	text	that	is	part	of	the	'div'.

		

				A	list	item

				Another	list	item

				Yet	another	list	item

		

</div>

Even	though	there	is	text	between	the	two	lists,	we	can	still	match	the	second	list	with	the	selector	ol	+
ul.	That’s	because	the	intervening	text	is	not	contained	with	a	sibling	element,	but	is	instead	part	of	the
parent	div.	If	we	wrapped	that	text	in	a	paragraph	element,	it	would	then	prevent	ol	+	ul	from
matching	the	second	list.	Instead,	we	might	have	to	write	something	like	ol	+	p	+	ul.

As	the	following	example	illustrates,	the	adjacent-sibling	combinator	can	be	used	in	conjunction	with
other	combinators:

html	>	body	table	+	ul{margin-top:	1.5em;}

The	selector	translates	as,	“Selects	any	ul	element	that	immediately	follows	a	sibling	table	element
that	is	descended	from	a	body	element	that	is	itself	a	child	of	an	html	element.”

As	with	all	combinators,	you	can	place	the	adjacent-sibling	combinator	in	a	more	complex	setting,	such	as
div#content	h1	+	div	ol.	That	selector	is	read	as,	“Selects	any	ol	element	that	is	descended
from	a	div	when	the	div	is	the	adjacent	sibling	of	an	h1	which	is	itself	descended	from	a	div	whose
id	attribute	has	a	value	of	content.”

Selecting	Following	Siblings
The	general	sibling	combinator	lets	you	select	any	element	that	follows	another	element	when	both
elements	share	the	same	parent,	represented	using	the	tilde	(~)	combinator.

As	an	example,	to	italicize	any	ol	that	follows	an	h2	and	also	shares	a	parent	with	the	h2,	you’d	write
h2	~	ol	{font-style:	italic;}.	The	two	elements	do	not	have	to	be	adjacent	siblings,
although	they	can	be	adjacent	and	still	match	this	rule.	The	result	of	applying	this	rule	to	the	following
markup	is	shown	in	Figure	2-21:

<div>

		<h2>Subheadings</h2>

		<p>It	is	the	case	that	not	every	heading	can	be	a	main	heading.		Some	headings

		must	be	subheadings.		Examples	include:</p>

		

				Headings	that	are	less	important

				Headings	that	are	subsidiary	to	more	important	headlines

				Headings	that	like	to	be	dominated

		

		<p>Let's	restate	that	for	the	record:</p>

		

				Headings	that	are	less	important

				Headings	that	are	subsidiary	to	more	important	headlines

				Headings	that	like	to	be	dominated

		

</div>

As	you	can	see,	both	ordered	lists	are	italicized.	That’s	because	both	of	them	are	ol	elements	that	follow
an	h2	with	which	they	share	a	parent	(the	div).

Figure	2-21.	Selecting	following	siblings

Summary
By	using	selectors	based	on	the	document’s	language,	authors	can	create	CSS	rules	that	apply	to	a	large
number	of	similar	elements	just	as	easily	as	they	can	construct	rules	that	apply	in	very	narrow
circumstances.	The	ability	to	group	together	both	selectors	and	rules	keeps	stylesheets	compact	and
flexible,	which	incidentally	leads	to	smaller	file	sizes	and	faster	download	times.

Selectors	are	the	one	thing	that	user	agents	usually	must	get	right	because	the	inability	to	correctly
interpret	selectors	pretty	much	prevents	a	user	agent	from	using	CSS	at	all.	On	the	flip	side,	it’s	crucial
for	authors	to	correctly	write	selectors	because	errors	can	prevent	the	user	agent	from	applying	the	styles
as	intended.	An	integral	part	of	correctly	understanding	selectors	and	how	they	can	be	combined	is	a
strong	grasp	of	how	selectors	relate	to	document	structure	and	how	mechanisms—such	as	inheritance	and
the	cascade	itself—come	into	play	when	determining	how	an	element	will	be	styled.

The	selectors	we	covered	in	this	chapter	aren’t	the	end	of	the	story,	though.	They’re	not	even	half	the
story.	In	the	next	chapter,	we’ll	dive	into	the	powerful	and	ever-expanding	world	of	pseudo-class	and
pseudo-element	selectors.

Chapter	3.	Pseudo-Class	and	-Element
Selectors

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	3rd	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

In	the	previous	chapter,	we	saw	how	selectors	can	match	a	single	element,	or	a	collection	of	elements,
using	fairly	simple	expressions	that	match	the	structure	of	the	document.	Those	are	great	if	your	needs	are
just	to	style	based	on	structure,	but	what	if	you	need	to	style	part	of	a	document	based	on	its	current	state?
Or	if	you	want	to	select	all	the	form	elements	that	are	disabled,	or	those	that	are	required	for	form
submission	to	be	allowed?	For	those	things,	and	a	great	deal	more,	there	are	the	pseudo-class	and
pseudo-element	selectors.

Pseudo-Class	Selectors
Pseudo-class	selectors	let	you	assign	styles	to	what	are,	in	effect,	phantom	classes	inferred	by	the	state	of
certain	elements,	or	markup	patterns	within	the	document,	or	even	by	the	state	of	the	document	itself.

The	phrase	“phantom	classes”	might	seem	a	little	odd,	but	it	really	is	the	best	way	to	think	of	how	pseudo-
classes	work.	For	example,	suppose	you	wanted	to	highlight	every	other	row	of	a	data	table.	You	could
do	that	by	marking	up	every	other	row	something	like	class="even"	and	then	writing	CSS	to	highlight
rows	with	that	class—or	(as	we’ll	soon	see)	you	could	use	a	pseudo-class	selector	to	achieve	the	same
effect,	one	which	will	act	as	if	you’d	added	all	those	classes	to	the	markup	even	though	you	haven’t.

There’s	an	aspect	of	pseudo-classes	that	needs	to	be	made	explicit	here:	pseudo-classes	always	refer	to
the	element	to	which	they’re	attached,	and	to	no	other.	Seems	like	a	weirdly	obvious	thing	to	say,	right?
The	reason	to	make	it	explicit	is	that	for	some	pseudo-classes,	it’s	a	common	error	to	think	they	are
descriptors	that	refer	to	descendant	elements.

To	illustrate	this,	Eric	would	like	to	share	a	personal	anecdote.

Example	3-1.

When	my	first	child	was	born	in	2003,	I	announced	it	online,	as	one	does.	A	number	of	people	responded

mailto:rfernando@oreilly.com

with	congratulations	and	CSS	jokes,	chief	among	them	the	selector	#ericmeyer:first-child
(we’ll	get	to	:first-child	in	just	a	bit).	The	problem	there	is	that	selector	would	select	me,	not	my
daughter,	and	only	if	I	were	the	first	child	of	my	own	parents	(which,	as	it	happens,	I	am).	To	properly
select	my	first	child,	that	selector	would	need	to	be	#ericmeyer	>	:first-child.

The	confusion	is	understandable,	which	is	why	we’re	addressing	it	here.	Reminders	will	be	found
throughout	the	following	sections.	Just	always	keep	in	mind	that	the	effect	of	pseudo-classes	is	to	apply	a
sort	of	a	“phantom	class”	to	the	element	to	which	they’re	attached,	and	you	should	be	OK.

All	pseudo-classes,	without	exception,	are	a	word	or	hyphenated	phrase	preceded	by	a	single	colon	(:),
and	they	can	appear	anywhere	in	a	selector.

Combining	Pseudo-Classes
Before	we	really	get	started,	a	word	about	chaining.	CSS	makes	it	possible	to	combine	(“chain”)	pseudo-
classes	together.	For	example,	you	can	make	unvisited	links	red	when	they’re	hovered	and	visited	links
maroon	when	they	are	hovered:

a:link:hover	{color:	red;}

a:visited:hover	{color:	maroon;}

The	order	you	specify	doesn’t	actually	matter;	you	could	also	write	a:hover:link	to	the	same	effect
as	a:link:hover.	It’s	also	possible	to	assign	separate	hover	styles	to	unvisited	and	visited	links	that
are	in	another	language—for	example,	German:

a:link:hover:lang(de)	{color:	gray;}

a:visited:hover:lang(de)	{color:	silver;}

Be	careful	not	to	combine	mutually	exclusive	pseudo-classes.	For	example,	a	link	cannot	be	both	visited
and	unvisited,	so	a:link:visited	doesn’t	make	any	sense	and	will	never	match	anything.

Structural	Pseudo-Classes
The	first	set	of	pseudo-classes	we’ll	explore	are	structural	in	nature;	that	is,	they	refer	to	the	markup
structure	of	the	document.	Most	of	them	depend	on	patterns	within	the	markup,	such	as	choosing	every
third	paragraph,	but	others	allow	you	to	address	specific	types	of	elements.

Selecting	the	root	element
This	is	the	quintessence	of	structural	simplicity:	the	pseudo-class	:root	selects	the	root	element	of	the
document.	In	HTML,	this	is	always	the	html	element.	The	real	benefit	of	this	selector	is	found	when
writing	stylesheets	for	XML	languages,	where	the	root	element	may	be	different	in	every	language—for
example,	in	SVG	it’s	the	svg	element,	and	in	our	earlier	PlanetML	examples	it	was	the	pml	element—or
even	when	you	have	more	than	one	possible	root	element	within	a	single	language	(though	not	a	single
document!).

Here’s	an	example	of	styling	the	root	element	in	HTML,	as	illustrated	in	Figure	3-1:

:root	{border:	10px	dotted	gray;}

body	{border:	10px	solid	black;}

Figure	3-1.	Styling	the	root	element

In	HTML	documents,	you	can	always	select	the	html	element	directly,	without	having	to	use	the	:root
pseudo-class.	There	is	a	difference	between	the	two	selectors	in	terms	of	specificity,	which	we’ll	cover
in	Chapter	4,	but	otherwise	they’ll	have	the	same	effect.

Selecting	empty	elements
With	the	pseudo-class	:empty,	you	can	select	any	element	that	has	no	children	of	any	kind,	including
text	nodes,	which	covers	both	text	and	whitespace.	This	can	be	useful	in	suppressing	elements	that	a	CMS
(Content	Management	System)	has	generated	without	filling	in	any	actual	content.	Thus,	p:empty
{display:	none;}	would	prevent	the	display	of	any	empty	paragraphs.

Note	that	in	order	to	be	matched,	an	element	must	be,	from	a	parsing	perspective,	truly	empty—no
whitespace,	visible	content,	or	descendant	elements.	Of	the	following	elements,	only	the	first	and	last
would	be	matched	by	p:empty:

<p></p>

<p>	</p>

<p>

</p>

<p><!—-a	comment--></p>

The	second	and	third	paragraphs	are	not	matched	by	:empty	because	they	are	not	empty:	they	contain,
respectively,	a	single	space	and	a	single	newline	character.	Both	are	considered	text	nodes,	and	thus
prevent	a	state	of	emptiness.	The	last	paragraph	matches	because	comments	are	not	considered	content,
not	even	whitespace.	But	put	even	one	space	or	newline	to	either	side	of	that	comment,	and	p:empty
would	fail	to	match.

You	might	be	tempted	to	just	style	all	empty	elements	with	something	like	*:empty	{display:
none;},	but	there’s	a	hidden	catch:	:empty	matches	HTML’s	empty	elements,	like	img,	hr,	br,	and
input.	It	could	even	match	textarea,	unless	you	insert	some	default	text	into	the	textarea
element.	Thus,	in	terms	of	matching	elements,	img	and	img:empty	are	effectively	the	same.	(They	are
different	in	terms	of	specificity,	which	we’ll	cover	in	the	next	chapter.)

NOTE
As	of	early	2022,	:empty	is	unique	in	that	it’s	the	only	CSS	selector	that	takes	text	nodes	into	consideration	when	determining	matches.
It’s	also	supposed	to	ignore	whitespace	inside	elements,	but	no	browser	had	supported	that	behavior	as	of	this	writing.

Selecting	only	children
If	you’ve	ever	wanted	to	select	all	the	images	that	are	wrapped	by	a	hyperlink	element,	the	:only-
child	pseudo-class	is	for	you.	It	selects	elements	when	they	are	the	only	child	element	of	another
element.	So	let’s	say	you	want	to	add	a	border	to	any	image	that’s	the	only	child	of	another	element.	You’d
write:

img:only-child	{border:	1px	solid	black;}

This	would	match	any	image	that	meets	those	criteria.	Therefore,	if	you	had	a	paragraph	which	contained
an	image	and	no	other	child	elements,	the	image	would	be	selected	regardless	of	all	the	text	surrounding
it.	If	what	you’re	really	after	is	images	that	are	sole	children	and	found	inside	hyperlinks,	then	you	just
modify	the	selector	like	so	(which	is	illustrated	in	Figure	3-2):

a[href]	img:only-child	{border:	2px	solid	black;}

	The	W3C

	The	W3C

Figure	3-2.	Selecting	images	that	are	only	children	inside	links

There	are	two	things	to	remember	about	:only-child.	The	first	is	that	you	always	apply	it	to	the
element	you	want	to	be	an	only	child,	not	to	the	parent	element,	as	explained	earlier.	And	that	brings	up
the	second	thing	to	remember,	which	is	that	when	you	use	:only-child	in	a	descendant	selector,	you
aren’t	restricting	the	elements	listed	to	a	parent-child	relationship.

To	go	back	to	the	hyperlinked-image	example,	a[href]	img:only-child	matches	any	image	that	is
an	only	child	and	is	descended	from	an	a	element,	whether	or	not	it’s	a	child	of	an	a	element.	To	match,
the	element	image	must	be	the	only	child	of	its	direct	parent	and	also	a	descendant	of	an	a	element	with	an
href	attribute,	but	that	parent	can	itself	be	a	descendant	of	the	same	a	element`.	Therefore,	all	three	of
the	images	in	the	following	would	be	matched,	as	shown	in	Figure	3-3:

a[href]	img:only-child	{border:	5px	solid	black;}

A	link	to	the	

			web	site

Figure	3-3.	Selecting	images	that	are	only	children	inside	links

In	each	case,	the	image	is	the	only	child	element	of	its	parent,	and	it	is	also	descended	from	an	a	element.
Thus,	all	three	images	are	matched	by	the	rule	shown.	If	you	want	to	restrict	the	rule	so	that	it	matched
images	that	were	the	only	children	of	a	elements,	then	add	the	child	combinator	to	yield	a[href]	>
img:only-child.	With	that	change,	only	the	first	of	the	three	images	shown	in	Figure	3-3	would	be
matched.

Only-of-type	selection
That’s	all	great,	but	what	if	you	want	to	match	images	that	are	the	only	images	inside	hyperlinks,	but	there
are	other	elements	in	there	with	them?	Consider	the	following:

•

In	this	case,	we	have	an	a	element	that	has	two	children:	b	and	img.	That	image,	no	longer	being	the	only
child	of	its	parent	(the	hyperlink),	can	never	be	matched	using	:only-child.	However,	it	can	be
matched	using	:only-of-type.	This	is	illustrated	in	Figure	3-4:

a[href]	img:only-of-type	{border:	5px	solid	black;}

•

•

Figure	3-4.	Selecting	images	that	are	the	only	sibling	of	their	type

The	difference	is	that	:only-of-type	will	match	any	element	that	is	the	only	of	its	type	among	all	its
siblings,	whereas	:only-child	will	only	match	if	an	element	has	no	siblings	at	all.

This	can	be	very	useful	in	cases	such	as	selecting	images	within	paragraphs	without	having	to	worry
about	the	presence	of	hyperlinks	or	other	inline	elements:

p	>	img:only-of-type	{float:	right;	margin:	20px;}

As	long	as	there	aren’t	multiple	images	that	are	children	of	the	same	paragraph,	the	image	will	be	floated
to	the	right.

You	can	also	use	this	pseudo-class	to	apply	extra	styles	to	an	h2	when	it’s	the	only	one	in	a	given	section

of	a	document,	like	this:

section	>	h2	{margin:	1em	0	0.33em;	font-size:	1.8rem;	border-bottom:	1px	solid

			gray;}

section	>	h2:only-of-type	{font-size:	2.4rem;}

Given	those	rules,	any	section	that	has	only	one	child	h2	will	have	that	h2	appear	larger	than	usual.	If
there	are	two	or	more	h2	children	to	a	section,	neither	of	them	will	be	larger	than	the	other.	The
presence	of	other	children—whether	they	are	other	heading	levels,	paragraphs,	tables,	paragraphs,	lists,
and	so	on—will	not	interfere	with	matching.

There’s	one	more	thing	to	make	clear,	which	is	that	:only-of-type	refers	to	elements	and	nothing
else.	Consider	the	following:

p.unique:only-of-type	{color:	red;}

<div>

		<p	class="unique">This	paragraph	has	a	'unique'	class.</p>

		<p>This	paragraph	doesn't	have	a	class	at	all.</p>

</div>

In	this	case,	neither	of	the	paragraphs	will	be	selected.	Why	not?	Because	there	are	two	paragraphs	that
are	descendants	of	the	div,	so	neither	of	them	can	be	the	only	one	of	their	type.

The	class	name	is	irrelevant	here.	We	can	be	fooled	into	thinking	that	“type”	is	a	generic	description,
because	of	how	we	parse	language.	Type,	in	the	way	:only-of-type	means	it,	refers	only	to	the
element	type,	as	with	type	selectors.	Thus,	p.unique:only-of-type	means	“select	any	p	element
which	is	the	only	p	element	among	its	siblings	if	it	also	has	a	class	of	unique”	It	does	not	mean
“select	any	p	element	whose	class	attribute	contains	the	word	unique	when	it’s	the	only	sibling
paragraph	to	meet	that	criterion.”

Selecting	first	children
It’s	pretty	common	to	want	to	apply	special	styling	to	the	first	or	last	child	of	an	element.	A	common
example	is	styling	a	bunch	of	navigation	links	in	a	tab	bar	and	wanting	to	put	some	special	visual	touches
on	the	first	or	last	tab	(or	both).	In	the	past,	this	was	done	by	applying	special	classes	to	those	elements.
We	have	pseudo-classes	to	carry	the	load	for	us,	removing	the	need	to	manually	figure	out	which	elements
are	the	first	and	last.

The	pseudo-class	:first-child	is	used	to	select	elements	that	are	the	first	children	of	other	elements.
Consider	the	following	markup:

<div>

		<p>These	are	the	necessary	steps:</p>

		

				Insert	key

				Turn	key	clockwise

				Push	accelerator

		

		<p>

				Do	not	push	the	brake	at	the	same	time	as	the	accelerator.

		</p>

</div>

In	this	example,	the	elements	that	are	first	children	are	the	first	p,	the	first	li,	and	the	strong	and	em
elements,	which	are	all	the	first	children	of	their	respective	parents.	Given	the	following	two	rules:

p:first-child	{font-weight:	bold;}

li:first-child	{text-transform:	uppercase;}

we	get	the	result	shown	in	Figure	3-5.

Figure	3-5.	Styling	first	children

The	first	rule	boldfaces	any	p	element	that	is	the	first	child	of	another	element.	The	second	rule
uppercases	any	li	element	that	is	the	first	child	of	another	element	(which,	in	HTML,	must	be	either	an
ol	or	ul	element).

As	has	been	mentioned,	the	most	common	error	is	assuming	that	a	selector	like	p:first-child	will
select	the	first	child	of	a	p	element.	Remember	the	nature	of	pseudo-classes,	which	is	to	attach	a	sort	of
phantom	class	to	the	element	associated	with	the	pseudo-class.	If	you	were	to	add	actual	classes	to	the
markup,	it	would	look	like	this:

<div>

		<p	class="first-child">These	are	the	necessary	steps:</p>

		

				<li	class="first-child">Insert	key

				Turn	key	<strong	class="first-child">clockwise

				Push	accelerator

		

		<p>

				Do	<em	class="first-child">not	push	the	brake	at	the	same	time	as	the

		accelerator.

		</p>

</div>

Therefore,	if	you	want	to	select	those	em	elements	that	are	the	first	child	of	another	element,	you	write
em:first-child.

Selecting	last	children
The	mirror	image	of	:first-child	is	:last-child.	If	we	take	the	previous	example	and	just
change	the	pseudo-classes,	we	get	the	result	shown	in	Figure	3-6.

p:last-child	{font-weight:	bold;}

li:last-child	{text-transform:	uppercase;}

<div>

		<p>These	are	the	necessary	steps:</p>

		

				Insert	key

				Turn	key	clockwise

				Push	accelerator

		

		<p>

				Do	not	push	the	brake	at	the	same	time	as	the	accelerator.

		</p>

</div>

Figure	3-6.	Styling	last	children

The	first	rule	boldfaces	any	p	element	that	is	the	last	child	of	another	element.	The	second	rule
uppercases	any	li	element	that	is	the	last	child	of	another	element.	If	you	wanted	to	select	the	em	element
inside	that	last	paragraph,	you	could	use	the	selector	p:last-child	em,	which	selects	any	em
element	that	descends	from	a	p	element	that	is	itself	the	last	child	of	another	element.

Interestingly,	you	can	combine	these	two	pseudo-classes	to	create	a	version	of	:only-child.	The
following	two	rules	will	select	the	same	elements:

p:only-child	{color:	red;}

p:first-child:last-child	{background-color:	red;}

Either	way,	we	get	paragraphs	with	red	foreground	and	background	colors	(not	a	good	idea,	to	be	clear).

Selecting	the	first	and	last	of	a	type
In	a	manner	similar	to	selecting	the	first	and	last	children	of	an	element,	you	can	select	the	first	or	last	of	a
type	of	element	within	another	element.	This	permits	things	like	selecting	the	first	table	inside	a	given
element,	regardless	of	whatever	elements	come	before	it.

table:first-of-type	{border-top:	2px	solid	gray;}

Note	that	this	does	not	apply	to	the	entire	document;	that	is,	the	rule	shown	will	not	select	the	first	table	in
the	document	and	skip	all	the	others.	It	will	instead	select	the	first	table	element	within	each	element
that	contains	one,	and	skip	any	sibling	table	elements	that	come	after	the	first.	Thus,	given	the	document
structure	shown	in	Figure	3-7,	the	circled	nodes	are	the	ones	that	are	selected.

Figure	3-7.	Selecting	first-of-type	tables

Within	the	context	of	tables,	a	useful	way	to	select	the	first	data	cell	within	a	row	regardless	of	whether	a
header	cell	comes	before	it	in	the	row	is	as	follows:

td:first-of-type	{border-left:	1px	solid	red;}

That	would	select	the	first	data	cell	in	each	of	the	following	table	rows	(that	is,	the	cells	containing
“7”	and	“R”):

<tr>

		<th	scope="row">Count</th><td>7</td><td>6</td><td>11</td>

</tr>

<tr>

		<td>R</td><td>X</td><td>-</td>

</tr>

Compare	that	to	the	effects	of	td:first-child,	which	would	select	the	first	td	element	in	the	second
row,	but	not	in	the	first	row.

The	flip	side	is	:last-of-type,	which	selects	the	last	instance	of	a	given	type	from	amongst	its
sibling	elements.	In	a	way,	it’s	just	like	:first-of-type,	except	you	start	with	the	last	element	in	a
group	of	siblings	and	walk	backward	toward	the	first	element	until	you	reach	an	instance	of	the	type.
Given	the	document	structure	shown	in	Figure	3-8,	the	circled	nodes	are	the	ones	selected	by
table:last-of-type.

Figure	3-8.	Selecting	last-of-type	tables

As	was	noted	with	:only-of-type,	remember	that	you	are	selecting	elements	of	a	type	from	among
their	sibling	elements;	thus,	every	set	of	siblings	is	considered	separately.	In	other	words,	you	are	not
selecting	the	first	(or	last)	of	all	the	elements	of	a	type	within	the	entire	document	as	a	single	group.	Each
set	of	elements	that	share	a	parent	is	its	own	group,	and	you	can	select	the	first	(or	last)	of	a	type	within
each	group.

Similar	to	what	was	noted	in	the	previous	section,	you	can	combine	these	two	pseudo-classes	to	create	a

version	of	:only-of-type.	The	following	two	rules	will	select	the	same	elements:

table:only-of-type{color:	red;}

table:first-of-type:last-of-type	{background:	red;}

Selecting	every	nth	child
If	you	can	select	elements	that	are	the	first,	last,	or	only	children	of	other	elements,	how	about	every	third
child?	All	even	children?	Only	the	ninth	child?	Rather	than	try	to	define	a	literally	infinite	number	of
named	pseudo-classes,	CSS	has	the	:nth-child()	pseudo-class.	By	filling	integers	or	even	simple
algebraic	expressions	into	the	parentheses,	you	can	select	any	arbitrarily	numbered	child	element	you
like.

Let’s	start	with	the	:nth-child()	equivalent	of	:first-child,	which	is	:nth-child(1).	In
the	following	example,	the	selected	elements	will	be	the	first	paragraph	and	the	first	list	item.

p:nth-child(1)	{font-weight:	bold;}

li:nth-child(1)	{text-transform:	uppercase;}

<div>

		<p>These	are	the	necessary	steps:</p>

		

				Insert	key

				Turn	key	clockwise

				Push	accelerator

		

		<p>

				Do	not	push	the	brake	at	the	same	time	as	the	accelerator.

		</p>

</div>

If	we	change	the	numbers	from	1	to	2,	however,	then	no	paragraphs	will	be	selected,	and	the	middle	(or
second)	list	item	will	be	selected,	as	illustrated	in	Figure	3-9:

p:nth-child(2)	{font-weight:	bold;}

li:nth-child(2)	{text-transform:	uppercase;}

Figure	3-9.	Styling	second	children

You	can	insert	any	integer	you	choose;	if	you	have	a	use	case	for	selecting	any	ordered	list	that	is	the	93rd
child	element	of	its	parent,	then	ol:nth-child(93)	is	ready	to	serve.	This	will	match	the	93rd	child
of	any	parent	as	long	as	that	child	is	an	ordered	list.	(This	does	not	mean	the	93rd	ordered	list	among	its
siblings;	see	the	next	section	for	that.)

Is	there	a	reason	to	use	:nth-child(1)	rather	than	:first-child?	No.	In	this	case,	use

whichever	you	prefer.	There	is	literally	no	difference	between	them.

More	powerfully,	you	can	use	simple	algebraic	expressions	in	the	form	a	n	+	b	or	a	n	-	b	to	define
recurring	instances,	where	a	and	b	are	integers	and	n	is	present	as	itself.	Furthermore,	the	+	_b_	or	−
b	part	is	optional	and	thus	can	be	dropped	if	it	isn’t	needed.

Let’s	suppose	we	want	to	select	every	third	list	item	in	an	unordered	list,	starting	with	the	first.	The
following	makes	that	possible,	selecting	the	first	and	fourth	items,	as	shown	in	Figure	3-10.

ul	>	li:nth-child(3n	+	1)	{text-transform:	uppercase;}

Figure	3-10.	Styling	every	third	list	item

The	way	this	works	is	that	n	represents	the	series	0,	1,	2,	3,	4,	and	on	into	infinity.	The	browser	then
solves	for	3n	+	1,	yielding	1,	4,	7,	10,	13,	and	so	on.	Were	we	to	drop	the	+	1,	thus	leaving	us	with
simply	3n,	the	results	would	be	0,	3,	6,	9,	12,	and	so	on.	Since	there	is	no	zeroth	list	item—all	element
counting	starts	with	one,	to	the	likely	chagrin	of	array-slingers	everywhere—the	first	list	item	selected	by
this	expression	would	be	the	third	list	item	in	the	list.

Given	that	element	counting	starts	with	one,	it’s	a	minor	trick	to	deduce	that	:nth-child(2n)	will
select	even-numbered	children,	and	either	:nth-child(2n+1)	or	:nth-child(2n-1)	will	select
odd-numbered	children.	You	can	commit	that	to	memory,	or	you	can	use	the	two	special	keywords	that
:nth-child()	accepts:	even	and	odd.	Want	to	highlight	every	other	row	of	a	table,	starting	with	the
first?	Here’s	how	you	do	it,	with	the	results	shown	in	Figure	3-11:

tr:nth-child(odd)	{background:	silver;}

Figure	3-11.	Styling	every	other	table	row

Anything	more	complex	than	every-other-element	requires	an	an	+	b	expression.

Note	that	when	you	want	to	use	a	negative	number	for	b,	you	have	to	remove	the	+	sign,	or	else	the
selector	will	fail	entirely.	Of	the	following	two	rules,	only	the	first	will	do	anything.	The	second	will	be
dropped	by	the	parser	and	ignored:

tr:nth-child(4n	-	2)	{background:	silver;}

tr:nth-child(3n	+	−2)	{background:	red;}		/*	INVALID	*/

You	can	also	use	a	negative	value	for	A	in	the	expression,	which	will	effectively	count	backward	from	the
term	you	use	in	B.	Selecting	the	first	five	list	items	in	a	list	can	be	done	like	this:

li:nth-child(-n	+	5)	{font-weight:	bold;}

This	works	because	negative	n	goes	0,	-1,	-2,	-3,	-4,	and	so	on.	Add	5	to	each	of	those,	and	you	get	5,	4,
3,	2,	1,	and	so	on.	Put	a	negative	number	in	there	for	a	multiplier	on	n,	and	you	can	get	every	second,
third,	or	whatever-number-you-want	element,	like	so:

li:nth-child(-2n	+	10)	{font-weight:	bold;}

That	will	select	the	10th,	8th,	4th,	and	2nd	list	items	in	a	list.

As	you	might	expect,	there	is	a	corresponding	pseudo-class	in	:nth-last-child().	This	lets	you	do
the	same	thing	as	:nth-child(),	except	with	:nth-last-child()	you	start	from	the	last	element
in	a	list	of	siblings	and	count	backward	toward	the	beginning.	If	you’re	intent	on	highlighting	every	other
table	row	and	making	sure	the	very	last	row	is	one	of	the	rows	in	the	highlighting	pattern,	either	one	of
these	will	work	for	you:

tr:nth-last-child(odd)	{background:	silver;}

tr:nth-last-child(2n+1)	{background:	silver;}	/*	equivalent	*/

If	the	DOM	(Document	Object	Model)	is	updated	to	add	or	remove	table	rows,	there	is	no	need	to	add	or

remove	classes.	By	using	structural	selectors,	these	selectors	will	always	match	the	odd	rows	of	the
updated	DOM.

Any	element	can	be	matched	using	both	:nth-child()	and	:nth-last-child()	if	it	fits	the
criteria.	Consider	these	rules,	the	results	of	which	are	shown	in	Figure	3-12:

li:nth-child(3n	+	3)	{border-left:	5px	solid	black;}

li:nth-last-child(4n	-	1)	{border-right:	5px	solid	black;	background:	silver;}

Again,	using	negative	terms	for	A	will	essentially	count	backwards,	except	since	this	pseudo-class	is
already	counting	from	the	end,	a	negative	term	counts	forward.	That	is	to	say,	you	can	select	the	last	five
list	items	in	a	list	like	so:

li:nth-last-child(-n	+	5)	{font-weight:	bold;}

NOTE
There	is	an	extension	of	:nth-child()	and	:nth-last-child()	that	allows	selecting	from	among	elements	matched	by	a	simple
selector;	for	example,	:nth-child(2n	+	1	of	p.callout).	As	of	early	2022,	this	was	supported	in	Safari,	but	there	were	no
apparent	plans	to	support	it	in	other	browsers.	If	you	need	this	capability,	see	:nth-of-type	in	the	next	section	of	the	chapter.

Figure	3-12.	Combining	patterns	of	:nth-child()	and	:nth-last-child()

It’s	also	the	case	that	you	can	string	these	two	pseudo-classes	together	as	:nth-child(1):nth-
last-child(1),	thus	creating	a	more	verbose	restatement	of	:only-child.	There’s	no	real	reason
to	do	so	other	than	to	create	a	selector	with	a	higher	specificity	(discussed	in	the	next	chapter),	but	the
option	is	there.

You	can	use	CSS	to	determine	how	many	list	items	are	in	a	list,	and	style	them	accordingly:

li:only-child	{width:	100%;}

li:nth-child(1):nth-last-child(2),

li:nth-child(2):nth-last-child(1)	{width:	50%;}

li:nth-child(1):nth-last-child(3),

li:nth-child(1):nth-last-child(3)	~	li	{width:	33.33%;}

li:nth-child(1):nth-last-child(4),

li:nth-child(1):nth-last-child(4)	~	li	{width:	25%;}

In	these	examples,	if	a	list	item	is	the	only	list	item,	then	the	width	is	100%.	If	a	list	item	is	the	first	item
and	also	the	second-from-the-last	item,	that	means	there	are	two	items,	and	the	width	is	50%.	If	an	item	is
the	first	item	and	also	the	third	from	the	last	item,	then	we	make	it,	and	the	two	sibling	list	items	following
it,	33%	wide.	Similarly,	if	a	list	item	is	the	first	item	and	also	the	fourth	from	the	last	item,	it	means	that
there	are	exactly	four	items,	so	we	make	it,	and	its	three	siblings,	25%	of	the	width.	(Note:	this	sort	of
thing	is	a	lot	easier	with	the	:has()	pseudo-class,	covered	later	in	this	chapter.)

Selecting	every	nth	of	a	type
In	what	may	have	become	a	familiar	pattern,	the	:nth-child()	and	:nth-last-child()	pseudo-
classes	have	analogues	in	:nth-of-type()	and	:nth-last-of-type().	You	can,	for	example,
select	every	other	hyperlink	that’s	a	child	of	any	given	paragraph,	starting	with	the	second,	using	p	>
a:nth-of-type(even).	This	will	ignore	all	other	elements	(spans,	strongs,	etc.)	and	consider
only	the	links,	as	demonstrated	in	Figure	3-13:

p	>	a:nth-of-type(even)	{background:	blue;	color:	white;}

Figure	3-13.	Selecting	the	even-numbered	links

If	you	want	to	work	from	the	last	hyperlink	backward,	then	you’d	use	p	>	a:nth-last-of-
type(even).

As	before,	these	select	elements	of	a	type	from	among	their	sibling	elements,	not	from	among	all	the
elements	of	a	type	within	the	entire	document	as	a	single	group.	Each	element	has	its	own	list	of	siblings,
and	selections	happen	within	each	group.

The	difference	between	:nth-of-type	and	nth-child	is	that	:nth-of-type	counts	the
instances	of	whatever	you’re	selecting,	and	does	its	counting	within	that	collection	of	elements.	Take,	for
example,	the	following	markup:

<tr>

			<th	scope="row">Count</th>

			<td>7</td>

			<td>6</td>

			<td>11</td>

			<td>17</td>

			<td>3</td>

			<td>21</td>

</tr>

<tr>

			<td>R</td>

			<td>X</td>

			<td>-</td>

			<td>C</td>

			<td>%</td>

			<td>A</td>

			<td>I</td>

</tr>

If	you	wanted	to	select	every	table	cell	in	a	row	when	it’s	in	an	even-numbered	column,	you	would	use
td:nth-child(even).	But	if	you	want	to	select	every	even-numbered	instance	of	a	table	cell,	that
would	be	td:nth-of-type(even).	You	can	see	the	difference	in	Figure	3-14,	which	shows	the
result	of	the	following	CSS.

td:nth-child(even)	{background:	silver;}

td:nth-of-type(even)	{text-decoration:	underline;}

Figure	3-14.	Selecting	both	nth-child	and	nth-of-type	table	cells

In	the	first	row,	every	other	table	data	cell	(td)	is	selected,	starting	with	the	first	cell	that	comes	after	the
table	header	cell	(th).	In	the	second	row,	since	all	the	cells	are	td	cells,	that	means	all	the	cells	in	that
row	are	of	the	same	type	and	thus	the	counting	starts	at	the	first	cell.

As	you	might	expect,	you	can	use	:nth-of-type(1):nth-last-of-type(1)	together	to	restate
:only-of-type,	only	with	higher	specificity.	(We	will	explain	specificity	in	Chapter	4,	we	promise.)

Location	Pseudo-Classes
With	the	location	pseudo-classes,	we	cross	into	the	territory	of	selectors	that	match	pieces	of	a	document

based	on	something	in	addition	to	the	structure	of	the	document	—	something	that	cannot	be	precisely
deduced	simply	by	studying	the	document’s	markup.

This	may	sound	like	we’re	applying	styles	at	random,	but	not	so.	Instead,	we’re	applying	styles	based	on
somewhat	ephemeral	conditions	that	can’t	be	predicted	in	advance.	Nevertheless,	the	circumstances	under
which	the	styles	will	appear	are,	in	fact,	well-defined.	Think	of	it	this	way:	during	a	sporting	event,
whenever	the	home	team	scores,	the	crowd	will	cheer.	You	don’t	know	exactly	when	during	a	game	the
team	will	score,	but	when	it	does,	the	crowd	will	cheer,	just	as	predicted.	The	fact	that	you	can’t	predict
the	exact	moment	of	the	cheer	doesn’t	make	it	any	less	expected.

Now	consider	the	anchor	element	(a),	which	(in	HTML	and	related	languages)	establishes	a	link	from	one
document	to	another.	Anchors	are	always	anchors,	but	some	anchors	refer	to	pages	that	have	already	been
visited,	while	others	refer	to	pages	that	have	yet	to	be	visited.	You	can’t	tell	the	difference	by	simply
looking	at	the	HTML	markup,	because	in	the	markup,	all	anchors	look	the	same.	The	only	way	to	tell
which	links	have	been	visited	is	by	comparing	the	links	in	a	document	to	the	user’s	browser	history.	So
there	are	actually	two	basic	types	of	links:	visited	and	unvisited.

Hyperlink	specific	pseudo-classes
CSS	defines	a	few	pseudo-classes	that	apply	only	to	hyperlinks.	In	HTML,	hyperlinks	are	any	a	elements
with	an	href	attribute;	in	XML	languages,	a	hyperlink	is	any	element	that	act	as	a	link	to	another
resource.	Table	3-1	describes	the	pseudo-classes	you	can	apply	to	them.

Table	3-1.	Link	pseudo-classes

Name Description

:link Refers	to	any	anchor	that	is	a	hyperlink	(i.e.,	has	an	href	attribute)	and	points	to	an	address	that	has	not	been	visited.

:visited Refers	to	any	anchor	that	is	a	hyperlink	to	an	already	visited	address.	For	security	reasons,	the	styles	that	can	be	
applied	to	visited	links	are	severely	limited;	see	sidebar	“Visited	Links	and	Privacy”	for	details.

:any-link Refers	to	any	element	that	would	be	matched	by	either	:link	or	:visited.

:local-link Refers	to	any	link	that	points	at	the	same	URL	as	the	page	being	styled.	One	example	would	be	skip-links	within	a	
document.	Note:	not	supported	as	of	early	2022.

The	first	of	the	pseudo-classes	in	Table	3-1	may	seem	a	bit	redundant.	After	all,	if	an	anchor	hasn’t	been
visited,	then	it	must	be	unvisited,	right?	If	that’s	the	case,	all	we	should	need	is	the	following:

a	{color:	blue;}

a:visited	{color:	red;}

Although	this	format	seems	reasonable,	it’s	actually	not	quite	enough.	The	first	of	the	rules	shown	here
applies	not	only	to	unvisited	links,	but	also	to	“named	anchors”	(i.e.,	any	a	element	that	has	a	name
attribute	and	not	an	href	attribute)	such	as	this	one:

4.	The	Lives	of	Meerkats

The	resulting	text	would	be	blue	because	the	a	element	will	match	the	rule	a	{color:	blue;}.
Therefore,	to	avoid	applying	your	link	styles	to	placeholder	links,	use	the	:link	and	:visited
pseudo-classes:

a:link	{color:	blue;}				/*	unvisited	links	are	blue	*/

a:visited	{color:	red;}			/*	visited	links	are	red	*/

This	is	a	good	place	to	revisit	attribute	and	class	selectors	and	show	how	they	can	be	combined	with
pseudo-classes.	For	example,	let’s	say	you	want	to	change	the	color	of	links	that	point	outside	your	own
site.	In	most	circumstances,	we	can	use	the	starts-with	attribute	selector.	However,	some	CMS’s	set	all
links	to	be	absolute	URLs,	in	which	case	you	could	assign	a	class	to	each	of	these	anchors.	It’s	easy:

My	About	page

An	external	site

To	apply	different	styles	to	the	external	link,	all	you	need	is	a	rule	like	this:

a.external:link,	a[href^="http"]:link	{	color:	slateblue;}

a.external:visited,	a[href^="http"]:visited		{color:	maroon;}

This	rule	will	make	the	second	anchor	in	the	preceding	markup	slateblue	by	default	and	maroon	once
visited,	while	the	first	anchor	will	remain	the	default	color	for	hyperlinks	(usually	blue	when	not	visited
and	purple	once	visited).	For	improved	usability	and	accessibility,	visited	links	should	be	easily
distinguished	from	non-visited	links.

NOTE
Styled	visited	links	enable	visitors	to	know	where	they	have	been	and	what	they	have	yet	to	visit.	This	is	especially	important	on	large
websites	where	it	may	be	difficult	to	remember	which	pages	have	been	visited,	especially	for	those	with	cognitive	disabilities.	Not	only	is
highlighting	visited	links	one	of	the	W3C	Web	Content	Accessibility	Guidelines,	but	it	makes	searching	for	content	faster,	more	efficient,	and
less	stressful	for	everyone.

The	same	general	syntax	is	used	for	ID	selectors	as	well:

a#footer-copyright:link	{background:	yellow;}

a#footer-copyright:visited	{background:	gray;}

You	can	chain	the	two	link-state	pseudo-classes	together,	but	there’s	no	reason	why	you	ever	would:	a
link	cannot	be	both	visited	and	unvisited	at	the	same	time!	If	you	want	to	select	all	links,	regardless	of
whether	they’re	visited	or	not,	use	:any-link:

a#footer-copyright:any-link	{text-decoration:	underline;}

VISITED	LINKS	AND	PRIVACY
For	well	over	a	decade,	it	was	possible	to	style	visited	links	with	any	CSS	properties	available,	just
as	you	could	unvisited	links.	However,	in	the	mid-2000s	several	people	demonstrated	that	one	could
use	visual	styling	and	simple	DOM	scripting	to	determine	if	a	user	had	visited	a	given	page.	For
example,	given	the	rule	:visited	{font-weight:	bold;},	a	script	could	find	all	of	the
boldfaced	links	and	tell	the	user	which	of	those	sites	they’d	visited—or,	worse	still,	report	those	sites
back	to	a	server.	A	similar,	non-scripted	tactic	uses	background	images	to	achieve	the	same	result.

While	this	might	not	seem	terribly	serious	to	you,	it	can	be	utterly	devastating	for	a	web	user	in	a
country	where	one	can	be	jailed	for	visiting	certain	sites—opposition	parties,	unsanctioned	religious
organizations,	“immoral”	or	“corrupting”	sites,	and	so	on.	It	can	also	be	used	by	phishing	sites	to
determine	which	online	banks	a	user	has	visited.	Thus,	two	steps	were	taken.

The	first	step	is	that	only	color-related	properties	can	be	applied	to	visited	links:	color,
background-color,	column-rule-color,	outline-color,	border-color,	and	the
individual-side	border	color	properties	(e.g.,	border-top-color).	Attempts	to	apply	any	other
property	to	a	visited	link	will	be	ignored.	Furthermore,	any	styles	defined	for	:link	will	be	applied
to	visited	links	as	well	as	unvisited	links,	which	effectively	makes	:link	“style	any	hyperlink,”
instead	of	“style	any	unvisited	hyperlink.”

The	second	step	is	that	if	a	visited	link	has	its	styles	queried	via	the	DOM,	the	resulting	value	will	be
as	if	the	link	were	not	visited.	Thus,	if	you’ve	defined	visited	links	to	be	purple	rather	than	unvisited
links’	blue,	even	though	the	link	will	appear	purple	onscreen,	a	DOM	query	of	its	color	will	return	the
blue	value,	not	the	purple	one.

As	of	early	2022,	this	behavior	is	present	throughout	all	browsing	modes,	not	just	“private	browsing”
modes.	Even	though	we’re	limited	in	how	we	can	use	CSS	to	differentiate	visited	links	from	non-
visited	links,	it	is	important	for	usability	and	accessibility	to	use	the	limited	styles	supported	by
visited	links	to	differentiate	them	from	unvisited	links.

Non-hyperlink	location	pseudo-classes
Hyperlinks	aren’t	the	only	elements	that	can	be	related	to	location.	CSS	also	provides	a	few	pseudo-
classes	that	relate	to	the	targets	of	hyperlinks,	summarized	in	Table	3-2.

Table	3-2.	Non-link	location	pseudo-classes

Name Description

:target Refers	to	an	element	whose	id	attribute	value	matches	the	fragment	selector	in	the	URL	used	to	load	the	page;	that	is,	
the	element	specifically	targeted	by	the	URL.

:target-withi

n

Refers	to	an	element	that	is	the	target	of	the	URL,	or	which	contains	an	element	that	is	so	targeted.		Note:	not	
supported	as	of	early	2022.

:scope Refers	to	elements	that	are	a	reference	point	for	selector	matching.

First,	let’s	talk	about	target	selection.	When	a	URL	includes	a	fragment	identifier,	the	piece	of	the
document	at	which	it	points	is	called	(in	CSS)	the	target.	Thus,	you	can	uniquely	style	any	element	that	is
the	target	of	a	URL	fragment	identifier	with	the	:target	pseudo-class.

Even	if	you’re	unfamiliar	with	the	term	“fragment	identifier,”	you’ve	probably	seen	them	in	action.
Consider	this	URL:

http://www.w3.org/TR/css3-selectors/#target-pseudo

The	target-pseudo	portion	of	the	URL	is	the	fragment	identifier,	which	is	marked	by	the	#	symbol.	If
the	referenced	page	(http://www.w3.org/TR/css3-selectors/)	has	an	element	with	an	ID	of	target-
pseudo,	then	that	element	becomes	the	target	of	the	fragment	identifier.

Thanks	to	:target,	you	can	highlight	any	targeted	element	within	a	document,	or	you	can	devise
different	styles	for	various	types	of	elements	that	might	be	targeted—say,	one	style	for	targeted	headings,
another	for	targeted	tables,	and	so	on.	Figure	3-15	shows	an	example	of	:target	in	action:

*:target	{border-left:	5px	solid	gray;	background:	yellow	url(target.png)

				top	right	no-repeat;}

Figure	3-15.	Styling	a	fragment	identifier	target

:target	styles	will	not	be	applied	in	three	circumstances:

1.	 If	the	page	is	accessed	via	a	URL	that	does	not	have	a	fragment	identifier

2.	 If	the	page	is	accessed	via	a	URL	that	has	a	fragment	identifier,	but	the	identifier	does	not	match	any
elements	within	the	document

3.	 If	the	page’s	URL	is	updated	in	such	a	way	that	a	scroll	state	is	not	created,	which	happens	most
often	via	JavaScript	shenanigans.	(This	isn’t	a	CSS	rule,	but	it	is	how	browsers	behave.)

More	interestingly,	though,	what	happens	if	multiple	elements	within	a	document	can	be	matched	by	the
fragment	identifier—for	example,	if	the	author	erroneously	included	three	separate	instances	of	<div
id="target-pseudo">	in	the	same	document?

http://www.w3.org/TR/css3-selectors/

The	short	answer	is	that	CSS	doesn’t	have	or	need	rules	to	cover	this	case,	because	all	CSS	is	concerned
with	is	styling	targets.	Whether	the	browser	picks	just	one	of	the	three	elements	to	be	the	target	or
designates	all	three	as	co-equal	targets,	:target	styles	should	be	applied	to	anything	that	is	a	valid
target.

Closely	related	to	the	:target	pseudo-class	is	the	:target-within	pseudo-class.	The	difference
is	that	:target-within	will	not	only	match	elements	that	are	targets,	but	also	elements	that	are	the
ancestors	of	targets.	Thus,	the	following	CSS	would	match	any	p	element	containing	a	target,	or	that	was
itself	a	target.

p:target-within	{border-left:	5px	solid	gray;	background:	yellow	url(target.png)

				top	right	no-repeat;}

Or	it	would,	anyway,	if	any	browser	supported	it.	As	of	early	2022,	this	was	not	the	case.

Finally,	we	consider	the	:scope	pseudo-class.	This	is	quite	widely	supported,	but	at	present,	it	only
comes	in	handy	in	scripting	situations.	Consider	the	following	JavaScript	and	HTML,	which	we’ll
explain	after	the	code.

var	output	=	document.getElementById('output');

var	registers	=	output.querySelectorAll(':scope	>	div');

<section	id="output">

		<h3>Results</h3>

		<div></div>

		<div></div>

</section>

The	JavaScript	portion	says,	in	effect,	“Find	the	element	with	an	ID	of	output.	Then,	find	all	the	divs	that
are	children	of	the	output	element	you	just	found.”	(Yes,	CSS	selectors	can	be	used	in	JavaScript!)	The
:scope	in	that	bit	of	JS	referred	to	the	scope	of	the	thing	that	had	been	found,	thus	keeping	the	selection
confined	to	just	that	instead	of	the	whole	document.	The	result	is	that,	in	the	JavaScript	program’s
memory,	it	now	has	a	structure	holding	references	to	the	two	div	elements	in	the	HTML.

If	you	use	:scope	in	straight	CSS,	it	will	refer	to	the	scoping	root,	which	(at	present)	means	the	html
element,	assuming	the	document	is	HTML.	Neither	HTML	nor	CSS	provide	a	way	to	set	scoping	roots
other	than	the	root	element	of	the	document.	So,	outside	of	JavaScript,	:scope	is	essentially	equivalent
to	:root.	That	may	change	in	the	future,	but	for	now,	you	should	only	use	:scope	in	JavaScript
contexts.

JAVASCRIPT	AND	CSS
There	are	a	few	ways	CSS	has	influenced	the	evolution	of	JavaScript,	and	one	of	them	is	the	ability	to
use	the	CSS	selection	engine	from	within	JavaScript	via	.querySelectorAll().	This	method
can	take	any	CSS	selector	as	a	string,	and	will	return	a	collection	of	all	the	elements	within	the	DOM
(Document	Object	Model)	that	are	matched	by	the	selector.	There	is	also	a	.querySelector(),
which	also	accepts	any	CSS	selector	as	a	string,	but	will	only	return	the	first	element	found,	so	it’s	not
always	as	useful.

There	are	some	older	JS	methods	for	collecting	elements	that	you	may	come	across,	such	as
.getElementByID()	and	.getElementsByTagName().	These	are	from	the	time	before
.querySelectorAll()	was	added	to	JavaScript,	and	while	they	may	be	marginally	more
performant	than	.querySelectorAll()	in	some	situations,	they’re	mostly	found	in	legacy
codebases	these	days.	Both	are	now	more	simply	handled	with	.querySelectorAll().	For
example,	the	following	two	lines	would	have	the	same	result:

var	subheads	=	Document.getElementsByTagName('h2');

var	subheads	=	Document.querySelectorAll('h2');

Similarly,	a	.getElementById('summary')	can	be	equivalently	replaced	with
.querySelectorAll('#summary').

The	advantage	in	.querySelectorAll()	is	that	is	can	take	any	selector,	no	matter	how
complex,	including	grouped	selectors.	Thus,	you	could	get	all	of	the	level-two	and	-three	headings	in
a	single	call:	Document.querySelectorAll('h2,	h3').	Or	grab	a	more	complex	sets	of
elements	with	something	like	.querySelectorAll('h2	+	p,	pre	+	p,	table	+	*,
thead	th:nth-child(even)').

Note,	though,	that	the	list	of	elements	returned	by	.querySelectorAll()	is	static,	and	therefore
is	not	updated	when	the	DOM	is	dynamically	changed.	That	is,	if	another	part	of	the	JS	adds	a	section
with	an	h2	element	in	it,	the	elements	previously	collected	with	.querySelectorAll('h2,
h3')	will	not	be	updated	to	include	the	newly-added	h2.	You’d	either	need	to	add	it	yourself
manually,	or	else	do	a	new	.querySelectorAll()	call.

User	action	pseudo-classes
CSS	defines	a	few	pseudo-classes	that	can	change	a	document’s	appearance	based	on	actions	taken	by	the
user.	These	dynamic	pseudo-classes	have	traditionally	been	used	to	style	hyperlinks,	but	the	possibilities
are	much	wider.	Table	3-3	describes	these	pseudo-classes.

Table	3-3.	User	action	pseudo-classes

Name Description

:hover Refers	to	any	element	over	which	the	mouse	pointer	is	placed—e.g.,	a	hyperlink	over	which	the	mouse	pointer	is	
hovering.

:active Refers	to	any	element	that	has	been	activated	by	user	input—e.g.,	a	hyperlink	on	which	a	user	clicks	during	the	time	
the	mouse	button	is	held	down,	or	an	element	a	user	has	tapped	via	touchscreen.

:focus Refers	to	any	element	that	currently	has	the	input	focus—i.e.,	can	accept	keyboard	input	or	otherwise	be	activated	in	
some	way.

:focus-within Refers	to	any	element	that	currently	has	the	input	focus—i.e.,	can	accept	keyboard	input	or	be	activated	in	some	way
—or	an	element	that	contains	an	element	which	is	so	focused.

:focus-visibl

e

Refers	to	any	element	that	currently	has	the	input	focus,	but	only	if	the	user	agent	thinks	it	is	an	element	type	that	
should	have	visible	focus.

Elements	that	can	become	:active	or	have	:focus	include	links,	buttons,	menu	items,	any	element
with	a	tabindex	value,	and	all	other	interactive	elements,	including	form	controls	and	elements	that	are
content-editable	(by	having	the	contenteditable	attribute	added	to	the	element’s	opening	tag).

As	with	:link	and	:visited,	these	pseudo-classes	are	most	familiar	in	the	context	of	hyperlinks.
Many	web	pages	have	styles	that	look	like	this:

a:link	{color:	navy;}

a:visited	{color:	gray;}

a:focus	{color:	orange;}

a:hover	{color:	red;}

a:active	{color:	yellow;}

NOTE
The	order	of	the	pseudo-classes	is	more	important	than	it	might	seem	at	first.	The	usual	recommendation	is	“link-visited-focus-hover-
active.”	The	next	chapter	explains	why	this	particular	ordering	is	important	and	discusses	several	reasons	you	might	choose	to	change	or
even	ignore	the	recommended	ordering.

Notice	that	the	dynamic	pseudo-classes	can	be	applied	to	any	element,	which	is	good	since	it’s	often
useful	to	apply	dynamic	styles	to	elements	that	aren’t	links.	For	example,	using	this	markup:

input:focus	{background:	silver;	font-weight:	bold;}

…you	could	highlight	a	form	element	that	is	ready	to	accept	keyboard	input,	as	shown	in	Figure	3-16.

Figure	3-16.	Highlighting	a	form	element	that	has	focus

Two	relatively	new	additions	to	the	user-action	pseudo-classes	are	:focus-within	and	:focus-
visible.	Let’s	take	the	second	one	first.	:focus-visible	is	very	much	like	:focus	in	that	it
applies	to	elements	that	have	focus,	but	there’s	a	big	difference:	it	will	only	match	if	that	element	that	has
focus	is	an	element	that	the	user	agent	thinks	should	be	given	visible	focus	styles	in	a	given	situation.

For	example,	consider	HTML	buttons.	When	a	button	is	clicked	via	mouse,	it	is	given	focus,	the	same	as
if	we	had	used	a	keyboard	interface	to	move	the	focus	to	it.	As	authors	who	care	about	accessibility	and
aesthetics,	we	want	the	button	to	have	focus	styles	when	it’s	focused	via	keyboard	or	some	other	assistive
technology,	but	we	might	not	like	it	getting	focus	styles	when	it’s	clicked	or	tapped.

We	can	split	this	difference	using	CSS	such	as	the	following:

button:focus-visible	{outline:	5px	solid	maroon;}

This	will	put	a	thick	dark-red	outline	around	the	button	when	tabbing	to	it	via	keyboard,	but	the	rule	above
won’t	be	applied	when	the	button	is	clicked	with	the	mouse.

Building	on	that,	:focus-within	applies	to	any	element	that	has	focus,	or	any	element	that	has	a
descendant	with	focus.	Given	the	following	CSS	and	HTML,	we’ll	get	the	result	shown	in	Figure	3-17.

nav:focus-within	{border:	3px	solid	silver;}

a:focus-visible	{outline:	2px	solid	currentColor;}

<nav>

		Home

		About

		Contact

</nav>

Figure	3-17.	Selecting	elements	using	:focus-within

The	third	link	currently	has	focus,	having	received	it	by	the	user	tabbing	to	that	link,	and	is	styled	with	a
two-pixel	outline.	The	nav	element	that	contains	it	is	also	being	given	focus	styling	via	:focus-

within,	because	an	element	within	itself	(that	is,	an	element	descended	from	it)	currently	has	focus.
This	adds	a	little	more	visual	weight	to	that	area	of	the	page,	which	can	be	helpful.	Be	careful	of
overdoing	it,	though.	Too	many	focus	styles	can	create	visual	overload,	potentially	confusing	users.

WARNING
While	you	can	style	elements	with	:focus	any	way	you	like,	do	not	remove	all	styling	from	focused	elements.	Differentiating	which
element	currently	has	focus	is	vital	for	accessibility,	especially	for	those	navigating	your	site	or	application	with	a	keyboard.

Real-world	issues	with	dynamic	styling
Dynamic	pseudo-classes	present	some	interesting	issues	and	peculiarities.	For	example,	it’s	possible	to
set	visited	and	unvisited	links	to	one	font	size	and	make	hovered	links	a	larger	size,	as	shown	in	Figure	3-
18:

a:link,	a:visited	{font-size:	13px;}

a:hover,	a:active	{font-size:	20px;}

Figure	3-18.	Changing	layout	with	dynamic	pseudo-classes

As	you	can	see,	the	user	agent	increases	the	size	of	the	anchor	while	the	mouse	pointer	hovers	over	it	—
or,	thanks	to	the	:active	setting,	when	a	user	touches	it	on	a	touch	screen.	As	we	are	changing	a
property	that	impacts	line	height,	a	user	agent	that	supports	this	behavior	must	redraw	the	document	while
an	anchor	is	in	hover	state,	which	could	force	a	reflow	of	all	the	content	that	follows	the	link.

UI-State	Pseudo-Classes
Closely	related	to	the	dynamic	pseudo-classes	are	the	user-interface	(UI)	state	pseudo-classes,	which
are	summarized	in	Table	3-4.	These	pseudo-classes	allow	for	styling	based	on	the	current	state	of	user-
interface	elements	such	as	checkboxes.

Table	3-4.	UI-state	pseudo-classes

Name Description

:enabled Refers	to	user-interface	elements	(such	as	form	elements)	that	are	enabled;	that	is,	available	for	input.

:disabled Refers	to	user-interface	elements	(such	as	form	elements)	that	are	disabled;	that	is,	not	available	for	input.

:checked Refers	to	radio	buttons	or	checkboxes	that	have	been	selected,	either	by	the	user	or	by	defaults	within	the	document	
itself.

:indeterminate Refers	to	radio	buttons	or	checkboxes	that	are	neither	checked	nor	unchecked;	this	state	can	only	be	set	via	DOM	
scripting,	and	not	due	to	user	input.

:default Refers	to	the	radio	button,	checkbox,	or	option	that	was	selected	by	default.

:autofill Refers	to	a	user	input	that	has	been	auto-filled	by	the	browser.

:placeholder-s

hown

Refers	to	a	user	input	that	has	placeholder	(not	value)	text	pre-filled.

:valid Refers	to	a	user	input	that	meets	all	of	its	data	validity	requirements.

:invalid Refers	to	a	user	input	that	does	not	meet	all	of	its	data	validity	requirements.

:in-range Refers	to	a	user	input	whose	value	is	between	the	minimum	and	maximum	values.

:out-of-range Refers	to	a	user	input	whose	value	is	below	the	minimum	or	above	the	maximum	values	allowed	by	the	control.

:required Refers	to	a	user	input	that	must	have	a	value	set.

:optional Refers	to	a	user	input	that	does	not	need	to	have	a	value	set.

:read-write Refers	to	a	user	input	that	is	editable	by	the	user.

:read-only Refers	to	a	user	input	that	is	not	editable	by	the	user.

Although	the	state	of	a	UI	element	can	certainly	be	changed	by	user	action—for	example,	a	user	checking
or	unchecking	a	checkbox—UI-state	pseudo-classes	are	not	classified	as	purely	dynamic	because	they	can
also	be	affected	by	the	document	structure	or	scripting.

Enabled	and	disabled	UI	elements
Thanks	to	both	DOM	scripting	and	HTML5,	it	is	possible	to	mark	a	user-interface	element	(or	group	of
user	interface	elements)	as	being	disabled.	A	disabled	element	is	displayed,	but	cannot	be	selected,
activated,	or	otherwise	interacted	with	by	the	user.	Authors	can	set	an	element	to	be	disabled	either
through	DOM	scripting,	or	by	adding	a	disabled	attribute	to	the	element’s	markup.

Any	element	that	hasn’t	been	disabled	is	by	definition	enabled.	You	can	style	these	two	states	using	the
:enabled	and	:disabled	pseudo-classes.	It’s	much	more	common	to	style	disabled	elements	and
leave	enabled	elements	alone,	but	both	have	their	uses,	as	illustrated	in	Figure	3-19:

:enabled	{font-weight:	bold;}

:disabled	{opacity:	0.5;}

Figure	3-19.	Styling	enabled	and	disabled	UI	elements

Check	states
In	addition	to	being	enabled	or	disabled,	certain	UI	elements	can	be	checked	or	unchecked—in	HTML,
the	input	types	“checkbox”	and	“radio”	fit	this	definition.	CSS	offers	a	:checked	pseudo-class	to
handle	elements	in	that	state.	There	is	also	the	:indeterminate	pseudo-class,	which	matches	any
checkable	UI	element	that	is	neither	checked	nor	unchecked.	These	states	are	illustrated	in	Figure	3-20:

:checked	{background:	silver;}

:indeterminate	{border:	red;}

Figure	3-20.	Styling	checked	and	indeterminate	UI	elements

Although	checkable	elements	are	unchecked	by	default,	it’s	possible	for	an	HTML	author	to	toggle	them
on	by	adding	the	checked	attribute	to	an	element’s	markup.	An	author	can	also	use	DOM	scripting	to
flip	an	element’s	checked	state	to	checked	or	unchecked,	whichever	they	prefer.

As	of	early	2022,	the	indeterminate	state	can	only	be	set	through	DOM	scripting	or	by	the	user	agent	itself;
there	is	no	markup-level	method	to	set	elements	to	an	indeterminate	state.	The	purpose	of	styling	an
indeterminate	state	is	to	visually	indicate	that	the	element	needs	to	be	checked	(or	unchecked)	by	the	user.
However,	note	that	this	is	purely	a	visual	effect:	it	does	not	affect	the	underlying	state	of	the	UI	element,
which	is	either	checked	or	unchecked,	depending	on	document	markup	and	the	effects	of	any	DOM
scripting.

Although	the	previous	examples	show	styled	radio	buttons,	remember	that	direct	styling	of	radio	buttons

and	checkboxes	with	CSS	is	actually	very	limited.	Nevertheless,	that	shouldn’t	limit	your	use	of	the
selected-option	pseudo-classes.	As	an	example,	you	can	style	the	labels	associated	with	your	checkboxes
and	radio	buttons	using	a	combination	of	:checked	and	the	adjacent	sibling	combinator:

input[type="checkbox"]:checked	+	label	{

		color:	red;

		font-style:	italic;

}

<input	id="chbx"	type="checkbox">	<label	for="chbx">I	am	a	label</label>

If	you	need	to	select	all	checkboxes	that	are	not	checked,	use	the	negation	pseudo-class	(which	is	covered
later	in	the	chapter)	like	this:	input[type="checkbox"]:not(:checked).	Only	radio	buttons
and	checkboxes	can	be	checked.	All	other	elements,	and	these	two	when	not	checked,	are
:not(:checked).	This	approach	fills	the	gap	left	by	the	absence	of	an	:unchecked	pseudo-class.

Default-value	pseudo-classes
There	are	three	pseudo-classes	that	relate	to	default	values	and	filler	text:	:default,
:placeholder-shown,	and	:autofill.

The	:default	pseudo-class	matches	the	UI	elements	that	are	the	default	among	a	set	of	similar
elements.	This	typically	applies	to	context	menu	items,	buttons,	and	select	lists/menus.	If	there	are	several
same-named	radio	buttons,	the	one	that	was	originally	selected	(if	any)	matches	:default,	even	if	the
UI	has	been	updated	by	the	user	so	that	it	no	longer	matches	:checked.	If	a	checkbox	was	checked	on
page	load,	:default	matches	it.	Any	initially-selected	option(s)	in	a	select	element	will	match.

[type="checkbox"]:default	+	label	{	font-style:	italic;	}

<input	type="checkbox"	id="chbx"	checked	name="foo"	value="bar">

<label	for="chbx">This	was	checked	on	page	load</label>

:default	will	also	match	a	form’s	default	button,	which	is	generally	the	first	button	element	in
DOM	order	that	is	a	member	of	a	given	form.	This	could	be	used	to	indicate	to	users	which	button	will	be
activated	if	they	just	hit	Enter,	instead	of	explicitly	selecting	a	button	to	activate.

:placeholder-shown	is	similar	in	that	it	will	select	any	input	that	has	had	placeholder	text
defined	at	the	markup	level.	For	example:

<input	type="text"	id="firstName"	placeholder="Your	first	name">

<input	type="text"	id="lastName"		placeholder="Your	last	name">

The	value	of	a	placeholder	attribute	will	be	placed	into	the	input	fields	in	a	browser,	usually	in	a
lighter	color	than	normal	text.	If	you	want	to	style	those	input	elements	in	a	consistent	way,	then	you	can
do	something	like	this:

input:placeholder-shown	{opacity:	0.75;}

Note	that	this	selects	the	input	as	a	whole,	not	just	the	placeholder	text.	(To	style	the	placeholder	text
itself,	see	““The	Placeholder	Text	Pseudo-Element””	later	in	the	chapter.)

:autofill	is	a	little	but	different	than	the	other	two:	it	matches	any	element	that	has	had	its	value
automatically	filled	in	or	auto-completed	by	the	browser.	This	may	be	familiar	to	you	if	you’ve	ever	filled
out	a	form	by	having	the	browser	fill	in	stored	values	of	your	name,	email,	mailing	address,	and	so	on.
The	input	fields	that	are	filled	in	usually	get	a	distinct	style,	like	a	yellowish	background.	You	can	add	to
that	using	:autofill,	perhaps	like	this:

input:autofill	{border:	thick	solid	maroon;}

NOTE
While	you	can	add	to	default	browser	styling	of	autofilled	text,	it	is	difficult	to	override	the	browser’s	built-in	styles	for	things	such	as
background	colors.	This	is	because	the	browsers’	styles	for	autofilled	fields	are	set	to	override	just	about	anything	else,	largely	as	a	way	to
provide	users	with	a	consistent	experience	of	autofilled	content.

Optionality	pseudo-classes
The	pseudo-class	:required	matches	any	user-input	element	that	is	required,	as	denoted	by	the
presence	of	the	required	attribute.	The	:optional	pseudo-class	matches	user-input	elements	that	do
not	have	the	required	attribute,	or	whose	required	attribute	has	a	value	of	false.

A	user-input	element	is	:required	if	having	a	value	for	it	is	required	before	the	form	to	which	it
belongs	can	be	validly	submitted.	All	other	user-input	elements	are	matched	by	:optional.	For
example:

input:required	{	border:	1px	solid	#f00;}

input:optional	{	border:	1px	solid	#ccc;}

<input	type="email"	placeholder="enter	an	email	address"	required>

<input	type="email"	placeholder="optional	email	address">

<input	type="email"	placeholder="optional	email	address"	required="false">

The	first	email	input	will	match	the	:required	pseudo-class	because	of	the	presence	of	the
required	attribute.	The	second	input	is	optional,	and	therefore	will	match	the	:optional	pseudo-
class.	The	same	is	true	for	the	third	input,	which	has	a	required	attribute,	but	the	value	is	false.

Elements	that	are	not	user-input	elements	can	be	neither	required	nor	optional.	Including	the	required
attribute	on	a	non-user-input	element	won’t	lead	to	an	optionality	pseudo-class	match.

Validity	pseudo-classes
The	:valid	pseudo-class	refers	to	a	user	input	that	meets	all	of	its	data	validity	requirements.	The
:invalid	pseudo-class,	on	the	other	hand,	refers	to	a	user	input	that	does	not	meet	all	of	its	data
validity	requirements.

The	validity	pseudo-classes	:valid	and	:invalid	only	apply	to	elements	having	the	capacity	for	data

validity	requirements:	a	div	will	never	match	either	selector,	but	an	input	could	match	either,
depending	on	the	current	state	of	the	interface.

Here’s	an	example	where	an	image	is	dropped	into	the	background	of	any	email	input	which	has	focus,
with	one	image	being	used	when	the	input	is	invalid	and	another	used	when	the	input	is	valid,	as
illustrated	in	Figure	3-21:

input[type="email"]:focus	{

		background-position:	100%	50%;

		background-repeat:	no-repeat;

}

input[type="email"]:focus:invalid	{

		background-image:	url(warning.jpg);

}

input[type="email"]:focus:valid	{

		background-image:	url(checkmark.jpg);

}

<input	type="email">

Figure	3-21.	Styling	valid	and	invalid	UI	elements

Keep	in	mind	that	these	pseudo-class	states	may	not	act	as	you	might	expect.	For	example,	as	of	early
2022,	any	empty	email	input	that	isn’t	required	matches	:valid,	despite	the	fact	a	null	input	is	not	a
valid	email	address,	because	no	email	address	is	a	valid	response	for	an	optional	input.	If	you	try	to	fill
in	a	malformed	address	or	just	some	random	text,	that	will	be	matched	by	:invalid	because	it	isn’t	a
valid	email	address.

Range	pseudo-classes
The	range	pseudo-classes	include	:in-range,	which	refers	to	a	user	input	whose	value	is	between	the
minimum	and	maximum	values	set	by	HTML5’s	min	and	max	attributes,	and	:out-of-range,	which
refers	to	a	user	input	whose	value	is	below	the	minimum	or	above	the	maximum	values	allowed	by	the
control.

For	example,	consider	a	number	input	that	accepts	numbers	in	the	range	0	to	1,000:

input[type="number"]:focus	{

		background-position:	100%	50%;

		background-repeat:	no-repeat;

}

input[type="number"]:focus:out-of-range	{

		background-image:	url(warning.jpg);

}

input[type="number"]:focus:in-range	{

		background-image:	url(checkmark.jpg);

}

<input	id="nickels"	type="number"	min="0"	max="1000"	/>

In	this	example,	a	value	from	zero	to	one	thousand,	inclusive,	would	mean	the	input	element	is	matched
by	:in-range.	Any	value	outside	that	range,	whether	input	by	the	user	or	assigned	via	the	DOM,	will
cause	the	input	to	match	:out-of-range	instead.

The	:in-range	and	:out-of-range	pseudo-classes	apply	only	to	elements	with	range	limitations.
User	inputs	that	don’t	have	range	limitations,	like	links	for	inputs	of	type	tel,	will	not	be	matched	by
either	pseudo-class.

There	is	also	a	step	attribute	in	HTML5.	If	a	value	is	invalid	because	it	does	not	match	the	step	value,
but	is	still	between	or	equal	to	the	min	and	max	values,	it	will	match	:invalid	while	also	still
matching	:in-range.	That	is	to	say,	a	value	can	be	in-range	while	also	being	invalid.

Thus,	in	the	following	scenario,	the	input’s	value	will	be	both	red	and	boldfaced,	because	the	value	23	is
in	range	but	is	not	evenly	divisible	by	10:

input[type="number"]:invalid	{color:	red;}

input[type="number"]:in-range	{font-weight:	bold;}

<input	id="by-tens"	type="number"	min="0"	max="1000"	step="10"	value="23"	/>

Mutability	pseudo-classes
The	mutability	pseudo-classes	include	:read-write,	which	refers	to	a	user	input	that	is	editable	by
the	user;	and	:read-only,	which	matches	user	inputs	that	are	not	editable,	including	radio	buttons	and
checkboxes.	Only	elements	that	have	the	capacity	to	have	their	values	altered	by	user	input	can	match
:read-write.

For	example,	in	HTML,	a	non-disabled,	non-read-only	input	element	is	:read-write,	as	is	any
element	with	the	contenteditable	attribute.	Everything	else	matches	:read-only.

By	default,	neither	of	the	following	rules	would	ever	match:	textarea	elements	are	read-write,	and
pre	elements	are	read-only.

textarea:read-only	{opacity:	0.75;}

pre:read-write:hover	{border:	1px	dashed	green;}

However,	each	can	be	made	to	match	as	follows:

<textarea	disabled></textarea>

<pre	contenteditable>Type	your	own	code!</pre>

Because	the	textarea	is	given	a	disabled	attribute,	it	becomes	read-only,	and	so	will	have	the	first

rule	apply.	Similarly,	the	pre	here	has	been	given	the	attribute	contenteditable,	so	now	it	is	a
read-write	element.	This	will	be	matched	by	the	second	rule.

The	:lang	and	:dir	Pseudo-Classes
For	situations	where	you	want	to	select	an	element	based	on	its	language,	you	can	use	the	:lang()
pseudo-class.	In	terms	of	its	matching	patterns,	the	:lang()	pseudo-class	is	similar	to	the	|=	attribute
selector.	For	example,	to	italicize	elements	whose	content	is	written	in	French,	you	could	write	either	of
the	following:

*:lang(fr)	{font-style:	italic;}

*[lang|="fr"]	{font-style:	italic;}

The	primary	difference	between	the	pseudo-class	selector	and	the	attribute	selector	is	that	language
information	can	be	derived	from	a	number	of	sources,	some	of	which	are	outside	the	element	itself.	For
the	attribute	selector,	the	element	must	have	the	attribute	present	to	match.	The	:lang	pseudo-class,	on
the	other	hand,	matches	descendants	of	an	element	with	the	language	declaration.	As	Selectors	Level	3
states:

In	HTML,	the	language	is	determined	by	a	combination	of	the	lang	attribute,	and	possibly
information	from	the	meta	elements	and	the	protocol	(such	as	HTTP	headers).	XML	uses	an
attribute	called	xml:lang,	and	there	may	be	other	document	language-specific	methods	for
determining	the	language.

—https://www.w3.org/TR/selectors-3/

The	pseudo-class	will	operate	on	all	of	that	information,	whereas	the	attribute	selector	can	only	work	if
there	is	a	lang	attribute	present	in	the	element’s	markup.	Therefore,	the	pseudo-class	is	more	robust	than
the	attribute	selector	and	is	probably	a	better	choice	in	most	cases	where	language-specific	styling	is
needed.

CSS	also	has	a	:dir()	pseudo-class,	which	selects	elements	based	on	the	HTML	direction	of	an
element.	So	you	could,	for	example,	select	all	the	elements	whose	direction	is	right-to-left	like	this:

*:dir(rtl)	{border-right:	2px	solid;}

The	thing	to	watch	out	for	here	is	that	the	:dir()	pseudo-class	selects	elements	based	on	their
directionality	in	HTML,	and	not	the	value	of	the	direction	property	in	CSS	that	may	be	applied	to
them.	Thus,	the	only	two	values	you	can	really	select	on	as	of	early	2022	are	ltr	(left-to-right)	and	rtl
(right-to-left)	because	those	are	the	only	direction	values	that	HTML	permits.

Logical	Pseudo-Classes
Beyond	structure	and	language,	there	are	pseudo-classes	intended	to	bring	a	touch	of	logic	and	flexibility
to	CSS	selectors.	These	start	with	negation	and	proceed	to	union,	by	allowing	group	matching	within	a
single	part	of	a	selector.

The	Negation	Pseudo-Class
Every	selector	we’ve	covered	thus	far	has	had	one	thing	in	common:	they’re	all	positive	selectors.	In
other	words,	they	are	used	to	identify	the	things	that	should	be	selected,	thus	excluding	by	implication	all
the	things	that	don’t	match	and	are	thus	not	selected.

For	those	times	when	you	want	to	invert	this	formulation	and	select	elements	based	on	what	they	are	not,
CSS	provides	the	negation	pseudo-class,	:not().	It’s	not	quite	like	any	other	selector,	fittingly	enough,
and	it	does	have	some	restrictions	on	its	use,	but	let’s	start	with	an	example.

Let’s	suppose	you	want	to	apply	a	style	to	every	list	item	that	doesn’t	have	a	class	of	moreinfo,	as
illustrated	in	Figure	3-22.	That	used	to	be	very	difficult,	and	in	certain	cases	impossible,	to	make	happen.
Now	we	can	declare:

li:not(.moreinfo)	{font-style:	italic;}

Figure	3-22.	Styling	list	items	that	don’t	have	a	certain	class

The	way	:not()	works	is	that	you	attach	it	to	a	selector,	and	then	in	the	parentheses	you	fill	in	a	selector
or	group	of	selectors	which	describe	what	the	original	selector	cannot	match.

Let’s	flip	around	the	previous	example	and	select	all	elements	with	a	class	of	moreinfo	that	are	not
list	items.	This	is	illustrated	in	Figure	3-23:

.moreinfo:not(li)	{font-style:	italic;}

Figure	3-23.	Styling	elements	with	a	certain	class	that	aren’t	list	items

Translated	into	English,	the	selector	would	say,	“Select	all	elements	with	a	class	whose	value	contains
the	word	moreinfo	as	long	as	they	are	not	li	elements.”	Similarly,	the	translation	of
li:not(.moreinfo)	would	be	“Select	all	li	elements	as	long	as	they	do	not	have	a	class	whose
value	contains	the	word	moreinfo.”

You	can	also	use	the	negation	pseudo-class	at	any	point	in	a	more	complex	selector.	Thus,	to	select	all
tables	that	are	not	children	of	a	section	element,	you	would	write	*:not(section)	>	table.
Similarly,	to	select	table	header	cells	that	are	not	part	of	the	table	header,	you’d	write	something	like
table	*:not(thead)	>	tr	>	th,	with	a	result	like	that	shown	in	Figure	3-24.

Figure	3-24.	Styling	header	cells	outside	the	table’s	head	area

What	you	cannot	do	is	nest	negation	pseudo-classes;	thus,	p:not(:not(p))	is	invalid	and	will	be
ignored.	It’s	also,	logically,	the	equivalent	of	just	writing	p,	so	there’s	no	point	anyway.	Furthermore,	you
cannot	reference	pseudo-elements	(which	we’ll	cover	shortly)	inside	the	parentheses,	since	they	are	not
simple	selectors.	You	can	include	attribute	selectors	and	pseudoclasses;	they	may	seem	complicated,	but
they	are	simple	selectors.

Technically,	you	can	put	a	universal	selector	into	the	parentheses,	but	there’s	very	little	point.	After	all,
p:not(*)	would	mean	“Select	any	p	element	as	long	as	it	isn’t	any	element,”	and	there’s	no	such	thing
as	an	element	that	is	not	an	element.	Very	similar	to	that	would	be	p:not(p),	which	would	also	select
nothing.	It’s	also	possible	to	write	things	like	p:not(div),	which	will	select	any	p	element	that	is	not
a	div	element—in	other	words,	all	of	them.	Again,	there	is	very	little	reason	to	do	this.

On	the	other	hand,	it’s	possible	to	chain	negations	together	to	create	a	sort	of	“and	also	not	this”	effect.
For	example,	you	might	want	to	select	all	elements	with	a	class	of	link	that	are	neither	list	items	nor
paragraphs:

*.link:not(li):not(p)	{font-style:	italic;}

That	translates	to	“Select	all	elements	with	a	class	whose	value	contains	the	word	link	as	long	as
they	are	neither	li	nor	p	elements.”	This	used	to	be	the	only	way	to	exclude	a	group	of	elements,	but	CSS
(and	browsers)	support	selector	lists	in	negations.	That	allows	us	to	rewrite	the	previous	example	like	so:

*.link:not(li,	p)	{font-style:	italic;}

Along	with	this	came	the	ability	to	use	more	complex	selectors,	such	as	those	using	descendant
combinators.	If	you	need	to	select	all	elements	that	are	descended	from	a	form	element,	but	do	not
immediately	follow	a	p	element,	you	could	write	it	as:

form	*:not(p	+	*)

Translated,	that’s	“select	any	element	that	is	not	the	adjacent	sibling	a	p	element,	and	is	also	the
descendant	of	a	form	element”.	And	you	can	put	these	into	groups,	so	if	you	also	want	to	exclude	list
items	and	table-header	cells,	it	would	go	something	like	this:

form	*:not(p	+	*,	li,	thead	>	tr	>	th)

NOTE
The	ability	to	use	complex	selectors	in	:not()	only	came	to	browsers	in	early	2021,	so	exercise	caution	when	using	it,	especially	in	legacy
settings.

One	thing	to	watch	out	for	with	:not()	is	that	you	can	have	situations	where	rules	combine	in
unexpected	ways,	mostly	because	we’re	not	used	to	thinking	of	selection	in	the	negative.	Consider	this	test
case:

div:not(.one)	p	{font-weight:	normal;}

div.one	p	{font-weight:	bold;}

<div	class="one">

			<div	class="two">

						<p>I'm	a	paragraph!</p>

			</div>

</div>

The	paragraph	will	be	boldfaced,	not	normal-weight.	This	is	because	both	rules	match:	the	p	element	is
descended	from	a	div	whose	class	does	not	contain	the	word	one	(<div	class="two">),	but	it
is	also	descended	from	a	div	whose	class	contains	the	word	one.	Both	rules	match,	and	so	both
apply.	Since	there	is	a	conflict,	the	cascade	(which	is	explained	in	the	next	chapter)	is	used	to	resolve	the
conflict,	and	the	second	rule	wins.	The	structural	arrangement	of	the	markup,	with	the	div.two	being
“closer”	to	the	paragraph	than	div.one,	is	irrelevant.

The	matches-any	pseudo-classes
CSS	has	two	pseudo-classes	that	allow	for	group	matching	within	a	complex	selector,	is()	and
:where().	These	are	almost	identical	to	each	other,	with	just	a	minor	difference	that	we’ll	cover	once
we	understand	how	they	work.	Let’s	start	with	is().

Suppose	you	want	to	select	all	list	items,	whether	or	not	they	are	part	of	an	ordered	or	an	unordered	list.
The	traditional	way	to	do	that	is:

ol	li,	ul	li	{font-style:	italic;}

With	:is(),	we	can	rewrite	that	like	so:

:is(ol,	ul)	li	{font-style:	italic;}

The	matched	elements	will	be	exactly	the	same:	all	list	items	that	are	part	of	either	ordered	or	unordered
lists.

This	might	seem	slightly	pointless:	not	only	is	the	syntax	slightly	less	clear,	it’s	also	one	character	longer.
And	it’s	true	that	in	simple	situations	like	that,	:is()	isn’t	terribly	compelling.	The	more	complex	the
situation,	though,	the	more	likely	:is()	will	really	shine.

NOTE
:is()	used	to	be	called	:matches()	before	a	2021	rename,	and	was	also	present	in	vendor-prefixed	form	as	:-wekbit-any()
and	:-moz-any()	in	still	older	browsers.

For	example,	what	if	we	want	to	style	all	list	items	that	are	at	least	two	levels	deep	in	nested	lists,	no
matter	what	combination	of	ordered	and	unordered	lists	are	above	them?	Compare	the	following	rules,
both	of	which	will	have	the	effect	shown	in	Figure	3-25,	except	one	uses	the	traditional	approach	and	the
other	uses	:is().

ol	ol	li,	ol	ul	li,	ul	ol	li,	ul	ul	li	{font-style:	italic;}

:is(ol,	ul)	:is(ol,	ul)	li	{font-style:	italic;}

Figure	3-25.	Using	matches-any	to	select	elements

Now	consider	what	the	traditional	approach	would	look	like	for	three,	four,	or	even	more	levels	deep	of
nested	lists!

This	can	be	used	in	all	sort	of	situations:	selecting	all	links	inside	lists	that	are	themselves	inside	headers,
footers,	and	nav	elements	could	look	like	this:

:is(header,footer,nav,#header,#footer)	:is(ol,ul)	a[href]	{font-style:	italic;}

Even	better:	the	list	of	selectors	inside	:is()	is	what’s	called	a	“forgiving	selector	list.”	By	default,	if
any	one	thing	in	a	selector	is	invalid,	the	whole	rule	is	marked	invalid.	Forgiving	selector	lists,	on	the
other	hand,	will	throw	any	part	that’s	invalid	and	honor	the	rest.

So,	given	all	that,	what’s	the	difference	between	:is()	and	:where()?	The	sole	difference	between
them	is	that	is()	takes	the	specificity	of	the	most-specific	selector	in	its	selector	list,	whereas
:where()	has	zero	specificity.	If	that	last	sentence	didn’t	make	sense	to	you,	don’t	worry!	We	haven’t
discussed	specificity	yet,	but	will	in	the	next	chapter.

WARNING
:is()	and	:where()	only	came	to	browsers	in	early	2021,	so	exercise	caution	when	using	them,	especially	in	legacy	settings.

Selecting	defined	elements
As	the	web	has	advanced,	it’s	added	more	and	more	capabilities.	One	of	the	more	recent	is	the	ability	to
add	custom	elements	to	your	markup	in	a	standardized	way.	This	happens	a	lot	with	pattern	libraries,
which	often	define	Web	Components	based	on	elements	that	are	specific	to	the	library.

One	thing	such	libraries	do	to	be	more	efficient	is	hold	off	on	defining	an	element	until	it’s	needed,	or	it’s
ready	to	be	populated	with	whatever	content	is	supposed	to	go	into	it.	Such	a	custom	element	might	look
like	this	in	markup:

<mylib-combobox>options	go	here</mylib-combobox>

The	actual	goal	is	to	fill	that	combobox	(a	dropdown	list	that	also	allows	users	to	enter	arbitrary	values)
with	whatever	options	the	backend	CMS	(Content	Management	System)	provides	for	it,	downloaded	via	a
script	that	requests	the	latest	data	in	order	to	build	the	list	locally,	and	removing	the	placeholder	text	in
the	process.	But	what	happens	if	the	server	fails	to	respond,	leaving	the	custom	element	undefined	and
stuck	with	its	placeholder	text?	Without	taking	steps,	the	text	“options	go	here”	will	get	inserted	into	the
page,	probably	with	minimal	styling.

That’s	where	:defined	comes	in.	You	can	use	it	to	select	any	defined	element,	and	combine	it	with
:not()	to	select	elements	that	aren’t	yet	defined.	Here’s	a	simple	way	to	hide	undefined	comboboxes,
and	also	to	apply	styles	to	defined	comboboxes.

mylib-combobox:not(:defined)	{display:	none;}

mylib-combobox:defined	{display:	inline-block;}

mylib-combobox	{font-size:	inherit;	border:	1px	solid	gray;	outline:	1px	solid	silver;}

The	:has()	pseudo-class
This	one	is	a	little	bit	tricky,	because	it	doesn’t	quite	follow	all	the	rules	we’ve	been	working	under	until
now—but	as	a	result,	it’s	also	insanely	powerful.

Imagine	you	want	to	apply	special	styles	to	any	div	element	that	contains	an	image.	Another	way	of
saying	that	is	that	if	a	div	element	has	an	img	element	inside	it,	you	want	to	apply	certain	styles	to	the
div.	And	that’s	exactly	what	:has()	makes	possible.

The	previous	example	would	be	written	something	like	this,	with	the	result	illustrated	in	Figure	3-26:

div:has(img)	{

	 border:	3px	double	gray;

}

<div>

			

</div>

<div>

			<p>No	image	here!</p>

</div>

<div>

			<p>This	has	text	and	.

</div>

Figure	3-26.	Using	:has()	to	select	elements

The	second	div,	which	does	not	have	an	img	element	as	a	descendant,	doesn’t	get	the	border.	If	you	only
wanted	the	first	div	to	get	the	border,	because	you	actually	wanted	to	only	style	div`s	that	have
images	as	direct	children,	just	modify	the	selector	to	use	the	child

combinator,	like	this:	`div:has(>	img).	That	would	prevent	the	third	div	from	getting
the	border.

:has()	is,	in	one	very	real	sense,	the	mythical	“parent	selector”	CSS	authors	have	wished	for	since	the
beginning	of	CSS	itself.	Except	it	isn’t	just	for	parent	selection,	because	you	can	select	based	on	siblings,
or	make	the	selection	happen	as	far	up	the	ancestry	chain	as	you	like.	And	if	all	that	didn’t	quite	make
sense	to	you,	hang	on:	we’ll	explain	further.

There	are	two	things	to	note	right	off	the	bat:

1.	 Inside	the	parentheses	of	:has(),	you	can	provide	a	comma-separated	list	of	selectors,	and	each	of
those	selectors	can	be	simple	or	complex.

2.	 Those	selectors	are	considered	relative	to	the	element	to	which	the	:has()	is	attached.

Let’s	take	those	in	order.	All	of	the	following	are	valid	:has()	uses:

table:has(tbody	th)	{…}

/*	tables	whose	body	contains	table	headers	*/

a:any-link:has(img:only-child)	{…}

/*	links	containing	only	an	image	*/

header:has(nav,	form.search)	{…}

/*	headers	containing	either	nav	or	a	form	classed	search	*/

section:has(+	h2	em,	table	+	table,	ol	ul	ol	ol)	{…}

/*	sections	immediately	followed	by	an	'h2'	that	contains	an	'em'

			OR	that	contain	a	table	immediately	followed	by	another	table

			OR	that	contain	an	'ol'	inside	an	'ol'	inside	a	'ul'	inside	an	'ol'	*/

That	last	example	might	be	a	bit	overwhelming,	so	let’s	break	it	down	a	bit	further.	We	could	restate	in	a
longer	way,	like	this:

section:has(+	h2	em),

section:has(table	+	table),

section:has(ol	ul	ol	ol)	{…}

And	here	are	two	examples	of	the	markup	patterns	that	would	be	selected:

<section>(…section	content…)</section>

<h2>I’m	an	h2	with	an	emphasis	element	inside,	which	means

				the	section	right	before	me	gets	selected!</h2>

<section>

<h2>This	h2	doesn’t	get	the	section	selected,	because	it’s	a	child	of

				the	section,	not	its	immediately-following	sibling</h2>

<p>This	paragraph	is	just	here.</p>

<aside>

<h3>Q1	Results</h3>

<table>(…table	contents…)</table>

<table>(…table	contents…)</table>

</aside>

<p>Those	adjacent-sibling	tables	mean	this	paragraph’s	parent	section	element

			DOES	get	selected!</p>

</section>

In	the	first	example,	the	selection	isn’t	based	on	parentage	or	any	other	ancestry:	instead,	the	section	is
selected	because	its	immediate	sibling	(the	h2)	has	an	em	element	as	one	of	its	descendants.	In	the
second,	the	section	is	selected	because	it	has	a	descendant	table	that’s	immedaitely	followed	by
another	table,	both	of	which	happen	in	this	case	to	be	inside	an	aside	element.	That	makes	this
specific	example	one	of	grandparent	selection,	not	parent	selection,	because	the	section	is	grandparent
to	the	tables.

Right,	so	that’s	the	first	point	that	was	raised	earlier.	The	second	was	that	the	selectors	inside	the
parentheses	are	relative	to	the	element	bearing	the	:has().	What	that	means	is	that,	for	example,	the
following	selector	is	never	going	to	match	anything:

div:has(html	body	h1)

That’s	because	while	an	h1	can	certainly	be	a	descendant	of	a	div,	the	html	and	body	elements
cannot.	What	that	selector	means,	translated	into	English,	is:	“select	any	div	that	has	a	descendant	html
which	itself	has	a	descendant	body	which	has	a	descendant	h1”.	html	will	never	be	a	descendant	of
div,	so	this	selector	can’t	match.

To	pick	something	a	little	more	realisitc,	here’s	a	bit	of	markup	showing	lists	nested	inside	each	other,
which	has	the	document	structure	shown	in	Figure	3-27.

List	item

List	item

	

	 List	item

	 List	item

	 List	item

	

List	item

List	item

List	item

	

	 List	item

	 List	item

	 	

	 	 List	item

	 	 List	item

	 	 List	item

	 	

	

	 List	item

	

Figure	3-27.	A	fragment	of	a	document’s	structure

To	that	structure,	we’ll	apply	the	following	rules.	Spoiler	alert:	one	of	them	will	match	an	element,	and
the	other	will	not.

ul:has(li	ol)	{border:	1px	solid	red;}

ul:has(ol	ul	ol)	{font-style:	italic;}

The	first	causes	the	browser	to	look	at	all	the	ul	elements.	For	any	ul	it	finds,	it	looks	at	the	structure	of
the	elements	that	descend	from	that	ul.	If	it	finds	an	li	ol	relationship	in	the	elements	that	descend
from	the	ul,	then	the	ul	is	matched,	and	in	this	case	will	be	given	a	red	border.

If	we	study	the	markup	structure,	either	in	the	code	or	in	Figure	3-27,	we	can	see	there	are	two	ul
elements.	The	first	has	li	descendants,	but	not	any	ol	descendants,	so	it	won’t	be	matched.	The	second
ul	also	has	li	descendants,	and	one	of	them	as	an	ol	descendant.	It’s	a	match!	The	ul	will	be	given	a
red	border.

The	second	rule	also	causes	the	browser	to	look	at	all	the	ul	elements.	In	this	case,	for	any	ul	it	finds,

the	browser	looks	to	see	if	there	is	an	ol	ul	ol	relationship	within	the	descendants	of	the	ul.
Elements	outside	the	ul	don’t	count:	only	those	within	it	are	considered.	Of	the	two	ul	elements	in	the
document,	neither	has	an	ol	inside	a	ul	that’s	inside	another	ol	that	is	itself	descended	from	the	ul
being	considered.	There’s	no	match,	so	neither	of	the	ul	elements	will	be	italicized.

Even	more	powerfully,	you’re	free	to	mix	:has()	with	other	pseudo-classes.	You	might,	for	example,
want	to	select	any	heading	level	if	it	has	an	image	inside.	There	are	two	ways	to	do	this:	the	long	clumsy
way,	and	the	compact	way.	Both	are	shown	here:

h1:has(img),	h2:has(img),	h3:has(img),	h4:has(img),	h5:has(img),	h6:has(img)

:is(h1,	h2,	h3,	h4,	h5,	h6):has(img)

The	two	selectors	have	the	same	outcome,	which	is	to	say,	if	an	element	is	one	of	the	listed	heading
elements,	and	that	element	has	among	its	descendant	elements	an	img	element,	then	the	heading	will	be
selected.

For	that	matter,	you	could	select	any	headings	that	don’t	have	images	inside:

:is(h1,	h2,	h3,	h4,	h5,	h6):not(:has(img))

That	is	to	say:	if	an	element	is	one	of	the	listed	heading	levels,	but	an	img	element	is	not	one	of	the
descendants	it	has,	then	the	heading	will	be	selected.	If	we	bring	them	together	and	apply	them	to	a
number	of	headings,	we	get	the	results	shown	in	Figure	3-28.

Figure	3-28.	To	has	and	has	not

As	you	can	already	see,	there	is	a	lot	of	power	in	this	selector.	There	are	also	dangers:	it	is	entirely
possible	to	write	selectors	that	cause	major	performance	hits	to	the	browser,	especially	in	settings	where
scripting	may	be	used	to	modify	the	document	structure.	Consider	the	following:

div:has(*.popup)	{…}

This	is	saying,	“apply	these	styles	to	any	div	that	has	an	element	with	a	class	of	popup	as	a
descendant.”	When	the	page	is	loaded	into	the	browser,	it	has	to	check	all	the	`div`s	to	see	if	they	match
this	selector.	That	could	mean	a	few	trips	up	and	down	the	document’s	structural	tree,	but	ideally	it	would
resolve	in	less	than	a	second,	and	the	page	can	then	be	displayed.

But	suppose	then	we	have	a	script	that	can	add	.popup	to	an	element,	or	even	several	elements,	on	the
page.	As	soon	as	the	class	values	change,	the	browser	not	only	has	to	check	to	see	if	there	are	styles	that
apply	to	.popup	elements	and	their	descendants,	it	also	has	to	check	to	see	if	there	are	any	ancestor	or
sibling	elements	that	are	affected	by	this	change.	Instead	of	only	looking	down	the	document	tree,	the
browser	now	has	to	look	up	as	well.	And	any	change	triggered	by	this	could	mean	changes	all	throughout
the	page’s	layout,	both	when	an	element	is	marked	as	.popup	and	whenever	a	.popup	element	loses
that	class	value,	potentially	affecting	elements	in	entirely	different	parts	of	the	document.

This	sort	of	performance	hit	is	why	there	hasn’t	been	a	“parent	selector”	or	anything	like	it	before.
Computers	are	getting	fast	enough,	and	browser	engines	smart	enough,	that	this	is	much	less	of	a	worry
than	it	was	in	the	past	—	but	it’s	still	something	to	keep	in	mind,	and	test	out	thoroughly.

NOTE
It	is	not	possible	to	nest	pesudo-elements	like	::first-line	or	::selection	in	has().	(We’ll	discuss	pseudo-elements	shortly.)

WARNING
As	of	mid-2022,	the	Firefox	family	of	browser	did	not	support	:has(),	though	there	were	plans	to	add	it.	That	said,	be	careful	not	to	use	it
in	ways	that	make	its	support	necessary,	particularly	in	the	years	following	2022.

Other	pseudo-classes
There	are	even	more	pseudo-classes	defined	in	in	the	CSS	Selectors	specification,	but	they	are	barely
supported	in	browsers,	or	in	some	cases	not	supported	at	all	as	of	early	2022,	or	else	are	things	we’ll
cover	elswhere	in	the	book.	We’re	listing	them	here	for	the	sake	of	completeness,	and	to	point	you	toward
pseudo-classes	that	might	be	supported	between	this	edition	of	the	book	and	the	next	one.	(Or	could	be
replaced	with	an	equivalent	pseudo-class	with	a	different	name;	that	happens	sometimes.)

Table	3-5.	Other	pseudo-classes

Name Description

:nth-col() Refers	to	table	cells	or	grid	items	that	are	in	an	nth	column,	which	is	found	using	the	An	+	b	pattern.		Essentially	the	
same	as	:nth-child(),	but	refers	specifically	to	table	or	grid	columns.

:nth-last-col

()

Refers	to	table	cells	or	grid	items	that	are	in	an	nth-last	column,	which	is	found	using	the	An	+	b	pattern.		Essentially	
the	same	as	:nth-last-child(),	but	refers	specifically	to	table	or	grid	columns.

:left Refers	to	any	left-hand	page	in	a	printed	document.		See	XREF	HERE	for	more.

:right Refers	to	any	right-hand	page	in	a	printed	document.		See	XREF	HERE	for	more.

:fullscreen Refers	to	an	element	that	is	being	displayed	fullscreen;	e.g.,	a	video	that’s	in	fullscreen	mode.

:past Refers	to	an	element	that	appeared	before	(in	time)	an	element	being	matched	by	:current.

:current Refers	to	an	element,	or	the	ancestor	of	an	element,	that	is	currently	being	displayed	in	a	time-based	format	like	a	
video;	e.g.,	an	element	containing	closed-caption	text.

:future Refers	to	an	element	that	will	appear	after	(in	time)	an	element	being	matched	by	:current.

:paused Refers	to	any	element	that	can	have	the	states	“playing”	or	“paused”	(e.g.,	audio,	video,	etc.)	when	it	is	in	the	
“paused”	state.

:playing Refers	to	any	element	that	can	have	the	states	“playing”	or	“paused”	(e.g.,	audio,	video,	etc.)	when	it	is	in	the	
“playing”	state.

:picture-in-p

icture

Refers	to	an	element	that	is	used	as	a	picture-in-picture	display.

Pseudo-Element	Selectors
Much	as	pseudo-classes	assign	phantom	classes	to	anchors,	pseudo-elements	insert	fictional	elements	into
a	document	in	order	to	achieve	certain	effects.

Unlike	the	single	colon	of	pseudo-classes,	pseudo-elements	employ	a	double-colon	syntax,	like
::first-line.	This	is	meant	to	distinguish	pseudo-elements	from	pseudo-classes.	This	was	not
always	the	case—in	CSS2,	both	selector	types	used	a	single	colon—so	for	backward	compatibility,
browsers	will	accept	single-colon	pseudo-type	selectors.	Don’t	take	this	as	an	excuse	to	be	sloppy,
though!	Use	the	proper	number	of	colons	at	all	times	in	order	to	future-proof	your	CSS;	after	all,	there	is
no	way	to	predict	when	browsers	will	stop	accepting	single-colon	pseudo-type	selectors.

Styling	the	First	Letter
The	::first-letter	pseudo-element	styles	the	first	letter,	or	a	leading	punctuation	character	and	the
first	letter	(if	the	text	starts	with	punctuation),	of	any	non-inline	element.	This	rule	causes	the	first	letter	of
every	paragraph	to	be	colored	red:

p::first-letter	{color:	red;}

The	::first-letter	pseudo-element	is	most	commonly	used	to	create	an	“initial	cap”	or	“drop	cap”
typographic	effect.	You	could	make	the	first	letter	of	each	p	twice	as	big	as	the	rest	of	the	heading,	though
you	may	want	to	only	apply	this	styling	to	the	first	letter	of	the	first	paragraph:

p:first-of-type::first-letter	{font-size:	200%;}

The	result	of	this	rule	is	illustrated	in	Figure	3-29.

Figure	3-29.	The	::first-letter	pseudo-element	in	action

This	rule	effectively	causes	the	user	agent	to	style	a	fictional,	or	“faux”,	element	that	encloses	the	first
letter	of	each	p.	It	would	look	something	like	this:

<p><p-first-letter>T</p-first-letter>his	is	a	p	element,	with	a	styled	first

				letter</h2>

The	::first-letter	styles	are	applied	only	to	the	contents	of	the	fictional	element	shown	in	the
example.	This	<p-first-letter>	element	does	not	appear	in	the	document	source,	nor	even	in	the
DOM	tree.	Instead,	its	existence	is	constructed	on	the	fly	by	the	user	agent	and	is	used	to	apply	the
::first-letter	style(s)	to	the	appropriate	bit	of	text.	In	other	words,	<p-first-letter>	is	a
pseudo-element.	Remember,	you	don’t	have	to	add	any	new	tags.	The	user	agent	styles	the	first	letter	for
you	as	if	you	had	encased	it	in	a	styled	element.

The	first	letter	is	defined	as	the	first	typographic	letter	unit	of	the	originating	element,	if	it	is	not	preceded
by	other	content,	like	an	image.	The	specifications	use	the	term	“letter	unit”	because	some	languages	have
letters	made	up	of	more	than	character,	like	“œ”	in	Old	West	Norse.	Punctuation	that	precedes	or	follows
the	first	letter	unit,	even	if	there	are	several	such	symbols,	should	be	included	in	the	::first-letter
pseudo-element.	The	browser	does	this	for	you.

Styling	the	First	Line
Similarly,	::first-line	can	be	used	to	affect	the	first	line	of	text	in	an	element.	For	example,	you
could	make	the	first	line	of	each	paragraph	in	a	document	large	and	purple:

p::first-line	{

		font-size:	150%;

		color:	purple;

}

In	Figure	3-30,	the	style	is	applied	to	the	first	displayed	line	of	text	in	each	paragraph.	This	is	true	no
matter	how	wide	or	narrow	the	display	region	is.	If	the	first	line	contains	only	the	first	five	words	of	the
paragraph,	then	only	those	five	words	will	be	big	and	purple.	If	the	first	line	contains	the	first	30	words	of
the	element,	then	all	30	will	be	big	and	purple.

Figure	3-30.	The	::first-line	pseudo-element	in	action

Because	the	text	from	“This”	to	“only”	should	be	big	and	purple,	the	user	agent	employs	a	fictional
markup	that	looks	something	like	this:

<p>

<p-first-line>This	is	a	paragraph	of	text	that	has	only</p-first-line>

one	stylesheet	applied	to	it.	That	style	causes	the	first	line	to

be	big	and	purple.	No	other	line	will	have	those	styles	applied.

</p>

If	the	first	line	of	text	were	edited	to	include	only	the	first	seven	words	of	the	paragraph,	then	the	fictional
</p-first-line>	would	move	back	and	occur	just	after	the	word	“that.”	If	the	user	were	to	increase
or	decrease	the	font-size	rendering,	or	expand	or	contract	the	browser	window	causing	the	width	of	the
text	to	change,	thereby	causing	the	number	of	words	on	the	first	line	to	increase	or	decrease,	the	browser
automatically	sets	only	the	words	in	the	currently	displayed	first	line	to	be	both	big	and	purple.

The	length	of	the	first	line	depends	on	a	number	of	factors,	including	the	font-size,	letter	spacing,	width	of
the	parent	container,	etc.	Depending	on	the	markup	and	the	length	of	that	first	line,	it	is	possible	that	the
end	of	the	first	line	comes	in	the	middle	of	a	nested	element.	If	the	::first-line	breaks	up	a	nested
element,	such	as	an	em	or	a	hyperlink,	the	properties	attached	to	the	::first-line	will	only	apply	to
the	portion	of	that	nested	element	that	is	displayed	on	the	first	line.

Restrictions	on	::first-letter	and	::first-line
The	::first-letter	and	::first-line	pseudo-elements	currently	can	be	applied	only	to	block-
display	elements	such	as	headings	or	paragraphs,	and	not	to	inline-display	elements	such	as	hyperlinks.
There	are	also	limits	on	the	CSS	properties	that	may	be	applied	to	::first-line	and	::first-
letter.	The	following	table	gives	an	idea	of	these	limitations.

++	<table	id="properties_permitted_on_pseudo-elements">	<caption>Properties	permitted	on	pseudo-
elements</caption>	<thead>	<tr>	<th>::first-letter</th>	<th>::first-line</th>	</tr>	</thead>	<tbody>	<tr>
<td>	All	font	properties	All	background	properties	All	text	decoration
properties	All	inline	typesetting	properties	All	inline	layout	properties	All
border	properties	<code>box-shadow</code>	<code>color</code>	
<code>opacity</code>	</td>

<td>	All	font	properties	All	background	properties	All	margin
properties	All	padding	properties	All	border	properties	All	text	decoration

properties	All	inline	typesetting	properties	<code>color</code>	
<code>opacity</code>	</td>	</tr>

</tbody>	</table>	++

The	Placeholder	Text	Pseudo-Element
As	it	happens,	the	restrictions	on	what	styles	can	be	applied	via	::first-line	are	exactly	the	same
as	the	restrictions	on	styles	applied	via	::placeholder.	This	pseudo-element	matches	any
placeholder	text	placed	into	text	inputs	and	textareas.	You	could,	for	example,	italicize	text	input
placeholder	text	and	turn	textarea	placeholder	text	a	dusky	blue	like	this:

input::placeholder	{font-style:	italic;}

textarea::placeholder	{color:	cornflowerblue;}

For	both	input	and	textarea	elements,	this	text	is	defined	by	the	placeholder	attribute	in
HTML.	The	markup	will	look	something	very	much	like	this:

<input	type="text"	placeholder="(XXX)	XXX-XXXX"	id="phoneno">

<textarea	placeholder="Tell	us	what	you	think!"></textarea>

If	text	is	pre-filled	using	the	value	attribute	on	input	elements,	or	by	placing	content	inside	the
textarea	element,	that	will	override	the	value	of	any	placeholder	attribute,	and	the	resulting	text
won’t	be	selected	with	the	::placeholder	pseudo-element.

The	Form	Button	Pseudo-ELement
Speaking	of	forms	elements,	it’s	also	possible	to	directly	select	the	file-selector	button	—	and	only	the
file-selector	button	—	in	an	input	element	that	has	a	type	of	file.	This	gives	you	a	way	to	call
attention	to	the	button	a	user	needs	to	click	to	open	the	file-selection	dialog,	even	if	no	other	part	of	the
input	can	be	directly	styled.

If	you’ve	never	seen	a	file-selection	input,	it	usually	looks	like	this:

<label	for="uploadField">Select	file	from	computer</label>

<input	id="uploadField"	type="file">

That	second	line	gets	replaced	with	a	control	whose	appearance	is	dependent	on	the	combination	of
operating	system	and	browser,	so	it	tends	to	look	at	least	a	little	different	(sometimes	a	lot	different)	from
one	user	to	the	next.	Figure	3-31	shows	on	possible	rendering	of	the	input,	with	the	button	styled	by	the
following	CSS.

input::file-selector-button	{

			border:	thick	solid	gray;

			border-radius:	2em;

}

Figure	3-31.	Styling	the	button	in	a	file	submission	input

Styling	(or	Creating)	Content	Before	and	After	Elements
Let’s	say	you	want	to	preface	every	h2	element	with	a	pair	of	silver	square	brackets	as	a	typographical
effect:

h2::before	{content:	"]]";	color:	silver;}

CSS	lets	you	insert	generated	content,	and	then	style	it	directly	using	the	pseudo-elements	::before
and	::after.	Figure	3-32	illustrates	an	example.

Figure	3-32.	Inserting	content	before	an	element

The	pseudo-element	is	used	to	insert	the	generated	content	and	to	style	it.	To	place	content	at	the	end	of	an
element,	right	before	the	closing	tag,	use	the	pseudo-element	::after.	You	could	end	your	documents
with	an	appropriate	finish:

body::after	{content:	"The	End.";}

Conversely,	if	you	want	to	insert	some	content	at	the	beginning	of	an	element,	right	after	the	opening	tag,
use	::before.	Just	remember	that	in	either	case,	you	have	to	use	the	content	property	in	order	to
insert	something	to	style.

Generated	content	is	its	own	subject,	and	the	entire	topic	(including	more	detail	on	::before	and
::after)	is	covered	more	thoroughly	in	XREF	HERE.

Highlight	pseudo-elements

A	relatively	new	concept	in	CSS	is	the	ability	to	style	pieces	of	content	that	have	been	highlighted,	either
by	user	selection	or	by	the	user	agent	itself.	These	are	summarized	in	Table	3-6.

Table	3-6.	Highlight	pseudo-elements

Name Description

::selection Refers	to	any	part	of	a	document	that	has	been	highlighted	for	user	operation;	e.g.,	text	which	has	been	drag-selected	
with	a	mouse.

::target-text Refers	to	the	text	of	a	document	which	has	been	targeted.		This	is	distinct	from	the	:target	pseudo-class,	which	
refers	to	a	targeted	element	as	a	whole,	not	a	fragment	of	text.

::spelling-er

ror

Refers	to	the	part	of	a	document	that	has	been	marked	by	the	user	agent	as	a	misspelling.

::grammar-err

or

Refers	to	the	part	of	a	document	that	has	been	marked	by	the	user	agent	as	a	grammar	error.

Of	the	four	pseudo-elements	in	Table	3-6,	only	one,	::selection,	has	any	appreciable	support	as	of
early	2022.	So	we’ll	explore	it,	and	leave	the	others	for	a	future	edition.

When	a	user	uses	a	mouse	pointer	to	click-hold-and-drag	in	order	to	highlight	some	text,	that’s	a	selection.
Most	browsers	have	default	styles	set	for	text	selection.	Authors	can	apply	a	limited	set	of	CSS	properties
to	such	selections,	overriding	the	browser’s	default	styles,	by	styling	the	::selection	pseudo-
element.	Let’s	say	you	want	selected	text	to	be	white	on	a	navy-blue	background.	The	CSS	for	that	would
look	like	this:

::selection	{color:	white;	background-color:	navy;}

The	primary	use	cases	for	::selection	are	when	you	want	to	specify	a	color	scheme	for	selected	text
that	doesn’t	clash	with	the	rest	of	the	design,	or	when	you	want	to	define	different	selection	styles	for
different	parts	of	a	document.	For	example:

::selection	{color:	white;	background-color:	navy;}

form::selection	{color:	silver;	background-color:	maroon;}

Be	careful	in	styling	selection	highlights:	users	generally	expect	text	they	select	to	look	a	certain	way,
usually	defined	by	settings	in	their	operating	system.	Thus,	if	you	get	too	clever	with	selection	styling,	you
could	confuse	users.	That	said,	if	you	know	that	selected	text	can	be	difficult	to	see	because	your	design’s
colors	tend	to	obscure	it,	defining	more	obvious	highlight	styles	is	probably	a	good	idea.

Note	that	selected	text	can	cross	element	boundaries,	and	that	there	can	be	multiple	selections	within	a
given	document.	Imagine	a	situation	where	a	user	selects	text	starting	from	the	middle	of	one	paragraph	to
the	middle	of	the	next.	In	effect,	each	paragraph	will	get	its	own	selection	pseudo-element	nested	inside,
and	selection	styling	will	be	handled	as	appropriate	for	the	context.	This	means	that,	given	the	following
CSS	and	HTML,	you’ll	get	a	result	like	that	shown	in	Figure	3-33.

.p1::selection	{color:	silver;	background-color:	black;}

.p2::selection	{color:	black;	background-color:	silver;}

<p	class="p1">This	is	a	paragraph	with	some	text	that	can	be	selected,	one	of	two.</p>

<p	class="p2">This	is	a	paragraph	with	some	text	that	can	be	selected,	two	of	two.</p>

Figure	3-33.	Selection	styling

This	underscores	a	point	made	earlier:	be	careful	with	your	selection	styling.	It	is	all	too	easy	to	make
text	unreadable	for	some	users,	particularly	if	your	selection	styles	interact	badly	with	the	user’s	default
selection	styles.

Furthermore,	you	can	only	apply	a	limited	number	of	CSS	properties	to	selections:	color,
background-color,	text-decoration	and	related	properties,	text-shadow,	and	the
stroke	properties	(in	SVG).

NOTE
As	of	early	2022,	selections	did	not	have	their	styles	inherited:	selecting	text	containing	some	inline	elements	would	apply	the	selection
styling	to	the	text	outside	the	inline	elements,	but	not	within	the	inline	elements.	It	is	not	clear	if	this	behavior	is	intended,	but	it	was
consistent	across	major	browsers.

Beyond	::selection,	there	will	likely	be	increasing	support	for	::target-text.	As	of	early
2022,	this	was	only	supported	in	Chromium	browsers,	which	introduced	a	feature	that	needs	it.	With	this
feature,	text	can	be	added	to	the	end	of	a	URL	as	part	of	the	fragment	identifier	for	highlighting,	in	order	to
draw	attention	to	one	or	more	parts	of	the	page.

For	example,	a	URL	might	look	something	like:
https://example.org/#:~:text=for%20use%20in%20illustrative%20examples.
The	part	at	the	end	says	to	the	browser,	“once	you’ve	loaded	the	page,	highlight	any	examples	of	this
text.”	The	text	is	encoded	for	use	in	URLs,	which	is	why	it’s	filled	with	%20	strings	—	they	represent
spaces.	The	result	will	look	something	like	Figure	3-34.

Figure	3-34.	Targeted	text	styling

If	you	wanted	to	suppress	this	content	highlighting	on	your	own	pages,	you	might	do	something	like	this:

::target-text	{color:	inherit;	background-color:	inherit;}

As	for	::spelling-error	and	::grammar-error,	these	are	meant	to	apply	highlighting	of	some
sort	to	any	spelling	or	grammar	errors	within	a	document.	You	can	see	the	utility	for	something	like
Google	Docs	or	the	editing	fields	of	content	management	systems	like	WordPress	or	Craft.	For	most	other
things,	though,	they	seem	unlikely	to	be	very	popular.	Regardless,	as	of	this	writing,	there	was	no	browser
support	for	either,	and	the	Working	Group	was	still	hashing	out	the	details	of	how	they	should	work.

The	backdrop	pseudo-element
Suppose	you	have	an	element	that’s	being	presented	full-screen,	like	a	video.	Furthermore,	suppose	that
element	doesn’t	neatly	fill	the	full	screen	all	the	way	to	the	edges,	perhaps	because	the	aspect	ratio	of	the
element	doesn’t	match	the	aspect	ratio	of	the	screen.	What	should	be	filled	in	for	the	parts	of	the	screen
where	the	element	doesn’t	reach?	And	how	would	you	do	select	that	non-element	region	with	CSS?

Enter	the	::backdrop	pseudo-element.	This	represents	a	box	that’s	the	exact	size	of	the	full-screen
viewport,	and	it	is	always	drawn	beneath	a	fullscreen	element.	So	you	might	put	a	dark-gray	backdrop
behind	any	fullscreen	video	like	this:

video::backdrop	{background:	#111;}

There	aren’t	any	restrictions	on	what	styles	can	be	applied	to	backdrops,	but	since	they’re	essentially
empty	boxes	placed	behind	a	fullscreen	element,	most	of	the	time,	you’ll	probably	be	setting	background
colors	or	images.

An	important	thing	to	remember	is	that	backdrops	do	not	participate	in	inheritance.	That	means	they	can’t
inherit	styles	from	ancestor	elements,	nor	do	they	pass	any	of	their	styles	on	to	any	children.	Whatever
styles	you	apply	to	the	backdrop	will	exist	in	their	own	little	pocket	universe.

The	video-cue	pseudo-element
On	the	subject	of	videos,	some	videos	can	have	WebVTT	(Web	Video	Text	Tracks)	data	containing	the
text	captions.	These	captions	are	known	as	cues,	and	can	be	styled	with	the	::cue	pseudo-element.

Let’s	say	you	have	a	video	that’s	mostly	dark,	with	a	few	light	segments.	You	might	then	style	the	cues	to
be	a	light-ish	gray	text	on	a	translucent	dark	background,	as	follows:

::cue	{

		color:	silver;

		background:	rgba(0,0,0,0.5);

}

This	will	always	apply	to	the	currently-visible	cue.

You	can	also	select	parts	of	individual	cues	using	a	selector	pattern	inside	parentheses.	This	can	be	used
to	style	specific	elements	defined	in	the	WebVTT	data,	drawn	from	a	small	list	allowed	by	the	WebVTT
specification.	For	example,	any	italicized	cue	text	could	be	selected	as	follows:

::cue(i)	{…}

It	is	possible	to	use	stuctural	pseudo-classes	like	:nth-child,	but	these	will	only	apply	within	a	given
cue,	not	across	cues.	That	is,	you	can’t	select	every	other	cue	for	styling,	but	you	can	select	every	other
element	within	a	given	cue.	Assume	the	following	WebVTT	data:

00:00:01.500	-->	00:00:02.999

<v	Hildy>Tell	me,	is	the	lord	of	the	universe	in?</v>

00:00:03.000	-->	00:00:04.299

-	Yes,	he's	in.

-	In	a	bad	humor.

In	the	second	cue,	there	are	two	lines	of	text.	These	are	treated	as	separate	elements,	in	effect,	even	though
no	elements	are	specified.	Thus,	we	could	make	“Hildy”’s	text	in	the	first	cue	boldface,	and	give	alternate
colors	to	the	two	lines	of	dialogue	in	the	second	cue,	like	so:

::cue(v[voice="Hildy"])	{font-weight:	bold;}

::cue(:nth-child(odd))	{color:	yellow;}

::cue(:nth-child(even))	{color:	white;}

As	of	early	2022,	there	is	a	limited	range	of	properties	that	can	be	applied	to	cues.	They	are:

color

background	and	its	associated	longhand	properties	(e.g.,	background-color)

text-decoration	and	its	associated	longhand	properties	(e.g.,	text-decoration-
thickness)

text-shadow

text-combine-upright

font	and	its	associated	longhand	proeprties	(e.g.,	font-weight)

ruby-position

opacity

visibility

white-space

outline	and	its	associated	longhand	properties	(e.g.,	outline-width)

Shadow	Pseudo-classes	and	-Elements
Another	recent	innovation	in	HTML	has	been	the	introduction	of	the	Shadow	DOM,	which	is	a	very	deep
and	complex	subject	we	don’t	have	the	space	to	explore	here.	At	a	very	basic	level,	the	Shadow	DOM
allows	developers	to	create	encapsulated	markup,	style,	and	scripting	within	the	regular	(or	“light”)
DOM.	This	keeps	the	styles	and	scripts	of	one	shadow	DOM	from	affecting	any	other	part	of	the

document,	whether	those	parts	are	in	the	light	or	shadow	DOM.

We’re	bringing	this	up	here	because	CSS	does	provide	ways	to	hook	into	Shadow	DOMs,	as	well	as	to
reach	up	from	within	a	shadow	DOM	to	select	the	piece	of	the	light	DOM	that	hosts	the	shadow.	(This	all
sounds	very	panel-van-artistic,	doesn’t	it?)

Shadow	pseudo-classes
To	see	what	this	means,	let’s	bring	back	the	combobox	example	from	earlier	in	the	chapter.	It	looked	like
this:

<mylib-combobox>options	go	here</mylib-combobox>

Now,	within	this	custom	element,	a	whole	set	of	scripting	and	CSS	could	be	attached.	These	scripts	and
styles	would	apply	only	within	the	mylib-combobox	element.	Even	if	the	CSS	says	something	like	li
{color:	red;},	that	will	only	apply	to	li	elements	constructed	within	the	mylib-combobox.	It
can’t	leak	out	to	turn	list	items	elsewhere	on	the	page	red.

That’s	all	good,	but	what	if	you	want	to	style	the	host	element	in	a	certain	way?	The	host	element,	more
generally	called	the	shadow	host,	is	in	this	case	mylib-combobox.	From	within	the	shadow	host,	CSS
can	select	the	host	using	the	:host	pseudo-class.	For	example:

:host	{border:	2px	solid	red;}

That	will	reach	up,	so	to	speak,	“pierce	through	the	shadow	boundary”	(to	use	an	evocative	phrase	from
the	specification),	and	select	the	mylib-combobox	element.

Now,	suppose	there	can	be	different	kinds	of	combo	boxes,	each	with	its	own	class.	Something	like	this:

<mylib-combobox	class="countries">options	go	here</mylib-combobox>

<mylib-combobox	class="regions">options	go	here</mylib-combobox>

<mylib-combobox	class="cities">options	go	here</mylib-combobox>

You	might	want	to	style	each	class	of	combocbox	differently.	For	that,	the	:host()	pseudo-class	exists.

:host(.countries)	{border:	2px	solid	red;}

:host(.regions)	{border:	1px	solid	silver;}

:host(.cities)	{border:	none;	background:	gray;}

These	rules	could	then	be	included	in	a	single	stylesheet	that’s	loaded	by	all	comboboxes,	using	the
presence	of	classes	on	the	shadow	hosts	to	style	as	appropriate.

But	wait!	What	if,	instead	of	latching	on	to	classes,	we	want	to	style	our	shadow	hosts	based	on	where
they	appear	in	the	light	DOM?	In	that	case,	:host-context()	has	you	covered.	Thus,	we	can	style
our	comboxes	one	way	if	they’re	part	of	a	form,	and	a	different	way	if	they’re	part	of	a	header	navigation
element.

:host-context(form)	{border:	2px	solid	red;}

:host-context(header	nav)	{border:	1px	solid	silver;}

The	first	of	these	means,	“if	the	shadow	host	is	the	descendant	of	a	form	element,	apply	these	styles.”
The	second	means,	“if	the	shadow	host	is	the	descendant	of	a	nav	element	that	is	itself	descended	from	a
header	element,	apply	these	styles.”	To	be	clear,	form	and	nav	are	not	the	shadow	hosts	in	these
situations!	The	selector	in	:host-context()	is	only	described	the	context	in	which	the	host	needs	to
be	placed	in	order	to	be	selected.

NOTE
As	of	early	2022,	:host-context()	wasn’t	supported	by	the	Firefox	family.

Shadow	pseudo-elements
In	addition	to	having	hosts,	Shadow	DOMs	can	also	define	slots.	These	are	elements	that	are	meant	to
have	other	things	slotted	into	them,	much	as	you	would	place	an	expansion	card	into	an	expansion	slot.
Let’s	expand	the	markup	of	the	combobox	by	a	little	bit.

<mylib-combobox>

					Country

					["shadow-tree"]

										<slot	name="label"></slot>

					[/"shadow	tree"]

</mylib-combobox>

Now,	to	be	clear,	the	"shadow	tree"	thing	there	isn’t	actual	markup.	It’s	just	there	to	represent	the
shadow	DOM	that	gets	constructed	by	whatever	script	builds	it.	So	please	don’t	go	writing	square-
bracketed	quoted	element	names	into	your	documents:	they	will	fail.

That	said,	given	a	setup	like	the	above,	the	span	would	be	slotted	into	the	slot	element,	because	the
names	match.	You	could	try	applying	styles	to	the	slot,	but	what	if	you’d	rather	style	the	thing	that	got
plugged	into	the	slot?	That’s	represented	by	the	::slotted()	pseudo-element,	which	accepts	a
selector	as	needed.

Thus,	if	you	want	to	style	all	slotted	elements	one	way	and	then	add	some	extra	style	if	the	slotted	element
is	a	span,	you	would	write	something	like:

::slotted(*)	{outline:	2px	solid	red;}

::slotted(span)	{font-style-italic;}

More	practically,	you	could	style	all	slots	red,	and	then	remove	that	red	from	any	slot	that’s	been	slotted
with	content,	thus	making	the	slots	that	failed	to	get	any	content	stand	out.	Something	like	this:

slot	{color:	red;}

::slotted(*)	{color:	black;}

WARNING
The	Shadow	DOM	and	its	use	is	a	complex	topic,	and	one	which	we	have	not	even	begun	to	scratch	the	surface	of	in	this	section.	Our	only
goal	was	to	introduce	the	pseudo-classes	and	-elements	that	pertain	to	the	Shadow	DOM,	not	explain	the	Shadow	DOM	or	illustrate	best
practices.

Summary
As	we	saw	in	this	chapter,	pseudo-classes	and	pseudo-elements	bring	a	whole	lot	of	power	and	flexibility
to	the	table.	Whether	selecting	hyperlinks	based	on	their	visited	state,	matching	elements	based	on	their
placement	in	the	document	structure,	or	styling	pieces	of	the	Shadow	DOM,	there’s	a	pseudo	selector	for
nearly	every	taste.

In	this	chapter	and	the	last	one,	we’ve	mentioned	the	concepts	of	“specificity”	and	“the	cascade”	a	few
times,	and	promised	to	talk	about	them	soon.	Well,	“soon”	is	now:	That’s	exactly	what	we’ll	do	in	the
next	chapter.

Chapter	4.	Specificity,	Inheritance,	and	the
Cascade

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	4th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

Chapter	2	showed	how	document	structure	and	CSS	selectors	allow	you	to	apply	a	wide	variety	of	styles
to	elements.	Knowing	that	every	valid	document	generates	a	structural	tree,	you	can	create	selectors	that
target	elements	based	on	their	ancestors,	attributes,	sibling	elements,	and	more.	The	structural	tree	is	what
allows	selectors	to	function	and	is	also	central	to	a	similarly	crucial	aspect	of	CSS:	inheritance.

Inheritance	is	the	mechanism	by	which	some	property	values	are	passed	on	from	an	element	to	a
descendant	element.	When	determining	which	values	should	apply	to	an	element,	a	user	agent	must
consider	not	only	inheritance	but	also	the	specificity	of	the	declarations,	as	well	as	the	origin	of	the
declarations	themselves.	This	process	of	consideration	is	what’s	known	as	the	cascade.

We	will	explore	the	interrelation	between	these	three	mechanisms—specificity,	inheritance,	and	the
cascade—in	this	chapter,	but	the	difference	between	the	latter	two	can	be	summed	up	this	way:	looking	at
h1	{color:	red;	color:	blue;}	and	making	the	h1	blue	happens	because	of	the	cascade;	and
a	span	inside	the	h1	also	being	blue	happens	because	of	inheritance.

Above	all,	regardless	of	how	abstract	things	may	seem,	keep	going!	Your	perseverance	will	be	rewarded.

Specificity
You	know	from	Chapter	2	that	you	can	select	elements	using	a	wide	variety	of	means.	In	fact,	it	often
happens	that	the	same	element	is	selected	by	two	or	more	rules,	each	with	its	own	selector.	Let’s	consider
the	following	three	pairs	of	rules.	Assume	that	each	pair	will	match	the	same	element:

h1	{color:	red;}

body	h1	{color:	green;}

h2.grape	{color:	purple;}

h2	{color:	silver;}

mailto:rfernando@oreilly.com

html	>	body	table	tr[id="totals"]	td	ul	>	li	{color:	maroon;}

li#answer	{color:	navy;}

Only	one	of	the	two	rules	in	each	pair	can	be	applied,	or	“win,”	since	the	matched	elements	can	be	only
one	color	or	the	other.	How	do	we	know	which	one	will	win?

The	answer	is	found	in	the	specificity	of	each	selector.	For	every	rule,	the	user	agent	(i.e.,	a	web
browser)	evaluates	the	specificity	of	the	selector	and	attaches	the	specificity	to	each	declaration	in	the
rule	within	the	cascade	layer	that	has	precedence.	When	an	element	has	two	or	more	conflicting	property
declarations,	the	one	with	the	highest	specificity	will	win	out.

NOTE
This	isn’t	the	whole	story	in	terms	of	conflict	resolution,	which	is	a	bit	more	complicated	than	a	single	paragraph	can	cover.	For	now,	just
keep	in	mind	that	selector	specificity	is	only	compared	to	other	selectors	that	share	the	same	origin	and	cascade	layer.	We’ll	cover	those
terms,	and	more,	a	bit	later	in	this	chapter	(in	“The	Cascade”).

A	selector’s	specificity	is	determined	by	the	components	of	the	selector	itself.	A	specificity	value	can	be
expressed	in	three	parts,	like	this:	0,0,0.	The	actual	specificity	of	a	selector	is	determined	as	follows:

For	every	ID	attribute	value	given	in	the	selector,	add	1,0,0.

For	every	class	attribute	value,	attribute	selection,	or	pseudo-class	given	in	the	selector,	add
0,1,0.

For	every	element	and	pseudo-element	given	in	the	selector,	add	0,0,1.

Combinators	do	not	contribute	anything	to	the	specificity.

Anything	listed	inside	a	:where()	pseudo-class,	and	the	universal	selector,	adds	0,0,0.	(While
they	do	not	contribute	anything	to	the	specificity	weight,	they	do	match	elements,	unlike
combinators.)

The	specificity	of	an	:is(),	:not(),	or	:has()	pseudo-class	is	equal	to	the	specificity	of	the
most	specific	selector	in	its	selector	list	argument.

For	example,	the	following	rules’	selectors	result	in	the	indicated	specificities:

h1	{color:	red;}																					/*	specificity	=	0,0,1	*/

p	em	{color:	purple;}																/*	specificity	=	0,0,2	*/

.grape	{color:	purple;}														/*	specificity	=	0,1,0	*/

.bright	{color:	yellow;}												/	specificity	=	0,1,0	*/

p.bright	em.dark	{color:	maroon;}				/*	specificity	=	0,2,2	*/

#id216	{color:	blue;}																/*	specificity	=	1,0,0	*/

:is(aside#warn,	code)	{color:	red;}	/	specificity	=	1,0,1	*/

div#sidebar	*[href]	{color:	silver;}	/*	specificity	=	1,1,1	*/

Given	a	case	where	an	em	element	is	matched	by	both	the	second	and	fifth	rules	in	this	example,	that
element	will	be	maroon	because	the	sixth	rule’s	specificity	outweighs	the	second’s.

Take	special	note	of	the	next-last	selector,	*:is(aside#warn,	code).	The	:is()	pseudo-class	is
one	of	a	small	group	of	pseudo-classes	where	the	specificity	is	equal	to	the	most	specific	selector	in	the
selector	list.	Here,	the	selector	list	was	aside#warn,	code.	The	aside#warn	compound	selector
has	a	specificity	of	1,0,1	and	the	code	selector	has	a	specificity	of	0,0,1.	Thus,	the	whole	:is()
portion	of	the	selector	is	set	to	the	specificity	of	the	aside#warn	selector.

Now,	let’s	return	to	the	pairs	of	rules	from	earlier	in	the	section	and	fill	in	the	specificities:

h1	{color:	red;}									/*	0,0,1	*/

body	h1	{color:	green;}		/*	0,0,2	(winner)*/

h2.grape	{color:	purple;}		/*	0,1,1	(winner)	*/

h2	{color:	silver;}								/*	0,0,1	*/

html	>	body	table	tr[id="totals"]	td	ul	>	li	{color:	maroon;}		/*	0,1,7	*/

li#answer	{color:	navy;}																																							/*	1,0,1

			(winner)	*/

We’ve	indicated	the	winning	rule	in	each	pair;	in	each	case,	it’s	because	the	specificity	is	higher.	Notice
how	they’re	listed,	and	that	the	order	the	rules	are	in	doesn’t	actually	matter	here.

In	the	second	pair,	the	selector	h2.grape	wins	because	it	has	an	extra	class:	0,1,1	beats	out	0,0,1.
In	the	third	pair,	the	second	rule	wins	because	1,0,1	wins	out	over	0,1,7.	In	fact,	the	specificity	value
0,1,0	would	win	out	over	the	value	0,0,13.

This	happens	because	the	values	are	compared	from	left	to	right.	A	specificity	of	1,0,0	will	win	out
over	any	specificity	that	begins	with	a	0,	no	matter	what	the	rest	of	the	numbers	might	be.	So	1,0,1	wins
over	0,1,7	because	the	1	in	the	first	value’s	first	position	beats	the	0	in	the	second	value’s	first
position.

Declarations	and	Specificity
Once	the	specificity	of	a	selector	has	been	determined,	the	specificity	value	will	be	conferred	on	all	of	its
associated	declarations.	Consider	this	rule:

h1	{color:	silver;	background:	black;}

For	specificity	purposes,	the	user	agent	must	treat	the	rule	as	if	it	were	“ungrouped”	into	separate	rules.
Thus,	the	previous	example	would	become:

h1	{color:	silver;}

h1	{background:	black;}

Both	have	a	specificity	of	0,0,1,	and	that’s	the	value	conferred	on	each	declaration.	The	same	splitting-
up	process	happens	with	a	grouped	selector	as	well.	Given	the	rule:

h1,	h2.section	{color:	silver;	background:	black;}

the	user	agent	treats	it	if	it	were	the	following:

h1	{color:	silver;}													/*	0,0,1	*/

h1	{background:	black;}									/*	0,0,1	*/

h2.section	{color:	silver;}					/*	0,1,1	*/

h2.section	{background:	black;}	/*	0,1,1	*/

This	becomes	important	in	situations	where	multiple	rules	match	the	same	element	and	some	of	the
declarations	clash.	For	example,	consider	these	rules:

h1	+	p	{color:	black;	font-style:	italic;}														/*	0,0,2	*/

p	{color:	gray;	background:	white;	font-style:	normal;}	/*	0,0,1	*/

.callout	{color:	black;	background:	silver;}											/	0,1,0	*/

When	applied	to	the	following	markup,	the	content	will	be	rendered	as	shown	in	Figure	4-1:

<h1>Greetings!</h1>

<p	class="callout">

It's	a	fine	way	to	start	a	day,	don't	you	think?

</p>

<p>

There	are	many	ways	to	greet	a	person,	but	the	words	are	not	as	important

as	the	act	of	greeting	itself.

</p>

<h1>Salutations!</h1>

<p>

There	is	nothing	finer	than	a	hearty	welcome	from	one's	neighbor.

</p>

<p	class="callout">

Although	a	steaming	pot	of	fresh-made	jambalaya	runs	a	close	second.

</p>

Figure	4-1.	How	different	rules	affect	a	document

In	every	case,	the	user	agent	determines	which	rules	match	a	given	element,	calculates	all	of	the
associated	declarations	and	their	specificities,	determines	which	rules	win	out,	and	then	applies	the

winners	to	the	element	to	get	the	styled	result.	These	machinations	must	be	performed	on	every	element,
selector,	and	declaration.	Fortunately,	the	user	agent	does	it	all	automatically,	and	nearly	instantly.	This
behavior	is	an	important	component	of	the	cascade,	which	we’ll	discuss	later	in	this	chapter.

Resolving	multiple	matches
When	an	element	is	matched	by	more	than	one	selector	in	a	grouped	selector,	the	most	specific	selector	is
used.	Consider	the	following	CSS:

li,												/*	0,0,1	*/

.quirky,							/*	0,1,0	*/

#friendly,					/*	1,0,0	*/

li.happy.happy.happy#friendly	{	/*	1,3,1	*/

			color:	blue;

}

Here	we	have	one	rule	with	a	grouped	selector,	and	each	of	the	individual	selectors	has	a	very	different
specificity.	Now	suppose	we	find	this	in	our	HTML:

<li	class="happy	quirky"	id="friendly">This	will	be	blue.

Every	one	of	the	selectors	in	the	grouped	selector	applies	to	the	list	item!	Which	one	is	used	for
specificity	purposes?	The	most	specific.	Thus,	in	this	example,	the	blue	is	applied	with	a	specificity	of
1,3,1.

You	might	have	noticed	that	we	repeated	the	happy	class	name	three	times	in	one	of	the	selectors.	This	is
a	bit	of	hack	that	can	be	used	with	classes,	attributes,	pseudo-classes	and	even	ID	selectors	to	increase
specificity.	Do	be	careful	with	it,	since	artifically	inflating	specificity	can	create	problems	in	the	future:
you	might	want	to	override	that	rule	with	another,	and	that	rule	will	need	even	more	classes	chained
together.

Zeroed	Selector	Specificity
The	universal	selector	does	not	contribute	to	specificity.	In	other	words,	it	has	a	specificity	of	0,0,0,
which	is	different	than	having	no	specificity	(as	we’ll	discuss	in	“Inheritance”).	Therefore,	given	the
following	two	rules,	a	paragraph	descended	from	a	div	will	be	black,	but	all	other	elements	will	be
gray:

div	p	{color:	black;}	/*	0,0,2	*/

*	{color:	gray;}						/*	0,0,0	*/

This	means	the	specificity	of	a	selector	that	contains	a	universal	selector	along	with	other	selectors	is	not
changed	by	the	presence	of	the	universal	selector.	The	following	two	selectors	have	exactly	the	same
specificity:

div	p									/*	0,0,2	*/

body	*	strong	/*	0,0,2	*/

The	same	is	true	for	the	:where()	pseudo-class,	regardless	of	whatever	selectors	might	be	in	its
selector	list.	Thus,	:where(aside#warn,	code)	has	a	specificity	of	0,0,0.

Combinators,	including	~,	>,	+,	and	the	space	character,	have	no	specificity	at	all—not	even	zero
specificity.	Thus,	they	have	no	impact	on	a	selector’s	overall	specificity.

ID	and	Attribute	Selector	Specificity
It’s	important	to	note	the	difference	in	specificity	between	an	ID	selector	and	an	attribute	selector	that
targets	an	id	attribute.	Returning	to	the	third	pair	of	rules	in	the	example	code,	we	find:

html	>	body	table	tr[id="totals"]	td	ul	>	li	{color:	maroon;}	/*	0,1,7	*/

li#answer	{color:	navy;}																																						/*	1,0,1	(wins)	*/

The	ID	selector	(#answer)	in	the	second	rule	contributes	1,0,0	to	the	overall	specificity	of	the
selector.	In	the	first	rule,	however,	the	attribute	selector	([id="totals"])	contributes	0,1,0	to	the
overall	specificity.	Thus,	given	the	following	rules,	the	element	with	an	id	of	meadow	will	be	green:

#meadow	{color:	green;}						/*	1,0,0	*/

[id="meadow"]	{color:	red;}	/	0,1,0	*/

Importance
Sometimes,	a	declaration	is	so	important	that	it	outweighs	all	other	considerations.	CSS	calls	these
important	declarations	(for	hopefully	obvious	reasons)	and	lets	you	mark	them	by	inserting	the	flag
!important	just	before	the	terminating	semicolon	in	a	declaration:

p.dark	{color:	#333	!important;	background:	white;}

Here,	the	color	value	of	#333	is	marked	with	the	!important	flag,	whereas	the	background	value	of
white	is	not.	If	you	wish	to	mark	both	declarations	as	important,	each	declaration	needs	its	own
!important	flag:

p.dark	{color:	#333	!important;	background:	white	!important;}

You	must	place	the	!important	flag	correctly,	or	the	declaration	may	be	invalidated.	!important
always	goes	at	the	end	of	a	declaration,	just	before	the	semicolon.	This	placement	is	especially	critical
when	it	comes	to	properties	that	allow	values	containing	multiple	keywords,	such	as	font:

p.light	{color:	yellow;	font:	smaller	Times,	serif	!important;}

If	!important	were	placed	anywhere	else	in	the	font	declaration,	the	entire	declaration	would	likely
be	invalidated	and	none	of	its	styles	applied.

NOTE
We	realize	that	to	those	of	you	who	come	from	a	programming	background,	the	syntax	of	this	token	instinctively	translates	to	“not
important.”	For	whatever	reason,	the	bang	(!)	was	chosen	as	the	delimiter	for	important	flags,	and	it	does	not	mean	“not”	in	CSS,	no
matter	how	many	other	languages	give	it	that	very	meaning.	This	association	is	unfortunate,	but	we’re	stuck	with	it.

Declarations	that	are	marked	!important	do	not	have	a	special	specificity	value,	but	are	instead
considered	separately	from	non-important	declarations.	In	effect,	all	!important	declarations	are
grouped	together,	and	specificity	conflicts	are	resolved	relatively	within	that	group.	Similarly,	all	non-
important	declarations	are	considered	as	a	group,	with	any	conflicts	within	the	non-important	group
resolved	via	the	cascade,	of	which	specificity	is	a	part.	Thus,	in	any	case	where	an	important	and	a	non-
important	declaration	conflict,	an	important	declaration	will	always	win	(unless	the	user	agent	or	user
have	declared	the	same	property	as	important,	which	we’ll	see	later	in	the	chapter.)

Figure	4-2	illustrates	the	result	of	the	following	rules	and	markup	fragment:

h1	{font-style:	italic;	color:	gray	!important;}

.title	{color:	black;	background:	silver;}

*	{background:	black	!important;}

<h1	class="title">NightWing</h1>

Figure	4-2.	Important	rules	always	win

WARNING
It’s	generally	bad	practice	to	use	!important	in	your	CSS,	and	it	is	rarely	needed.	If	you	find	yourself	reaching	for	!important,	stop
and	look	for	other	ways	to	get	the	same	result	without	using	!important.	Cascade	Layers	are	one	such	possibility;	see	“Sorting	by
Cascade	Layer”	for	more	details.

Inheritance
Another	key	concept	in	understanding	how	styles	are	applied	to	elements	is	inheritance.	Inheritance	is	the
mechanism	by	which	some	styles	are	applied	not	only	to	a	specified	element,	but	also	to	its	descendants.
If	a	color	is	applied	to	an	h1	element,	for	example,	then	that	color	is	applied	to	all	text	inside	the	h1,
even	the	text	enclosed	within	child	elements	of	that	h1:

h1	{color:	gray;}

<h1>Meerkat	Central</h1>

Both	the	ordinary	h1	text	and	the	em	text	are	colored	gray	because	the	em	element	inherits	the	value	of

color	from	the	h1.	If	property	values	could	not	be	inherited	by	descendant	elements,	the	em	text	would
be	black,	not	gray,	and	we’d	have	to	color	the	elements	separately.

Consider	an	unordered	list.	Let’s	say	we	apply	a	style	of	color:	gray;	for	ul	elements:

ul	{color:	gray;}

We	expect	that	style	applied	to	a	ul	will	also	be	applied	to	its	list	items,	and	also	to	any	content	of	those
list	items,	including	the	marker	(i.e.,	the	“bullet”	next	to	each	list	item).	Thanks	to	inheritance,	that’s
exactly	what	happens,	as	Figure	4-3	demonstrates.

Figure	4-3.	Inheritance	of	styles

It’s	easier	to	see	how	inheritance	works	by	turning	to	a	tree	diagram	of	a	document.	Figure	4-4	shows	the
tree	diagram	for	a	document	much	like	the	very	simple	document	shown	in	Figure	4-3.

Figure	4-4.	A	simple	tree	diagram

When	the	declaration	color:	gray;	is	applied	to	the	ul	element,	that	element	takes	on	that
declaration.	The	value	is	then	propagated	down	the	tree	to	the	descendant	elements	and	continues	on	until
there	are	no	more	descendants	to	inherit	the	value.	Values	are	never	propagated	upward;	that	is,	an
element	never	passes	values	up	to	its	ancestors.

NOTE
There	is	a	notable	exception	to	the	upward	propagation	rule	in	HTML:	background	styles	applied	to	the	body	element	can	be	passed	to	the
html	element,	which	is	the	document’s	root	element	and	therefore	defines	its	canvas.	This	only	happens	if	the	body	element	has	a
defined	background	and	the	html	element	does	not.	There	are	a	few	other	properties	that	share	this	body-to-root	behavior,	such	as
overflow,	but	it	only	happens	with	the	body	element.	There	are	no	other	elements	that	risk	inheriting	properties	from	a	descendant.

Inheritance	is	one	of	those	things	about	CSS	that	is	so	basic	that	you	almost	never	think	about	it	unless	you
have	to.	However,	you	should	still	keep	a	couple	of	things	in	mind.

First,	note	that	many	properties	are	not	inherited—generally	in	order	to	avoid	undesirable	outcomes.	For
example,	the	property	border	(which	is	used	to	set	borders	on	elements)	does	not	inherit.	A	quick

glance	at	Figure	4-5	reveals	why	this	is	the	case.	If	borders	were	inherited,	documents	would	become
much	more	cluttered—unless	the	author	took	the	extra	effort	to	turn	off	the	inherited	borders.

Figure	4-5.	Why	borders	aren’t	inherited

As	it	happens,	most	of	the	box-model	properties—including	margins,	padding,	backgrounds,	and	borders
—are	not	inherited	for	the	same	reason.	After	all,	you	likely	wouldn’t	want	all	of	the	links	in	a	paragraph
to	inherit	a	30-pixel	left	margin	from	their	parent	element!

Second,	inherited	values	have	no	specificity	at	all,	not	even	zero	specificity.	This	seems	like	an	academic
distinction	until	you	work	through	the	consequences	of	the	lack	of	inherited	specificity.	Consider	the
following	rules	and	markup	fragment	and	compare	them	to	the	result	shown	in	Figure	4-6:

*	{color:	gray;}

h1#page-title	{color:	black;}

<h1	id="page-title">Meerkat	Central</h1>

<p>

Welcome	to	the	best	place	on	the	web	for	meerkat	information!

</p>

Figure	4-6.	Zero	specificity	defeats	no	specificity

Since	the	universal	selector	applies	to	all	elements	and	has	zero	specificity,	its	color	declaration’s	value
of	gray	wins	out	over	the	inherited	value	of	black,	which	has	no	specificity	at	all.	(And	now	you	may
understand	why	we	listed	:where()	and	the	universal	selector	as	having	0,0,0	specificity:	they	add
no	weight,	but	do	match	elements.)	Therefore,	the	em	element	is	rendered	gray	instead	of	black.

This	example	vividly	illustrates	one	of	the	potential	problems	of	using	the	universal	selector
indiscriminately.	Because	it	can	match	any	element	or	pseudo-element,	the	universal	selector	often	has	the
effect	of	short-circuiting	inheritance.	This	can	be	worked	around,	but	it’s	usually	more	sensible	to	avoid
the	problem	in	the	first	place	by	not	using	the	universal	selector	by	itself	indiscriminately.

The	complete	lack	of	specificity	for	inherited	values	is	not	a	trivial	point.	For	example,	assume	that	a
style	sheet	has	been	written	such	that	all	text	in	a	“toolbar”	is	to	be	white	on	black:

#toolbar	{color:	white;	background:	black;}

This	will	work	so	long	as	the	element	with	an	id	of	toolbar	contains	nothing	but	plain	text.	If,

however,	the	text	within	this	element	is	all	hyperlinks	(a	elements),	then	the	user	agent’s	styles	for
hyperlinks	will	take	over.	In	a	web	browser,	this	means	they’ll	likely	be	colored	blue,	since	the
browser’s	internal	style	sheet	probably	contains	an	entry	like	this:

a:link	{color:	blue;}

To	overcome	this	problem,	you	must	declare	something	like	this:

#toolbar	{color:	white;	background:	black;}

#toolbar	a:any-link	{color:	white;}

By	targeting	a	rule	directly	at	the	a	elements	within	the	toolbar,	you’ll	get	the	result	shown	in	Figure	4-7.

Figure	4-7.	Directly	assigning	styles	to	the	relevant	elements

Another	way	to	get	the	same	result	is	to	use	the	value	inherit,	covered	in	the	next	chapter.	We	can	alter
the	previous	example	like	so:

#toolbar	{color:	white;	background:	black;}

#toolbar	a:link	{color:	inherit;}

This	also	leads	to	the	result	shown	in	Figure	4-7,	because	the	value	of	color	is	explicitly	inherited
thanks	to	an	assigned	rule	whose	selector	has	specificity.

The	Cascade
Throughout	this	chapter,	we’ve	skirted	one	rather	important	issue:	what	happens	when	two	rules	of	equal
specificity	apply	to	the	same	element?	How	does	the	browser	resolve	the	conflict?	For	example,	consider
the	following	rules:

h1	{color:	red;}

h1	{color:	blue;}

Which	one	wins?	Both	have	a	specificity	of	0,0,1,	so	they	have	equal	weight	and	should	both	apply.
That	can’t	be	the	case	because	the	element	can’t	be	both	red	and	blue.	So	which	will	it	be?

At	last,	the	name	“Cascading	Style	Sheets”	comes	into	focus:	CSS	is	based	on	a	method	of	causing	styles
to	cascade	together,	which	is	made	possible	by	combining	inheritance	and	specificity	with	a	few	rules.
The	cascade	rules	for	CSS	are:

1.	 Find	all	rules	containing	a	selector	that	matches	a	given	element.

2.	 Sort	all	declarations	applying	to	the	given	element	by	explicit	weight.

3.	 Sort	all	declarations	applying	to	the	given	element	by	origin.	There	are	three	basic	origins:	author,
reader,	and	user	agent.	Under	normal	circumstances,	the	author’s	styles	win	out	over	the	reader’s

styles,	and	both	author	and	reader	styles	override	the	user	agent’s	default	styles.	This	is	reversed	for
rules	marked	!important,	where	user	agent	styles	override	author	styles,	and	both	ovedrride
reader	styles.

4.	 Sort	all	declarations	applying	to	the	given	element	by	encapsulation	context.	If	a	style	is	assigned
via	a	shadow	DOM	(Document	Object	Model),	for	example,	it	has	an	encapsulation	context	for	all
elements	within	that	same	shadow	DOM,	and	does	not	apply	to	elements	outside	that	shadow	DOM.
This	allows	encapsulated	styles	to	override	styles	that	are	inherited	from	outside	the	shadow	DOM.

5.	 Sort	all	declarations	by	whether	or	not	they	are	element-attached.	Styles	assigned	via	a	style
attribute	are	element-attached.	Styles	assigned	from	a	stylesheet,	whether	external	or	embedded,	are
not.

6.	 Sort	all	declarations	by	cascade	layer.	For	normal-weight	styles,	the	later	a	cascade	layer	first
appears	in	the	CSS,	the	greater	the	precedence.	Styles	without	a	layer	are	considered	to	be	part	of	a
“default”	pseudo-layer,	one	which	has	higher	precedence	than	styles	in	explicitly-created	layers.	For
important-weight	styles,	the	earlier	a	cascade	layer	appears	in	the	CSS,	the	higher	the	weight,	and
all	important-weight	styles	in	explicitly-created	layers	win	out	over	styles	in	the	default	layer,
important	or	otherwise.	Cascade	layers	can	appear	in	any	origin.

7.	 Sort	all	declarations	applying	to	the	given	element	by	specificity.	Those	elements	with	a	higher
specificity	have	more	weight	than	those	with	lower	specificity.

8.	 Sort	all	declarations	applying	to	the	given	element	by	order	of	appearance.	The	later	a	declaration
appears	in	the	style	sheet	or	document,	the	more	weight	it	is	given.	Declarations	that	appear	in	an
imported	style	sheet	are	considered	to	come	before	all	declarations	within	the	style	sheet	that
imports	them.

To	be	clear	about	how	this	all	works,	let’s	consider	some	examples	that	illustrate	the	some	of	the	cascade
rules.

Sorting	by	Importance	and	Origin
If	two	rules	apply	to	an	element,	and	one	is	marked	!important,	the	important	rule	wins	out:

p	{color:	gray	!important;}

<p	style="color:	black;">Well,	hello	there!</p>

Despite	the	fact	that	there	is	a	color	assigned	in	the	style	attribute	of	the	paragraph,	the	!important
rule	wins	out,	and	the	paragraph	is	gray.	This	occurs	because	sorting	by	!important	has	higher
precedence	that	sorting	by	element-attached	styles	(style="").	The	gray	is	inherited	by	the	em	element
as	well.

Note	that	if	an	!important	is	added	to	the	inline	style	in	this	situation,	then	it	will	be	the	winner.	Thus,
given	the	following,	the	paragraph	(and	its	descendant	element)	will	be	black:

p	{color:	gray	!important;}

<p	style="color:	black	!important;">Well,	hello	there!</p>

In	situations	where	the	importance	is	the	same,	the	origin	of	a	rule	is	considered.	If	an	element	is	matched
by	normal	styles	in	both	the	author’s	style	sheet	and	the	reader’s	style	sheet,	then	the	author’s	styles	are
used.	For	example,	assume	that	the	following	styles	come	from	the	indicated	origins:

p	em	{color:	black;}				/*	author's	style	sheet	*/

p	em	{color:	yellow;}			/*	reader's	style	sheet	*/

In	this	case,	emphasized	text	within	paragraphs	is	colored	black,	not	yellow,	because	the	author	styles	win
out	over	the	reader	styles.	However,	if	both	rules	are	marked	!important,	the	situation	changes:

p	em	{color:	black	!important;}				/*	author's	style	sheet	*/

p	em	{color:	yellow	!important;}			/*	reader's	style	sheet	*/

Now	the	emphasized	text	in	paragraphs	will	be	yellow,	not	black.

As	it	happens,	the	user	agent’s	default	styles—which	are	often	influenced	by	the	user	preferences—are
figured	into	this	step.	The	default	style	declarations	are	the	least	influential	of	all.	Therefore,	if	an	author-
defined	rule	applies	to	anchors	(e.g.,	declaring	them	to	be	white),	then	this	rule	overrides	the	user
agent’s	defaults.

To	sum	up,	there	are	eight	basic	levels	to	consider	in	terms	of	declaration	precedence.	In	order	of	most	to
least	precedence,	these	are:

1.	 Transition	declarations	(see	XREF	HERE)

2.	 User	agent	important	declarations

3.	 Reader	important	declarations

4.	 Author	important	declarations

5.	 Animation	declarations	(see	XREF	HERE)

6.	 Author	normal	declarations

7.	 Reader	normal	declarations

8.	 User	agent	declarations

Thus,	a	transition	style	will	override	all	other	rules,	regardless	of	whether	those	other	rules	are	marked
!important	or	from	what	origin	the	rules	come.

Sorting	by	Element	Attachment
Styles	can	be	attached	to	an	element	using	a	markup	attribute	such	as	style.	These	are	called	element-

attached	styles,	and	they	are	only	outweighed	by	considerations	of	origin	and	weight.

To	understand	this,	consider	the	following	rule	and	markup	fragment:

h1	{color:	red;}

<h1	style="color:	green;">The	Meadow	Party</h1>

Given	that	the	rule	is	applied	to	the	h1	element,	you	would	still	probably	expect	the	text	of	the	h1	to	be
green.	This	happens	because	every	inline	declaration	is	element-attached,	and	so	has	a	higher	weight	than
styles	that	aren’t	element	attached,	like	the	color:	red	rule.

This	means	that	even	elements	with	id	attributes	that	match	a	rule	will	obey	the	inline	style	declaration.
Let’s	modify	the	previous	example	to	include	an	id:

h1#meadow	{color:	red;}

<h1	id="meadow"	style="color:	green;">The	Meadow	Party</h1>

Thanks	to	the	inline	declaration’s	weight,	the	text	of	the	h1	element	will	still	be	green.

Just	remember	that	inline	styles	are	generally	a	bad	practice,	so	try	not	to	use	them	if	at	all	possible.

Sorting	by	Cascade	Layer
Cascade	layers	allow	authors	to	group	styles	together	so	that	they	share	a	precedence	level	within	the
cascade.	This	might	sound	like	!important,	and	in	some	ways	they	are	similar	—	but	in	others,	very
different.	This	is	easier	to	demonstrate	than	it	is	to	describe.	The	ability	to	create	cascade	layers	means
authors	can	balance	various	needs,	such	as	the	needs	of	a	component	library,	against	the	needs	of	a
specific	page	or	part	of	a	web	app.

NOTE
Cascade	layers	were	introduced	to	CSS	at	the	end	of	2021,	so	browser	support	for	them	will	only	exist	in	browsers	released	from	that	point
forward.

If	conflicting	declarations	apply	to	an	element	and	they	all	have	the	same	explicit	weight	and	origin,	and
none	are	element-attached,	they	are	next	sorted	by	cascade	layer.	The	order	of	precedence	for	layers	is	set
by	the	order	in	which	the	layers	are	first	declared	or	used,	with	later	declared	layers	taking	precedence
over	earlier	declared	layers	for	normal	styles.	Thus,	given	the	following:

@layer	site	{

					h1	{color:	red;}

}

@layer	page	{

					h1	{color:	blue;}

}

…then	h1	elements	will	be	colored	blue.	This	is	because	the	page	layer	comes	later	in	the	CSS	than	the
site	layer,	and	so	has	higher	precedence.)

Any	style	not	part	of	a	named	cascade	layer	is	assigned	to	an	implicit	“default”	layer,	one	which	has
higher	precedence	than	any	named	layer	for	non-important	rules.	Suppose	we	alter	the	previous	example
as	follows:

h1	{color:	maroon;}

@layer	site	{

					h1	{color:	red;}

}

@layer	page	{

					h1	{color:	blue;}

}

h1	elements	will	now	be	maroon-colored,	because	the	implicit	“default”	layer	to	which	the	h1
{color:	maroon;}	belongs	has	higher	precedence	than	any	named	layer.

It	is	also	possible	to	define	a	specific	precedence	order	for	named	cascade	layers.	Consider	the	following
CSS:

@layer	site,	page;

@layer	page	{

			h1	{color:	blue;}

}

@layer	site	{

			h1	{color:	red;}

}

Here,	the	first	line	defines	an	order	of	precedence	for	the	layers:	the	page	layer	will	be	given	higher
precedence	than	site	layer	for	normal-weight	rules	like	those	shown	in	the	example.	Thus,	in	this	case,
h1	elements	will	be	blue,	because	when	the	layers	were	sorted,	page	was	given	more	precedence	than
site.	For	important-flagged	rules,	the	order	of	precedence	is	reversed.	Thus,	if	both	rules	were	marked
!important,	the	precedence	would	flip:	in	that	case,	h1	elements	would	be	red.

Let’s	talk	a	little	bit	more	about	how	cascade	layers	specifically	work,	especially	since	they’re	so	new	to
CSS.	Let’s	say	you	want	to	define	three	layers:	one	for	the	basic	site	styles,	one	for	individual	page	styles,
one	for	a	component	library	whose	styles	are	imported	from	an	external	stylesheet.	The	CSS	might	look
like	this:

@layer	site,	page;

@import	url(/assets/css/components.css)	layer(components);

This	ordering	will	have	normal-weight	components	styles	override	page	and	site	normal-weight
styles,	whereas	normal-weight	page	styles	will	only	override	site	normal-weight	styles.	Conversely,
important	site	styles	will	override	all	page	and	components	styles,	whether	they’re	important	or
normal-weight,	and	page	important	styles	will	override	all	components	styles.

Here’s	a	small	example	of	how	layers	might	be	managed.

@layer	site,	component,	page;

@import	url(/c/lib/core.css)	layer(component);

@import	url(/c/lib/widgets.css)	layer(component);

@import	url(/c/site.css)	layer(site);

@layer	page	{

			h1	{color:	maroon;}

			p	{margin-top:	0;}

}

@layer	site	{

			body	{font-size:	1.1rem;}

			h1	{color:	orange;}

			p	{margin-top:	0.5em;}

}

p	{margin-top:	1em;}

In	this	example,	there	are	three	imported	stylesheets,	one	of	which	is	assigned	to	the	site	layer	and	two
of	which	are	in	the	component	layer.	Then	there	are	some	rules	assigned	to	the	page	layer,	and	a
couple	of	rules	placed	in	the	site	layer.	The	rules	in	the	@layer	site	{}	block	will	be	combined
with	the	rules	from	/c/site.css	into	a	single	site	layer.

After	that,	there’s	a	rule	outside	the	explicit	cascade	layers,	which	means	it’s	part	of	the	implicit	“default”
layer.	Rules	in	this	default	layer	will	override	the	styles	of	any	of	the	other	layers.	So,	given	the	code
shown,	paragraphs	will	have	top	margins	of	1em.

But	before	all	of	that,	there’s	a	directive	that	sets	the	precedence	order	of	the	named	layers:	page
overrules	component	and	site,	and	component	overrules	site.	Here’s	how	those	various	rules
are	grouped	as	far	as	the	cascade	is	concerned,	with	comments	to	describe	their	placement	in	the	sorting:

/*	'site'	layer	is	the	lowest	weighted	*/

@import	url(/c/site.css)	layer(site);

@layer	site	{

			body	{font-size:	1.1rem;}

			h1	{color:	orange;}

			p	{margin-top:	0.5em;}

}

/*	'component'	layer	is	the	next-lowest	weighted	*/

@import	url(/c/lib/core.css)	layer(component);

@import	url(/c/lib/widgets.css)	layer(component);

/*	'page'	layer	is	the	next-highest	weighted	*/

@layer	page	{

			h1	{color:	maroon;}

			p	{margin-top:	0;}

}

/*	the	implicit	layer	is	the	highest-weighted	*/

p	{margin-top:	1em;}

As	you	can	see,	the	later	a	layer	comes	in	the	ordering	of	the	layers,	the	more	weight	it’s	given	by	the
cascade’s	sorting	algorithm.

Cascade	layers	don’t	have	to	be	named,	to	be	clear.	It	just	keeps	things	a	lot	more	clear	in	terms	of	setting
an	order	for	them.	Here	are	some	examples	of	using	un-named	cascade	layers:

@import	url(base.css)	layer;

p	{margin-top:	1em;}

@layer	{

			h1	{color:	maroon;}

			body	p	{margin-top:	0;}

}

In	this	case,	the	rules	imported	from	base.css	are	assigned	to	an	un-named	layer.	Even	though	it
doesn’t	actually	have	a	name,	let’s	think	of	it	as	“CL1”.	Then	there’s	a	rule	outside	the	layers,	setting
paragraph	top	margins	to	be	1em.	Finally,	there’s	an	un-named	layer	block	with	a	couple	of	rules;	let’s
think	of	it	as	“CL2”.

So	now	we	have	rules	in	three	layers:	“CL1”,	“CL2”,	and	the	implicit	layer.	And	that’s	the	order	they’re
considered	in,	so	in	the	case	of	any	conflicting	normal	rules,	the	rules	in	the	implicit	default	layer	(which
comes	last	in	the	ordering)	will	win	over	conflicting	rules	in	the	other	two	layers,	and	rules	in	“CL2”	will
win	over	conflicting	rules	in	“CL1”.

At	least,	that’s	the	case	for	normal-weight	rules.	For	!important	rules,	the	order	of	precedence	is
flipped,	so	those	in	“CL1”	will	win	over	conflicting	important	rules	in	the	other	two	layers,	and	important
rules	in	“CL2”	win	over	conflicting	important	rules	in	the	implicit	layer.	Strange	but	true!

This	sorting-by-order	will	come	up	again	in	just	a	little	bit,	but	first,	let’s	bring	specificity	into	the
cascade.

Sorting	by	Specificity
If	conflicting	declarations	apply	to	an	element	and	they	all	have	the	same	explicit	weight,	origin,	element
attachment	(or	lack	thereof),	and	cascade	layer,	they	are	then	sorted	by	specificity,	with	the	most	specific
declaration	winning	out,	like	this:

@layer	page	{

		p#bright#bright#bright	{color:	grey;}

}

p#bright	{color:	silver;}

p	{color:	black;}

<p	id="bright">Well,	hello	there!</p>

Given	the	rules	shown,	the	text	of	the	paragraph	will	be	silver,	as	illustrated	in	Figure	4-8.	Why?	Because
the	specificity	of	p#bright	(`1,0,1)	overrode	the	specificity	of	p	(0,0,1),	even	though	the	latter
rule	comes	later	in	the	style	sheet.	The	styles	from	the	page	layer,	even	though	they	have	the	strongest

selector	(3,0,1)	aren’t	even	compared.	Only	the	declarations	from	the	layer	with	precedence	are	in
contention.

Figure	4-8.	Higher	specificity	wins	out	over	lower	specificity

Remember	that	this	rule	only	applies	if	the	rules	are	part	of	the	same	cascade	layer.	If	not,	specificity
doesn’t	matter:	a	0,0,1	selector	in	the	implicit	layer	will	win	over	any	non-important	rule	in	an
explicitly-created	cascade	layer,	no	matter	how	high	the	latter’s	specificity	gets.

Sorting	by	Order
Finally,	if	two	rules	have	exactly	the	same	explicit	weight,	origin,	element	attachment,	cascade	layer,	and
specificity,	then	the	one	that	appears	later	in	the	style	sheet	wins	out,	similar	to	how	cascade	layers	are
sorted	in	order	so	that	later	layers	win	over	earlier	layers.

Let’s	return	to	an	earlier	example,	where	we	find	the	following	two	rules	in	the	document’s	style	sheet:

body	h1	{color:	red;}

html	h1	{color:	blue;}

In	this	case,	the	value	of	color	for	all	h1	elements	in	the	document	will	be	blue,	not	red.	This	is
because	the	two	rules	are	tied	with	each	other	in	terms	of	explicit	weight	and	origin,	are	in	the	same
cascade	layer,	and	the	selectors	have	equal	specificity,	so	the	last	one	declared	is	the	winner.	Note	that	it
doesn’t	matter	how	close	together	the	elements	are	in	the	document	tree;	even	though	body	and	h1	are
closer	together	than	html	and	h1,	the	later	one	wins.	The	only	thing	that	matters	(when	the	origin,
cascade	layer,	layer,	and	specificity	are	the	same)	is	the	order	in	which	the	rules	appear	in	the	CSS.

So	what	happens	if	rules	from	completely	separate	style	sheets	conflict?	For	example,	suppose	the
following:

@import	url(basic.css);

h1	{color:	blue;}

What	if	h1	{color:	red;}	appears	in	basic.css?	In	this	case,	since	there	are	no	cascade	layers
in	play,	the	entire	contents	of	basic.css	are	treated	as	if	they	were	pasted	into	the	style	sheet	at	the
point	where	the	@import	occurs.	Thus,	any	rule	contained	in	the	document’s	style	sheet	occurs	later	than
those	from	the	@import.	If	they	tie	in	terms	of	explicit	weight	and	specificity,	the	document’s	style	sheet
contains	the	winner.	Consider	the	following:

p	em	{color:	purple;}		/*	from	imported	style	sheet	*/

p	em	{color:	gray;}				/*	rule	contained	within	the	document	*/

In	this	case,	the	second	rule	shown	wins	out	over	the	imported	rule	because	it	was	the	last	one	specified,
and	both	are	in	the	implicit	cascade	layer.

Order	sorting	is	the	reason	behind	the	often-recommended	ordering	of	link	styles.	The	recommendation	is
that	you	write	your	link	styles	in	the	order	link-visited-focus-hover-active,	or	LVFHA,	like	this:

a:link	{color:	blue;}

a:visited	{color:	purple;}

a:focus	{color:	green;}

a:hover	{color:	red;}

a:active	{color:	orange;}

Thanks	to	the	information	in	this	chapter,	you	now	know	that	the	specificity	of	all	of	these	selectors	is	the
same:	0,1,1.	Because	they	all	have	the	same	explicit	weight,	origin,	and	specificity,	the	last	one	that
matches	an	element	will	win	out.	An	unvisited	link	that	is	being	“clicked”	or	otherwise	activated,	such	as
via	the	keyboard,	is	matched	by	four	of	the	rules—:link,	:focus,	:hover,	and	:active—so	the
last	one	of	those	four	will	win	out.	Given	the	LVFHA	ordering,	:active	will	win,	which	is	likely	what
the	author	intended.

Assume	for	a	moment	that	you	decide	to	ignore	the	common	ordering	and	alphabetize	your	link	styles
instead.	This	would	yield:

a:active	{color:	orange;}

a:focus	{color:	green;}

a:hover	{color:	red;}

a:link	{color:	blue;}

a:visited	{color:	purple;}

Given	this	ordering,	no	link	would	ever	show	:hover,	:focus,	or	:active	styles	because	the
:link	and	:visited	rules	come	after	the	other	three.	Every	link	must	be	either	visited	or	unvisited,	so
those	styles	will	always	override	the	others.

Let’s	consider	a	variation	on	the	LVFHA	order	that	an	author	might	want	to	use.	In	this	ordering,	only
unvisited	links	will	get	a	hover	style;	visited	links	do	not.	Both	visited	and	unvisited	links	will	get	an
active	style:

a:link	{color:	blue;}

a:hover	{color:	red;}

a:visited	{color:	purple;}

a:focus	{color:	green;}

a:active	{color:	orange;}

Such	conflicts	arise	only	when	all	the	states	attempt	to	set	the	same	property.	If	each	state’s	styles	address
a	different	property,	then	the	order	does	not	matter.	In	the	following	case,	the	link	styles	could	be	given	in
any	order	and	would	still	function	as	intended:

a:link	{font-weight:	bold;}

a:visited	{font-style:	italic;}

a:focus	{color:	green;}

a:hover	{color:	red;}

a:active	{background:	yellow;}

You	may	also	have	realized	that	the	order	of	the	:link	and	:visited	styles	doesn’t	matter.	You	could

order	the	styles	LVFHA	or	VLFHA	with	no	ill	effect.

The	ability	to	chain	pseudo-classes	together	eliminates	all	these	worries.	The	following	could	be	listed	in
any	order	without	any	overrides,	as	the	specificity	of	the	latter	two	is	greater	than	that	of	the	first	two:

a:link	{color:	blue;}

a:visited	{color:	purple;}

a:link:hover	{color:	red;}

a:visited:hover	{color:	gray;}

Because	each	rule	applies	to	a	unique	set	of	link	states,	they	do	not	conflict.	Therefore,	changing	their
order	will	not	change	the	styling	of	the	document.	The	last	two	rules	do	have	the	same	specificity,	but	that
doesn’t	matter.	A	hovered	unvisited	link	will	not	be	matched	by	the	rule	regarding	hovered	visited	links,
and	vice	versa.	If	we	were	to	add	active-state	styles,	then	order	would	start	to	matter	again.	Consider:

a:link	{color:	blue;}

a:visited	{color:	purple;}

a:link:hover	{color:	red;}

a:visited:hover	{color:	gray;}

a:link:active	{color:	orange;}

a:visited:active	{color:	silver;}

If	the	active	styles	were	moved	before	the	hover	styles,	they	would	be	ignored.	Again,	this	would	happen
due	to	specificity	conflicts.	The	conflicts	could	be	avoided	by	adding	more	pseudo-classes	to	the	chains,
like	this:

a:link:hover:active	{color:	orange;}

a:visited:hover:active	{color:	silver;}

This	does	have	the	effect	of	raising	the	specificity	of	the	selectors—both	have	a	specificity	value	of
0,3,1—but	they	don’t	conflict	because	the	actual	selection	states	are	mutually	exclusive.	A	link	can’t	be
both	a	visited	hovered	active	link	and	an	unvisited	hovered	active	link:	only	one	of	the	two	rules	will
match.

Non-CSS	Presentational	Hints
It	is	possible	that	a	document	will	contain	presentational	hints	that	are	not	CSS—for	example,	the
deprecated	font	element,	or	the	still-very-much-used	height,	width,	and	hidden	attributes.	Such
presentational	hints	will	be	overridden	by	any	author	or	reader	styles,	but	not	by	the	user	agent’s	styles.	In
modern	browsers,	presentational	hints	from	outside	CSS	are	treated	as	if	they	belong	to	the	user	agent’s
stylesheet.

Summary
Perhaps	the	most	fundamental	aspect	of	Cascading	Style	Sheets	is	the	cascade	itself—the	process	by
which	conflicting	declarations	are	sorted	out	and	from	which	the	final	document	presentation	is
determined.	Integral	to	this	process	is	the	specificity	of	selectors	and	their	associated	declarations,	and

the	mechanism	of	inheritance.

Chapter	5.	Values	and	Units

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	5th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

In	this	chapter,	we’ll	tackle	features	that	are	the	basis	for	almost	everything	you	can	do	with	CSS:	the
units	that	affect	the	colors,	distances,	and	sizes	of	a	whole	host	of	properties,	as	well	as	the	units	that	help
to	define	those	values.	Without	units,	you	couldn’t	declare	that	an	image	should	have	10	pixels	of	blank
space	around	it,	or	that	a	heading’s	text	should	be	a	certain	size.	By	understanding	the	concepts	put	forth
here,	you’ll	be	able	to	learn	and	use	the	rest	of	CSS	much	more	quickly.

Keywords,	Strings,	and	Other	Text	Values
Everything	in	a	stylesheet	is	text,	but	there	are	certain	value	types	that	directly	represent	strings	of	text	as
opposed	to,	say,	numbers	or	colors.	Included	in	this	category	are	URLs	and,	interestingly	enough,	images.

Keywords
For	those	times	when	a	value	needs	to	be	described	with	a	word	of	some	kind,	there	are	keywords.	A	very
common	example	is	the	keyword	none,	which	is	distinct	from	0	(zero).	Thus,	to	remove	the	underline
from	links	in	an	HTML	document,	you	would	write:

a[href]	{text-decoration:	none;}

Similarly,	if	you	want	to	force	underlines	on	the	links,	then	you	would	use	the	keyword	underline
instead	of	none.

If	a	property	accepts	keywords,	then	its	keywords	will	be	defined	only	for	the	scope	of	that	property.	If
two	properties	use	the	same	word	as	a	keyword,	the	behavior	of	the	keyword	for	one	property	will	not
necessarily	be	shared	with	the	other.	As	an	example,	normal,	as	defined	for	letter-spacing,
means	something	very	different	than	the	normal	defined	for	font-style.

Global	keywords

mailto:rfernando@oreilly.com

CSS3	defines	four	“global”	keywords	that	are	accepted	by	every	property	in	the	specification:
inherit,	initial,	unset,	and	revert.

inherit

The	keyword	inherit	makes	the	value	of	a	property	on	an	element	the	same	as	the	value	of	that
property	on	its	parent	element.	In	other	words,	it	forces	inheritance	to	occur	even	in	situations	where	it
would	not	normally	operate.	In	many	cases,	you	don’t	need	to	specify	inheritance,	since	many	properties
inherit	naturally.	Nevertheless,	inherit	can	still	be	very	useful.

For	example,	consider	the	following	styles	and	markup:

#toolbar	{background:	blue;	color:	white;}

<div	id="toolbar">

One	|	Two	|

Three

</div>

The	div	itself	will	have	a	blue	background	and	a	white	foreground,	but	the	links	will	be	styled	according
to	the	browser’s	preference	settings.	They’ll	most	likely	end	up	as	blue	text	on	a	blue	background,	with
white	vertical	bars	between	them.

You	could	write	a	rule	that	explicitly	sets	the	links	in	the	“toolbar”	to	be	white,	but	you	can	make	things	a
little	more	robust	by	using	inherit.	You	just	add	the	following	rule	to	the	stylesheet:

#toolbar	a	{color:	inherit;}

This	will	cause	the	links	to	use	the	inherited	value	of	color	in	place	of	the	user	agent’s	default	styles.

Ordinarily,	directly	assigned	styles	override	inherited	styles,	but	inherit	can	undo	that	behavior.	It
might	not	always	be	a	good	idea—for	example,	here	links	might	blend	into	surrounding	text	too	much,	and
become	a	usability	and	accessibility	concern—but	it	can	be	done.

Similarly,	you	can	pull	a	property	value	down	from	a	parent	even	if	it	wouldn’t	happen	normally.	Take
border,	for	example,	which	is	(rightfully)	not	inherited.	If	you	want	a	span	to	inherit	the	border	of	its
parent,	all	you	need	is	span	{border:	inherit;}.	More	likely,	though,	you	just	want	the	border
on	a	span	to	use	the	same	border	color	as	its	parent.	In	that	case	span	{border-color:
inherit;}	will	do	the	trick.

initial

The	keyword	initial	sets	the	value	of	a	property	to	the	defined	initial	value,	which	in	a	way	means	it
“resets”	the	value.	For	example,	the	default	value	of	font-weight	is	normal.	Thus,	declaring
font-weight:	initial	is	the	same	as	declaring	font-weight:	normal.

This	might	seem	a	little	bit	silly	until	you	consider	that	not	all	values	have	explicitly	defined	initial
values.	For	example,	the	initial	value	for	color	is	“depends	on	user	agent.”	That’s	not	a	funky	keyword
you	should	type!	What	it	means	is	that	the	default	value	of	color	depends	on	things	like	the	preferences

settings	in	a	browser.	While	almost	nobody	changes	the	default	text	color	setting	from	black,	someone
might	set	it	to	a	dark	gray	or	even	a	bright	red.	By	declaring	color:	initial;,	you’re	telling	the
browser	to	set	the	color	of	the	element	to	whatever	the	user’s	default	color	is	set	to	be.

Another	benefit	of	initial	is	that	you	can	set	a	property	back	to	its	initial	value	without	having	to
know	what	that	initial	value	actually	was.	This	can	be	especially	useful	when	resetting	a	lot	of	properties
all	at	once,	either	via	JavaScript	or	CSS.

unset

The	keyword	unset	acts	as	a	universal	stand-in	for	both	inherit	and	initial.	If	the	property	is
inherited,	then	unset	has	the	same	effect	as	if	inherit	was	used.	If	the	property	is	not	inherited,	then
unset	has	the	same	effect	as	if	initial	was	used.	This	makes	it	very	useful	for	resetting	a	property	by
canceling	out	any	other	styles	that	might	be	applied	to	it.

revert

The	keyword	revert	sets	the	value	of	a	property	to	the	value	the	property	would	have	had	if	no	changes
had	been	made	by	the	current	style	origin.	In	effect,	revert	lets	you	say,	“All	property	values	for	this
element	should	be	as	if	the	author	styles	don’t	exist,	but	user	agent	and	user	styles	do	exist.”

Thus,	given	the	following	basic	example,	p	elements	will	be	rendered	as	gray	text	with	a	transparent
background.

p	{background:	lime;	color:	gray;}

p	{background:	revert;}

This	does	mean	that	any	property	whose	value	is	inherited	will	be	given	the	same	value	as	that	of	their
parent.	revert	is	useful	for	cases	where	you	have	a	bunch	of	site-wide	styles	applying	to	an	element,
and	you	want	to	strip	them	all	away	so	as	to	apply	a	set	of	one-off	styles	to	just	that	element.	Rather	than
have	to	override	all	those	properties,	you	can	revert	them	to	defaults	—	and	you	can	do	it	with	a	single
property,	which	is	the	topic	of	the	next	section.

revert-layer

If	you’re	using	Cascade	Layers	(see	“Sorting	by	Cascade	Layer”)	and	want	to	“undo”	whatever	styles
might	be	applied	by	the	current	layer,	the	revert-layer	value	is	here	to	help.	The	difference	here	is
that	revert-layer	effectivelty	means,	“All	property	values	for	this	element	should	be	as	if	the	author
styles	in	the	current	Cascade	Layer	don’t	exist,	but	other	author	Cascade	Layers	(inluding	the	default),
user	agent,	and	user	styles	do	exist.”

Thus,	given	the	following,	paragraphs	with	a	class	containing	the	word	example	will	be	rendered	as
red	text	on	a	yellow	background:

@layer	site,	system;

p	{color:	red;}

@layer	system	{

	 p	{background:	yellow;	color:	fuchsia;}

}

@layer	site	{

	 p	{background:	lime;	color:	gray;}

	 p.example	{background:	revert;	color:	revert;}

}

For	the	background,	the	browser	looks	at	the	assigned	values	in	previous	Cascade	Layers	and	picks	the
one	with	the	highest	weight.	Only	one	layer	(system)	set	a	background	color,	so	that’s	what’s	used
instead	of	lime.	The	same	is	done	for	the	foreground	color,	and	since	there	is	a	color	assigned	in	the
default	layer,	and	the	default	layer	overrides	all	explicitly-created	layers,	red	is	used	instead	of	gray.

NOTE
As	of	late	2022,	only	Firefox	supported	revert-layer,	but	we	anticipate	it	being	widely	supported	in	the	near	future.

The	all	property
These	global	values	are	usable	on	all	properties,	but	there	is	a	special	property	that	only	accepts	the
global	keywords:	all.

ALL

Values inherit	|	initial	|	unset	|	revert

Initial	value See	individual	properties

all	is	a	stand-in	for	all	properties	except	direction,	unicode-bidi,	and	any	custom	properties
(see	“Custom	Properties”).	Thus,	if	you	declare	all:	inherit	on	an	element,	you’re	saying	that	you
want	all	properties	except	direction,	unicode-bidi,	and	custom	properties	to	inherit	their	values
from	the	element’s	parent.	Consider	the	following:

section	{color:	white;	background:	black;	font-weight:	bold;}

#example	{all:	inherit;}

<section>

				<div	id="example">This	is	a	div.</div>

</section>

You	might	think	this	causes	the	div	element	to	inherit	the	values	of	color,	background,	and	font-
weight	from	the	section	element.	And	it	does	do	that,	yes—but	it	will	also	force	inheritance	of	the
values	of	every	single	other	property	in	CSS	(minus	the	two	exceptions)	from	the	section	element.

Maybe	that’s	what	you	want,	in	which	case,	great.	But	if	you	just	want	to	inherit	the	property	values	you
wrote	out	for	the	section	element,	then	the	CSS	would	need	to	look	more	like	this:

section	{color:	white;	background:	black;	font-weight:	bold;}

#example	{color:	inherit;	background:	inherit;	font-weight:	inherit;}

Odds	are	what	you	really	want	in	these	situations	is	all:	unset,	but	your	stylesheet	may	vary.

Strings
A	string	value	is	an	arbitrary	sequence	of	characters	wrapped	in	either	single	or	double	quotes,	and	is
represented	in	value	definitions	with	<string>.	Two	simple	examples:

"I	like	to	play	with	strings."

'Strings	are	fun	to	play	with.'

Note	that	the	quotes	balance,	which	is	to	say	that	you	always	start	and	end	with	the	same	kind	of	quotes.
Getting	this	wrong	can	lead	to	all	kinds	of	parsing	problems,	since	starting	with	one	kind	of	quote	and
trying	to	end	with	the	other	means	the	string	won’t	actually	be	terminated.	You	could	accidentally
incorporate	subsequent	rules	into	the	string	that	way!

If	you	want	to	put	quote	marks	inside	strings,	that’s	OK,	as	long	as	they’re	either	not	the	kind	you	used	to
enclose	the	string	or	are	escaped	using	a	backslash:

"I've	always	liked	to	play	with	strings."

'He	said	to	me,	"I	like	to	play	with	strings."'

"It's	been	said	that	\"haste	makes	waste.\""

'There\'s	never	been	a	"string	theory"	that	I\'ve	liked.'

Note	that	the	only	acceptable	string	delimiters	are	'	and	",	sometimes	called	“straight	quotes.”	That
means	you	can’t	use	“curly”	or	“smart”	quotes	to	begin	or	end	a	string	value.	You	can	use	them	inside	a
string	value,	as	in	this	code	example,	though,	and	they	don’t	have	to	be	escaped:

"It’s	been	said	that	“haste	makes	waste.”"

'There’s	never	been	a	“string	theory”	that	I’ve	liked.'

This	requires	that	you	use	Unicode	encoding	for	your	documents,	but	you	should	be	doing	that	regardless.
(You	can	find	the	Unicode	standard	at	http://www.unicode.org/standard/standard.html.)

If	you	have	some	reason	to	include	a	newline	in	your	string	value,	you	can	do	that	by	escaping	the	newline
itself.	CSS	will	then	remove	it,	making	things	as	if	it	had	never	been	there.	Thus,	the	following	two	string
values	are	identical	from	a	CSS	point	of	view:

"This	is	the	right	place	\

for	a	newline."

"This	is	the	right	place	for	a	newline."

If,	on	the	other	hand,	you	actually	want	a	string	value	that	includes	a	newline	character,	then	use	the
Unicode	reference	\A	where	you	want	the	newline	to	occur:

"This	is	a	better	place	\Afor	a	newline."

http://www.unicode.org/standard/standard.html

Identifiers
One	word,	case-sensitive	strings	that	should	not	be	quoted	are	known	as	identifiers,	represented	in	the
CSS	syntax	as	<ident>	or	<custom-ident>,	depending	on	the	specification	and	context.	Identifiers	are
used	as	animation	names,	gridline	names,	and	counter	names,	among	others.	There	is	also	<dashed-
ident>,	which	is	used	for	custom	properties.

Rules	for	creating	a	custom	identifier	include	not	starting	the	word	with	a	number,	a	double	hyphen,	or	a
single	hyphen	followed	by	a	number.	Other	than	that,	really	any	character	is	valid,	including	emojis,	but	if
you	use	certain	characters,	including	a	space	or	a	backslash,	you	need	to	escape	them	with	a	backslash.

Identifiers	themselves	are	words,	and	are	case-sensitive;	thus,	myID	and	MyID	are,	as	far	as	CSS	is
concerned,	completely	distinct	and	unrelated	to	each	other.	In	cases	where	a	property	accepts	both	an
identifier	and	one	or	more	keywords,	the	author	should	take	care	to	never	define	an	identifier	identical	to
a	valid	keyword,	including	the	global	keywords	initial,	inherit,	unset,	and	revert.	none	is
also	a	really	bad	idea,	as	is	running	in	cases	where	you’re	naming	an	animation.

URLs
If	you’ve	written	web	pages,	you’re	almost	certainly	familiar	with	URLs	(Uniform	Resource	Locators).
Whenever	you	need	to	refer	to	one—as	in	the	@import	statement,	which	is	used	when	importing	an
external	stylesheet—the	general	format	is:

url(protocol://server/pathname/filename)

url("<string>")			/*	can	use	single	or	double	quotes.	*/

This	example	defines	what	is	known	as	an	absolute	URL.	By	absolute,	we	mean	a	URL	that	will	work	no
matter	where	(or	rather,	in	what	page)	it’s	found,	because	it	defines	an	absolute	location	in	web	space.
Let’s	say	that	you	have	a	server	called	web.waffles.org.	On	that	server,	there	is	a	directory	called	pix,	and
in	this	directory	is	an	image	waffle22.gif.	In	this	case,	the	absolute	URL	of	that	image	would	be:

https://web.waffles.org/pix/waffle22.gif

This	URL	is	valid	no	matter	where	it	is	written,	whether	the	page	containing	it	is	located	on	the	server
web.waffles.org	or	web.pancakes.com.

The	other	type	of	URL	is	a	relative	URL,	so	named	because	it	specifies	a	location	that	is	relative	to	the
document	that	uses	it.	If	you’re	referring	to	a	relative	location,	such	as	a	file	in	the	same	directory	as	your
web	page,	then	the	general	format	is:

url(pathname)

url("<string>")			/*	can	use	single	or	double	quotes.	*/

This	works	only	if	the	image	is	on	the	same	server	as	the	page	that	contains	the	URL.	For	argument’s	sake,
assume	that	you	have	a	web	page	located	at	http://web.waffles.org/syrup.html	and	that	you	want	the
image	waffle22.gif	to	appear	on	this	page.	In	that	case,	the	URL	would	be:

pix/waffle22.gif

This	path	works	because	the	web	browser	knows	it	should	start	with	the	place	it	found	the	web	document
and	then	add	the	relative	URL.	In	this	case,	the	pathname	pix/waffle22.gif	added	to	the	server	name
http://web.waffles.org	equals	http://web.waffles.org/pix/waffle22.gif.	You	can	almost	always	use	an
absolute	URL	in	place	of	a	relative	URL;	it	doesn’t	matter	which	you	use,	as	long	as	it	defines	a	valid
location.

In	CSS,	relative	URLs	are	relative	to	the	stylesheet	itself,	not	to	the	HTML	document	that	uses	the
stylesheet.	For	example,	you	may	have	an	external	stylesheet	that	imports	another	stylesheet.	If	you	use	a
relative	URL	to	import	the	second	stylesheet,	it	must	be	relative	to	the	first	stylesheet.	In	fact,	if	you	have
a	URL	in	any	imported	stylesheet,	it	needs	to	be	relative	to	the	imported	stylesheet.

As	an	example,	consider	an	HTML	document	at	http://web.waffles.org/toppings/tips.html,	which	has	a
link	to	the	stylesheet	http://web.waffles.org/styles/basic.css:

<link	rel="stylesheet"	type="text/css"

				href="http://web.waffles.org/styles/basic.css">

Inside	the	file	basic.css	is	an	@import	statement	referring	to	another	stylesheet:

@import	url(special/toppings.css);

This	@import	will	cause	the	browser	to	look	for	the	stylesheet	at
http://web.waffles.org/styles/special/toppings.css,	not	at
http://web.waffles.org/toppings/special/toppings.css.	If	you	have	a	stylesheet	at	the	latter	location,	then
the	@import	in	basic.css	should	read	one	of	the	two	following	ways:

@import	url(http://web.waffles.org/toppings/special/toppings.css);

@import	url("../special/toppings.css");

Note	that	there	cannot	be	a	space	between	the	url	and	the	opening	parenthesis:

body	{background:	url(http://www.pix.web/picture1.jpg);}			/*	correct	*/

body	{background:	url		(images/picture2.jpg);}										/*	INCORRECT	*/

If	the	space	is	present,	the	entire	declaration	will	be	invalidated	and	thus	ignored.

NOTE
As	of	this	writing	in	late	2022,	the	CSS	Working	Group	is	planning	to	introduce	a	new	function	called	src(),	which	will	only	accept	strings
and	not	unquoted	URLs.	This	is	meant	to	allow	custom	properties	to	be	used	inside	src(),	which	will	let	authors	define	which	file	should
be	loaded	based	on	the	value	of	a	custom	property.

Images

An	image	value	is	a	reference	to	an	image,	as	you	might	have	guessed.	Its	syntax	representation	is
<image>.

At	the	most	basic	level	of	support,	which	is	to	say	the	one	every	CSS	engine	on	the	planet	would
understand,	an	<image>	value	is	a	<url>	value.	In	more	modern	user	agents,	<image>	stands	for	one	of
the	following:

<url>

A	URL	identifier	of	an	external	resource;	in	this	case,	the	URL	of	an	image.

<gradient>

Refers	to	either	a	linear,	radial,	or	conic	gradient	image,	either	singly	or	in	a	repeating	pattern.
Gradients	are	fairly	complex,	and	are	covered	in	detail	in	Chapter	8.

<image-set>

A	set	of	images,	chosen	based	on	a	set	of	conditions	embedded	into	the	value,	which	is	defined	as
image-set()	but	is	more	widely	recognized	with	the	-webkit-	prefix.	For	example,	-
webkit-image-set()	could	specify	that	a	larger	image	be	used	for	desktop	layouts,	whereas	a
smaller	image	(both	in	pixel	size	and	file	size)	be	used	for	a	mobile	design.	It	is	intended	to	at	least
approximate	the	behavior	of	the	srcset	attribute	for	picture	elements.	As	of	late	2022,	-
webkit-image-set	was	basically	universally	supported,	with	most	browsers	other	than	Safari
also	accepting	image-set()	(without	the	prefix).

<cross-fade>

Used	to	blend	two	(or	more)	images	together,	with	a	specific	transparency	given	to	each	image.	Use
cases	include	blending	two	images	together,	blending	an	image	with	a	gradient,	and	so	on.	As	of	early
2022,	this	was	supported	as	-webkit-cross-fade()	in	Blink-	and	WebKit-based	browsers,
and	not	supported	at	all	in	the	Firefox	family,	with	or	without	the	prefix.

There	are	also	the	image()	and	element()	functions,	but	as	of	late	2022,	neither	is	supported	by	any
browser,	except	for	a	vendor-prefixed	version	of	element()	supported	by	Firefox	57	and	later.
Finally,	there	is	paint()	which	refers	to	an	image	painted	by	CSS	Houdini’s	PaintWorklet.	As	of	late
2022,	this	is	only	supported	in	a	basic	form	by	Blink-based	browsers	like	Chrome.

Numbers	and	Percentages
These	value	types	serve	as	the	foundation	for	many	other	values	types.	For	example,	font	sizes	can	be
defined	using	the	em	unit	(covered	later	in	this	chapter)	preceded	by	a	number.	But	what	kind	of	number?
Understanding	the	types	of	numbers	here	lets	us	be	clear	what	we	mean	when	defining	other	value	types
later	on.

Integers

An	integer	value	is	about	as	simple	as	it	gets:	one	or	more	numbers,	optionally	prefixed	by	a	+	or	−	(plus
or	minus)	sign	to	indicate	a	positive	or	negative	value.	That’s	it.	Integer	values	are	represented	in	value
syntax	as	<integer>.	Examples	include	13,	−42,	712,	and	1066.

Some	properties	define	a	range	of	acceptable	integer	values.	Integer	values	that	fall	outside	a	defined
range	are,	by	default,	considered	invalid	and	cause	the	entire	declaration	to	be	ignored.	However,	some
properties	define	behavior	that	causes	values	outside	the	accepted	range	to	be	set	to	the	accepted	value
closest	to	the	declared	value,	known	as	clamping.

In	cases	(such	as	the	property	z-index)	where	there	is	no	restricted	range,	user	agents	must	support
values	up	to	±1,073,741,824	(±2).

Numbers
A	number	value	is	either	an	<integer>	or	a	real	number,	which	is	to	say	an	integer	followed	by	a	dot	and
then	some	number	of	following	integers.	Additionally,	it	can	be	prefixed	by	either	+	or	−	to	indicate
positive	or	negative	values.	Number	values	are	represented	in	value	syntax	as	<number>.	Examples
include	5,	2.7183,	−3.1416,	6.2832,	and	1.0218e29	(scientific	notation).

The	reason	a	<number>	can	be	an	<integer>	and	yet	there	are	separate	value	types	is	that	some
properties	will	only	accept	integers	(e.g.,	z-index),	whereas	others	will	accept	any	real	number	(e.g.,
flex-grow).

As	with	integer	values,	number	values	may	have	limits	imposed	on	them	by	a	property	definition;	for
example,	opacity	restricts	its	value	to	be	any	valid	<number>	in	the	range	0	to	1,	inclusive.	Some
properties	define	behavior	that	causes	values	outside	the	accepted	range	to	be	clamped	to	an	acceptable
value	closest	to	the	declared	value;	e.g.,	opacity:	1.7	would	be	clamped	to	opacity:	1.	For
those	that	do	not,	number	values	that	fall	outside	a	defined	range	are	considered	invalid	and	cause	the
entire	declaration	to	be	ignored.

Percentages
A	percentage	value	is	a	<number>	followed	by	a	percentage	sign	(%),	and	is	represented	in	value	syntax
as	<percentage>.	Examples	would	include	50%	and	33.333%.	Percentage	values	are	always	relative	to
another	value,	which	can	be	anything—the	value	of	another	property	of	the	same	element,	a	value
inherited	from	the	parent	element,	or	a	value	of	an	ancestor	element.	Properties	that	accept	percentage
values	will	define	any	restrictions	on	the	range	of	allowed	percentage	values,	as	well	as	the	way	in	which
the	percentage	is	relatively	calculated.

Fractions
A	fraction	value	(or	flexible	ratio)	is	a	<number>	followed	by	the	fr	unit	label.	Thus,	one	fractional
unit	is	1fr.	The	fr	unit	represents	a	fraction	of	the	leftover	space,	if	any,	in	a	grid	container.

As	with	all	CSS	dimensions,	there	is	no	space	between	the	unit	and	the	number.	Fraction	values	are	not
lengths	(nor	are	they	compatible	with	<length>s,	unlike	some	<percentage>	values),	so	they	cannot	be

30

used	with	other	unit	types	in	calc()	functions.

NOTE
Fraction	values	are	mostly	used	in	Grid	layout	(see	XREF	HERE),	but	there	are	plans	to	use	it	in	more	contexts,	such	as	the	planned	(as	of
late	2022)	stripes()	function.

Distances
Many	CSS	properties,	such	as	margins,	depend	on	length	measurements	to	properly	display	various	page
elements.	It’s	likely	no	surprise,	then,	that	there	are	a	number	of	ways	to	measure	length	in	CSS.

All	length	units	can	be	expressed	as	either	positive	or	negative	numbers	followed	by	a	label,	although
note	that	some	properties	will	accept	only	positive	numbers.	You	can	also	use	real	numbers—that	is,
numbers	with	decimal	fractions,	such	as	10.5	or	4.561.

All	length	units	are	followed	by	short	abbreviation	that	represents	the	actual	unit	of	length	being
specified,	such	as	in	(inches)	or	pt	(points).	The	only	exception	to	this	rule	is	a	length	of	0	(zero),
which	need	not	be	followed	by	a	unit	when	describing	lengths.

These	length	units	are	divided	into	two	types:	absolute	length	units	and	relative	length	units.

Absolute	Length	Units
We’ll	start	with	absolute	units	because	they’re	easiest	to	understand.	The	six	types	of	absolute	units	are	as
follows:

Inches	(in)

As	you	might	expect,	this	notation	refers	to	the	inches	you’d	find	on	a	ruler	in	the	United	States.	(The
fact	that	this	unit	is	in	the	specification,	even	though	almost	the	entire	world	uses	the	metric	system,	is
an	interesting	insight	into	the	pervasiveness	of	US	interests	on	the	internet—but	let’s	not	get	into
virtual	sociopolitical	theory	right	now.)

Centimeters	(cm)

Refers	to	the	centimeters	that	you’d	find	on	rulers	the	world	over.	There	are	2.54	centimeters	to	an
inch,	and	one	centimeter	equals	0.394	inches.

Millimeters	(mm)

For	those	Americans	who	are	metric-challenged,	there	are	10	millimeters	to	a	centimeter,	so	an	inch
equals	25.4	millimeters,	and	a	millimeter	equals	0.0394	inches.

Quarter-millimeters	(Q)

There	are	40	Q	units	in	a	centimeter;	thus,	setting	an	element	to	be	1/10	of	a	centimeter	wide—which
is	also	to	say,	a	millimeter	wide—would	mean	a	value	of	4Q.

Points	(pt)

Points	are	standard	typographical	measurements	that	have	been	used	by	printers	and	typesetters	for
decades	and	by	word	processing	programs	for	many	years.	Traditionally,	there	are	72	points	to	an
inch.	Therefore	the	capital	letters	of	text	set	to	12	points	should	be	one-sixth	of	an	inch	tall.	For
example,	p	{font-size:	18pt;}	is	equivalent	to	p	{font-size:	0.25in;}.

Picas	(pc)

Pica	is	another	typographical	term.	A	pica	is	equivalent	to	12	points,	which	means	there	are	6	picas	to
an	inch.	As	just	shown,	the	capital	letters	of	text	set	to	1	pica	should	be	one-sixth	of	an	inch	tall.	For
example,	p	{font-size:	1.5pc;}	would	set	text	to	the	same	size	as	the	example	declarations
found	in	the	definition	of	points.

Pixels	(px)

A	pixel	is	a	small	box	on	screen,	but	CSS	defines	pixels	more	abstractly.	In	CSS	terms,	a	pixel	is
defined	to	be	the	size	required	to	yield	96	pixels	per	inch.	Many	user	agents	ignore	this	definition	in
favor	of	simply	addressing	the	pixels	on	the	screen.	Scaling	factors	are	brought	into	play	when	page
zooming	or	printing,	where	an	element	100px	wide	can	be	rendered	more	than	100	device	dots	wide.

These	units	are	only	really	useful	if	the	browser	knows	all	the	details	of	the	screen	on	which	your	page	is
displayed,	the	printer	you’re	using,	or	whatever	other	user	agent	might	apply.	On	a	web	browser,	display
is	affected	by	the	size	of	the	screen	and	the	resolution	to	which	the	screen	is	set;	there	isn’t	much	that	you,
as	the	author,	can	do	about	these	factors.	If	nothing	else,	it	should	be	the	case	that	measurements	will	be
consistent	in	relation	to	each	other—that	is,	that	a	setting	of	1.0in	will	be	twice	as	large	as	0.5in,	as
shown	in	Figure	5-1.

Figure	5-1.	Setting	absolute-length	left	margins

Let’s	make	the	(fairly	suspect)	assumption	that	your	computer	knows	enough	about	its	display	system	to
accurately	reproduce	real-world	measurements.	In	that	case,	you	could	make	sure	every	paragraph	has	a
top	margin	of	half	an	inch	by	declaring	p	{margin-top:	0.5in;}.

Absolute	units	are	much	more	useful	in	defining	stylesheets	for	printed	documents,	where	measuring
things	in	terms	of	inches,	points,	and	picas	is	much	more	common.

Pixel	lengths
On	the	face	of	things,	pixels	are	straightforward.	If	you	look	at	a	screen	closely	enough,	you	can	see	that
it’s	broken	up	into	a	grid	of	tiny	little	boxes.	Each	box	is	a	pixel.	If	you	define	an	element	to	be	a	certain
number	of	pixels	tall	and	wide,	as	in	the	following	markup:

<p>

The	following	image	is	20	pixels	tall	and	wide:	<img	src="test.gif"

		style="width:	20px;	height:	20px;"	alt=""	/>

</p>

then	it	follows	that	the	element	will	be	that	many	screen	elements	tall	and	wide,	as	shown	in	Figure	5-2.

Figure	5-2.	Using	pixel	lengths

The	problem	is,	thanks	to	high-density	displays	like	those	found	on	mobile	devices	and	modern	laptops,
the	individual	screen	elements	aren’t	treated	as	pixels	any	more.	Instead,	the	pixels	used	in	your	CSS	are
translated	into	something	that	aligns	with	human	expectations,	which	is	covered	in	the	next	section.

Pixel	theory
In	its	discussion	of	pixels,	the	CSS	specification	recommends	that,	in	cases	where	a	display’s	resolution
density	is	significantly	different	than	96	pixels	per	inch	(ppi),	user	agents	should	scale	pixel
measurements	to	a	reference	pixel.

A	reference	pixel	is	defined	as:

…the	visual	angle	of	one	pixel	on	a	device	with	a	device	pixel	density	of	96dpi	and	a	distance	from
the	reader	of	an	arm’s	length.	For	a	nominal	arm’s	length	of	28	inches,	the	visual	angle	is	therefore
about	0.0213	degrees.	For	reading	at	arm’s	length,	1px	thus	corresponds	to	about	0.26	mm
(1/96	inch).	(https://www.w3.org/TR/css-values-4/#reference-pixel)

On	most	modern	displays,	the	actual	number	of	pixels	per	inch	(ppi)	is	higher	than	96—sometimes	much
higher.	The	Retina	display	on	an	iPhone	13,	for	example,	is	physically	326	ppi,	and	the	display	on	the
iPad	Pro	is	physically	264	ppi.	As	long	as	a	browser	on	one	of	those	devices	sets	the	reference	pixel	such
that	an	element	set	to	be	10px	tall	appears	to	be	2.6	millimeters	tall	on	the	screen,	then	the	physical
display	density	isn’t	something	you	have	to	worry	about,	any	more	than	having	to	worry	about	the	number
of	dots	per	inch	on	a	printout.

Resolution	Units
There	are	unit	types	based	on	display	resolution:

Dots	per	inch	(dpi)

The	number	of	display	dots	per	linear	inch.	This	can	refer	to	the	dots	in	a	paper	printer’s	output,	the
physical	pixels	in	an	LED	screen	or	other	device,	or	the	elements	in	an	e-ink	display	such	as	that	used
by	a	Kindle.

Dots	per	centimeter	(dpcm)

Same	as	dpi,	except	the	linear	measure	is	one	centimeter	instead	of	one	inch.

Dots	per	pixel	unit	(dppx)

The	number	of	display	dots	per	CSS	px	unit.	As	of	CSS3,	1dppx	is	equivalent	to	96dpi	because
CSS	defines	pixel	units	at	that	ratio.	Just	bear	in	mind	that	ratio	could	change	in	future	versions	of

https://www.w3.org/TR/css-values-4/#reference-pixel

CSS.

These	units	are	most	often	used	in	the	context	of	media	queries.	As	an	example,	an	author	can	create	a
media	block	to	be	used	only	on	displays	that	have	higher	than	500	dpi:

@media	(min-resolution:	500dpi)	{

				/*	rules	go	here	*/

}

Again,	it’s	important	to	remember	that	CSS	pixels	are	not	device	resolution	pixels.	Text	with	font-
size:	16px	will	be	a	relatively	consistent	size	whether	the	device	has	96	dpi	or	470	dpi.	While	a
reference	pixel	is	defined	to	appear	to	be	1/96	of	an	inch	in	size,	when	a	device	has	has	more	than	96	dpi,
the	content	will	not	look	smaller.	Zooming	is	created	by	expanding	CSS	pixels	as	much	as	is	needed;	an
image	will	appear	larger,	but	the	image	size	doesn’t	actually	change:	rather,	the	width	of	the	screen,	in
terms	of	reference	pixels,	gets	smaller.

Relative	Length	Units
Relative	units	are	so	called	because	they	are	measured	in	relation	to	other	things.	The	actual	(or	absolute)
distance	they	measure	can	change	due	to	factors	beyond	their	control,	such	as	screen	resolution,	the	width
of	the	viewing	area,	the	user’s	preference	settings,	and	a	whole	host	of	other	things.	In	addition,	for	some
relative	units,	their	size	is	almost	always	relative	to	the	element	that	uses	them	and	will	thus	change	from
element	to	element.

em	and	ex	units
First,	let’s	consider	the	character	based	length	units,	including	em,	ex,	and	ch,	which	are	closely	related.
There	are	two	other	font-relative	units,	,	cap,	and	ic,	which	are	not	well	supported	as	of	early	2022.

The	em	unit
In	CSS,	one	“em”	is	defined	to	be	the	value	of	font-size	for	a	given	font.	If	the	font-size	of	an
element	is	14	pixels,	then	for	that	element,	1em	is	equal	to	14	pixels.

As	you	may	suspect,	this	value	can	change	from	element	to	element.	For	example,	let’s	say	you	have	an
h1	with	a	font	size	of	24	pixels,	an	h2	element	with	a	font	size	of	18	pixels,	and	a	paragraph	with	a	font
size	of	12	pixels.	If	you	set	the	left	margin	of	all	three	at	1em,	they	will	have	left	margins	of	24	pixels,	18
pixels,	and	12	pixels,	respectively:

h1	{font-size:	24px;}

h2	{font-size:	18px;}

p	{font-size:	12px;}

h1,	h2,	p	{margin-left:	1em;}

small	{font-size:	0.8em;}

<h1>Left	margin	=	<small>24	pixels</small></h1>

<h2>Left	margin	=	<small>18	pixels</small></h2>

<p>Left	margin	=	<small>12	pixels</small></p>

When	setting	the	size	of	the	font,	on	the	other	hand,	the	value	of	em	is	relative	to	the	font	size	of	the	parent
element,	as	illustrated	by	Figure	5-3.

Figure	5-3.	Using	em	for	margins	and	font	sizing

In	theory,	one	em	is	equal	to	the	width	of	a	lowercase	m	in	the	font	used—that’s	where	the	name	comes
from,	in	fact.	It’s	an	old	typographer’s	term.	However,	this	is	not	assured	in	CSS.

The	ex	unit
ex	refers	to	the	height	of	a	lowercase	x	in	the	font	being	used.	Therefore,	if	you	have	two	paragraphs	in
which	the	text	is	24	points	in	size,	but	each	paragraph	uses	a	different	font,	then	the	value	of	ex	could	be
different	for	each	paragraph.	This	is	because	different	fonts	have	different	heights	for	x,	as	you	can	see	in
Figure	5-4.	Even	though	the	examples	use	24-point	text—and	therefore	each	example’s	em	value	is	24
points—the	x-height	for	each	is	different.

Figure	5-4.	Varying	x	heights

The	ch	unit

An	interesting	addition	to	CSS3	is	the	ch	unit,	which	is	broadly	meant	to	represent	“one	character.”	CSS
Values	and	Units	Level	4	defines	ch	as:

Equal	to	the	advance	measure	of	the	“0”	(ZERO,	U+0030)	glyph	found	in	the	font	used	to	render	it.
—https://www.w3.org/TR/css-values-4/#ch

The	term	advance	measure	is	a	CSS-ism	that	corresponds	to	the	term	“advance	width”	in	Western
typography.	CSS	uses	the	term	“measure”	because	some	scripts	are	not	right	to	left	or	left	to	right,	but
instead	top	to	bottom	or	bottom	to	top,	and	so	may	have	an	advance	height	rather	than	an	advance	width.

Without	getting	into	too	many	details,	a	character	glyph’s	advance	width	is	the	distance	from	the	start	of	a
character	glyph	to	the	start	of	the	next.	This	generally	corresponds	to	the	width	of	the	glyph	itself	plus	any
built-in	spacing	to	the	sides.	(Although	that	built-in	spacing	can	be	either	positive	or	negative.)

The	easiest	way	to	demonstrate	this	unit	is	to	run	a	bunch	of	zeroes	together	and	then	set	an	image	to	have
a	width	with	the	same	number	of	ch	units	as	the	number	of	zeroes,	as	shown	in	Figure	5-5:

img	{height:	1em;	width:	25ch;}

Figure	5-5.	Character-relative	sizing

Given	a	monospace	font,	all	characters	are	by	definition	1ch	wide.	In	any	proportional	face	type,	which
is	what	the	vast	majority	of	Western	typefaces	are,	characters	may	be	wider	or	narrower	than	the	“0”	and
so	cannot	be	assumed	to	be	exactly	1ch	wide.

Other	relative	length	units
There	are	a	few	other	relative	length	units	to	be	mentioned:

1.	 ic	refers	to	the	advance	measure	of	the	“”	(CJK	water	ideograph,	U+6C34)	glyph	found	in	the
first	font	that	can	render	it.	This	is	like	ch	in	that	it	uses	an	advance	measure,	but	defines	a	measure

more	useful	for	ideographic	languages	than	the	“0”	character.	If	it	can’t	be	calculated	for	a	given
situation,	then	it’s	assumed	to	be	equal	to	1em.

2.	 cap	refers	to	the	cap-height	which	is	approximately	equal	to	the	height	of	a	capital	Latin	letter,	even
in	fonts	that	do	not	contain	Latin	letters.	If	it	can’t	be	calculated	for	a	given	situation,	then	it’s
assumed	to	be	equal	to	the	font’s	ascent	height.

3.	 lh	is	equal	to	the	computed	value	of	the	line-height	property	of	the	element	on	which	it	is
used.

As	of	late	2022,	only	developer	preview	builds	of	Firefox	supported	cap,	and	preview	builds	of	Chrome
supported	lh.

Root-relative	length	units
Most	of	the	character-based	length	units	discussed	in	the	previous	section	have	a	corresponding	root-
relative	value.	A	root-relative	value	is	one	that	is	calculated	with	respect	to	the	root	element	of	the
document,	and	thus	provide	a	uniform	value	no	matter	what	context	they’re	used	in.	We’ll	discuss	the	most
widely-supported	such	unit,	and	then	summarize	the	rest.

The	rem	unit
The	rem	unit	is	calculated	using	the	font	size	of	the	document’s	root	element.	In	HTML,	that’s	the	html
element.	Thus,	declaring	any	element	to	have	font-size:	1rem;	is	setting	it	to	have	the	same	font-
size	value	as	the	root	element	of	the	document.

As	an	example,	consider	the	following	markup	fragment.	It	will	have	the	result	shown	in	Figure	5-6.

<p>	This	paragraph	has	the	same	font	size	as	the	root	element	thanks	to

				inheritance.</p>

<div	style="font-size:	30px;	background:	silver;">

		<p	style="font-size:	1em;">This	paragraph	has	the	same	font	size	as	its	parent

					element.</p>

		<p	style="font-size:	1rem;">This	paragraph	has	the	same	font	size	as	the	root

					element.</p>

</div>

Figure	5-6.	ems	versus	rems

In	effect,	rem	acts	as	a	reset	for	font	size:	no	matter	what	relative	font	sizing	has	happened	to	the
ancestors	of	an	element,	giving	it	font-size:	1rem;	will	put	it	right	back	where	the	root	element	is
set.	This	will	usually	be	the	user’s	default	font	size,	unless	you	(or	the	user)	have	set	the	root	element	to	a
specific	font	size.

For	example,	given	this	declaration,	1rem	will	always	be	equivalent	to	13px:

html	{font-size:	13px;}

However,	given	this	declaration,	1rem	will	always	be	equivalent	to	three-quarters	the	user’s	default	font
size:

html	{font-size:	75%;}

In	this	case,	if	the	user’s	default	is	16	pixels,	then	1rem	will	equal	12px.	If	the	user	has	actually	set	their
default	to	12	pixels—and	yes,	some	people	do	this—then	1rem	will	equal	9px;	if	the	default	setting	is
20	pixels,	then	1rem	equals	15px.	And	so	on.

You	are	not	restricted	to	the	value	1rem.	Any	real	number	can	be	used,	just	as	with	the	em	unit,	so	you
can	do	fun	things	like	set	all	of	your	headings	to	be	multiples	of	the	root	element’s	font	size:

h1	{font-size:	2rem;}

h2	{font-size:	1.75rem;}

h3	{font-size:	1.4rem;}

h4	{font-size:	1.1rem;}

h5	{font-size:	1rem;}

h6	{font-size:	0.8rem;}

NOTE
font-size:	1rem	is	equivalent	to	font-size:	initial	as	long	as	no	font	size	is	set	for	the	root	element.

Other	root-relative	units
As	mentioned	previously,	rem	is	not	the	only	root-relative	unit	defined	by	CSS.	These	are	summarized	in
Table	5-1.

Table	5-1.	Link	pseudo-classes

Length Root-relative	unit Relative	to

em rem Computed	font-size

ex rex Computed	x-height

ch rch Advance	measure	of	the	0	character

cap rcap Height	of	a	Roman	capital	letter

ic ric Advance	measure	of	the		ideograph

lh rlh Computed	line-height

Of	all	the	root-relative	units,	only	rem	was	supported	as	of	late	2022,	but	it	was	supported	by	essentially
all	browsers.

Viewport-relative	units
Another	new	addition	are	the	viewport-relative	size	units.	These	are	calculated	with	respect	to	the	size	of
the	viewport—browser	window,	printable	area,	mobile	device	display,	etc.	The	six	introduced	in	the	late
2010s	were:

Viewport	width	unit	(vw)

Equal	to	the	viewport’s	width	divided	by	100.	Therefore,	if	the	viewport	is	937	pixels	wide,	1vw	is
equal	to	9.37px.	If	the	viewport’s	width	changes,	say	by	dragging	the	browser	window	wider	or
more	narrow,	the	value	of	vw	changes	along	with	it.

Viewport	height	unit	(vh)

Equal	to	the	viewport’s	height	divided	by	100.	Therefore,	if	the	viewport	is	650	pixels	tall,	1vh	is
equal	to	6.5px.	If	the	viewport’s	height	changes,	say	by	dragging	the	browser	window	taller	or
shorter,	the	value	of	vh	changes	along	with	it.

Viewport	block	unit	(vb)

Equal	to	the	size	of	the	viewport	along	the	block	axis,	divided	by	100.	The	block	axis	is	explained	in
Chapter	6.	In	top-to-bottom	languages	like	English	or	Arabic,	vb	will	be	equal	to	vh	by	default.

Viewport	inline	unit	(vi)

Equal	to	the	size	of	the	viewport	along	the	inline	axis,	divided	by	100.	The	inline	axis	is	explained	in
Chapter	6.	In	horizontally	written	languages	like	English	or	Arabic,	vi	will	be	equal	to	vw	by	default.

Viewport	minimum	unit	(vmin)

Equal	to	1/100	of	the	viewport’s	width	or	height,	whichever	is	lesser.	Thus,	given	a	viewport	that	is
937	pixels	wide	by	650	pixels	tall,	1vmin	is	equal	to	6.5px.

Viewport	maximum	unit	(vmax)

Equal	to	1/100	of	the	viewport’s	width	or	height,	whichever	is	greater.	Thus,	given	a	viewport	that	is
937	pixels	wide	by	650	pixels	tall,	1vmax	is	equal	to	9.37px.

WARNING
As	of	late	2022,	vb	and	vi	were	not	supported	in	browsers	other	than	Firefox.

Note	that	these	are	length	units	like	any	other,	and	so	can	be	used	anywhere	a	length	unit	is	permitted.	You
can	scale	the	font	size	of	a	heading	in	terms	of	the	viewport,	height,	for	example,	with	something	like	h1
{font-size:	10vh;}.	This	sets	the	font	size	to	be	1/10	the	height	of	the	viewport—a	technique
potentially	useful	for	article	titles	and	the	like.

These	units	can	be	particularly	handy	for	creating	full-viewport	interfaces,	such	as	those	one	would

expect	to	find	on	a	mobile	device,	because	it	can	allow	elements	to	be	sized	compared	to	the	viewport
and	not	any	of	the	elements	within	the	document	tree.	It’s	thus	very	simple	to	fill	up	the	entire	viewport,	or
at	least	major	portions	of	it,	and	not	have	to	worry	about	the	precise	dimensions	of	the	actual	viewport	in
any	particular	case.

Here’s	a	very	basic	example	of	viewport-relative	sizing,	which	is	illustrated	in	Figure	5-7:

div	{width:	50vh;	height:	33vw;	background:	gray;}

An	interesting	(though	perhaps	not	useful)	fact	about	these	units	is	that	they	aren’t	bound	to	their	own
primary	axis.	Thus,	for	example,	you	can	declare	width:	25vh;	to	make	an	element	as	wide	as	one-
quarter	the	height	of	the	viewport.

Figure	5-7.	Viewport-relative	sizing

In	2022,	new	variants	of	these	units	were	introduced	to	accommodate	the	vagaries	of	viewports	and	how
they	can	be	sized,	particularly	on	devices	where	the	user	interface	may	expand	and	contract	based	on	user
input.	These	variants	are	based	on	four	viewport	types:

Default

The	default	viewport	size,	as	defined	by	the	user	agent	(browser).	This	viewport	type	is	expected	to
correspond	to	the	units	vw,	vh,	vb,	vi,	vmin,	and	vmax.	The	default	viewport	may	correspond	to
one	of	the	other	viewport	types;	e.g.,	the	default	viewport	could	be	the	same	as	the	large	viewport,	but
that’s	up	to	each	browser	to	decide.

Large

The	largest	possible	viewport	after	any	user-agent	interfaces	are	contracted	to	their	fullest	extent.	For
example,	on	a	mobile	device,	the	browser	chrome	may	be	minimized	or	hidden	most	of	the	time	so
that	the	maximum	screen	area	can	be	used	to	show	page	content.	This	is	the	state	described	by	the
large	viewport.	If	you	want	an	element’s	size	to	be	determined	by	the	full	viewport	area,	even	if	that

will	lead	to	it	being	overlapped	by	user	interface,	the	large-viewport	units	are	the	way	to	go.	The
units	corresponding	this	viewport	type	are	lvw,	lvh,	lvb,	lvi,	lvmin,	and	lvmax.

Small

The	smallest	possible	viewport	after	any	user-agent	interfaces	are	expanded	to	their	fullest	extent.
This	is	the	state	where	the	browser’s	chrome	take	up	as	much	screen	space	as	it	possibly	can,	leaving
a	minimum	space	for	the	page	content.	If	you	want	to	be	sure	an	element’s	sizing	will	take	into	account
any	possible	interface	actions,	use	these	units.	The	units	corresponding	this	viewport	type	are	svw,
svh,	svb,	svi,	svmin,	and	svmax.

Dynamic

The	dynamic	viewport	is	the	area	in	which	content	is	visible,	and	can	change	as	the	user	interface
expands	or	contracts.	As	an	example,	consider	how	the	browser	interface	can	appear	or	disappear	on
mobile	devices,	depending	on	how	the	content	is	scrolled	or	where	on	the	screen	the	user	taps.	If	you
want	to	set	lengths	based	on	the	size	of	the	viewport	at	every	moment,	regardless	of	how	it	changes,
these	are	the	units	for	you.	The	units	corresponding	this	viewport	type	are	dvw,	dvh,	dvb,	dvi,
dvmin,	and	dvmax.

As	of	late	2022,	scrollbars	(if	any)	are	ignored	for	the	purposes	of	calculating	all	of	the	previous	units.
Thus,	the	calculated	size	of	svw	or	dvw	will	not	change	if	scrollbars	appear	or	disappear,	or	at	least
shouldn’t.

Function	values
One	of	the	more	recent	developments	in	CSS	is	an	increase	in	the	number	of	values	that	are	effectively
functions.	This	can	range	from	doing	math	calculations	to	clamping	value	ranges	to	pulling	values	out	of
HTML	attributes.	There	are,	in	fact,	a	lot	of	these,	listed	here:

abs()

acos()

annotation()

asin()

atan()

atan2()

attr()

blur()

brightness()

calc()

character-variant()

circle()

clamp()

color-contrast()

color-mix()

color()

conic-gradient()

contrast()

cos()

counter()

counters()

cross-fade()

device-cmyk()

drop-shadow()

element()

ellipse()

env()

exp()

fit-content()

grayscale()

hsl()

hsla()

hue-rotate()

hwb()

hypot()

image-set()

image()

inset()

invert()

lab()

lch()

linear-gradient()

log()

matrix()

matrix3d()

max()

min()

minmax()

mod()

oklab()

oklch()

opacity()

ornaments()

paint()

path()

perspective()

polygon()

pow()

radial-gradient()

rem()

repeat()

repeat-conic-gradiant()

repeating-linear-gradiant()

repeating-radial-gradient()

rgb()

rgba()

rotate()

rotate3d()

rotateX()

rotateY()

rotateZ()

round()

saturate()

scale()

scale3d()

scaleX()

scaleY()

scaleZ()

sepia()

sign()

sin()

skew()

skewX()

skewY()

sqrt()

styleset()

stylistic()

swash()

symbols()

tan()

translate()

translate3d()

translateX()

translateY()

translateZ()

url()

var()

That’s	ninety-five	different	function	values.	We’ll	cover	some	of	them	in	the	rest	of	this	chapter.	The	rest
will	be	covered	in	other	chapters,	as	appropriate	for	their	topics	(e.g.,	the	filter	functions	are	described	in
XREF	HERE).

Calculation	values
In	situations	where	you	need	to	do	a	little	math,	CSS	provides	a	calc()	value.	Inside	the	parentheses,
you	can	construct	simple	mathematical	expressions.	The	permitted	operators	are	+	(addition),	-
(subtraction),	*	(multiplication),	and	/	(division),	as	well	as	parentheses.	These	follow	the	traditional
PEMDAS	(parentheses,	exponents,	multiplication,	division,	addition,	subtraction)	precedence	order,
although	in	this	case	it’s	really	just	PMDAS	since	exponents	are	not	permitted	in	calc().

As	an	example,	suppose	you	want	your	paragraphs	to	have	a	width	that’s	2	em	less	than	90%	the	width	of
their	parent	element.	Here’s	how	you	express	that	with	calc():

p	{width:	calc(90%	-	2em);}

calc()	can	be	used	in	any	property	value	where	one	of	the	following	value	types	is	permitted:
<length>,	<frequency>,	<angle>,	<time>,	<percentage>,	<number>,	and	<integer>.	You	can	also
use	all	these	unit	types	within	a	calc()	value,	though	there	are	some	limitations	to	keep	in	mind.

The	basic	limitation	is	that	calc()	does	basic	type	checking	to	make	sure	that	units	are,	in	effect,
compatible.	The	checking	works	like	this:

1.	 To	either	side	of	a	+	or	-	sign,	both	values	must	have	the	same	unit	type,	or	be	a	<number>	and
<integer>	(in	which	case,	the	result	is	a	<number>).	Thus,	5	+	2.7	is	valid,	and	results	in	7.7.
On	the	other	hand,	5em	+	2.7	is	invalid,	because	one	side	has	a	length	unit	and	the	other	does	not.
Note	that	5em	+	20px	is	valid,	because	em	and	px	are	both	length	units.

2.	 Given	a	*,	one	of	the	values	involved	must	be	a	<number>	(which,	remember,	includes	integer
values).	So	2.5rem	*	2	and	2	*	2.5rem	are	both	valid,	and	each	result	in	5rem.	On	the	flip
side,	2.5rem	*	2rem	is	not	valid,	because	the	result	would	be	5rem ,	and	length	units	cannot
be	area	units.

3.	 Given	a	/,	the	value	on	the	right	side	must	be	a	<number>.	If	the	left	side	is	an	<integer>,	the
result	is	a	<number>.	Otherwise,	the	result	is	of	the	unit	type	used	on	the	left	side.	This	means	that
30em	/	2.75	is	valid,	but	30	/	2.75em	is	not	valid.

4.	 Furthermore,	any	circumstance	that	yields	division	by	zero	is	invalid.	This	is	easiest	to	see	in	a	case
like	30px/0,	but	there	are	other	ways	to	get	there.

2

There’s	one	more	notable	limitation,	which	is	that	whitespace	is	required	on	both	sides	of	the	+	and	-
operators,	while	it	is	not	for	*	and	/.	This	was	done	to	allow	future	development	of	calc()	values	to
support	keywords	that	contain	dashes	(e.g.,	max-content).

Furthermore,	it’s	valid	(and	supported)	to	nest	calc()	functions	inside	each	other.	Thus	you	can	say
something	like:

p	{width:	calc(90%	-	calc(1em	+	0.1vh));}

Beyond	that,	the	CSS	specification	requires	that	user	agents	support	a	minimum	of	20	terms	inside	any
single	calc()	function,	where	a	term	is	a	number,	percentage,	or	dimension	(e.g.,	a	length).	In	situations
where	the	number	of	terms	somehow	exceeds	the	user	agent’s	term	limits,	the	entire	function	is	treated	as
invalid.

Maximum	Values
Calculation	is	nice,	but	sometimes	you	just	want	to	make	sure	a	property	is	set	to	one	of	a	number	of
values,	whichever	is	smallest.	In	those	cases,	the	min()	function	value	comes	in	very	handy.	Yes,	this	is
confusing	at	first,	but	give	us	a	minute	and	hopefully	it	will	make	sense.

Suppose	you	have	an	element	you	want	to	make	sure	is	never	wider	than	a	certain	amount;	say,	an	image
that	should	be	one-quarter	the	width	of	the	viewport	or	200	pixels	wide,	whichever	is	smaller.	This
allows	it	to	be	constrained	to	200	pixels	of	width	on	wide	viewports,	but	take	up	to	a	quarter	the	width	of
smaller	viewports.	For	that,	you’d	say:

.figure	{width:	min(25vw,	200px);}

The	browser	will	compute	the	width	of	both	25vw	and	compare	that	to	200px,	and	use	whichever	is
smaller.	If	200px	is	smaller	than	25%	the	width	of	the	viewport,	then	it	will	be	used.	Otherwise,	the
element	will	be	25%	as	wide	as	the	viewport,	which	could	easily	be	smaller	than	1em.	Note	that
“smaller”	in	this	case	means	“closest	to	negative	infinity,”	not	“closest	to	zero.”	Thus,	if	you	compare	two
terms	that	compute	to	(say)	-1500px	and	-2px,	min()	will	pick	-1500px.

You	can	nest	min()	inside	min(),	or	throw	a	mathematical	expression	in	there	for	one	of	the	values,
without	having	to	wrap	it	in	calc().	For	that	matter,	you	can	put	in	max()	and	clamp(),	which	we
haven’t	even	discussed	yet.	You	can	supply	as	many	terms	as	you	like:	if	you	want	to	compare	four
different	ways	of	measuring	something,	picking	the	minimum,	then	just	separate	them	with	commas.	A
slightly	contrived	example:

.figure	{width:	min(25vw,	200px,	33%,	50rem	-	30px);}

Whichever	of	those	values	is	computed	to	be	the	minimum	(closest	to	negative	infinity)	will	be	used,	thus
defining	a	maximum	for	the	width	value.	The	order	you	list	them	in	doesn’t	actually	matter,	since	the
minimum	value	will	always	be	picked	regardless	of	where	it	appears	in	the	function.

In	general,	min()	can	be	used	in	any	property	value	that	permits	<length>,	<frequency>,	<angle>,

<time>,	<percentage>,	<number>,	or	<integer>.

WARNING
Remember	that	setting	a	maximum	value	on	font	sizes	is	an	accessibility	concern.	You	should	never	set	a	maximum	font	size	using	pixels,
because	that	would	likely	prevent	text	zooming	by	users.	You	probably	shouldn’t	use	min()	for	font	sizing	in	any	case,	but	if	you	do,	keep
px	lengths	out	of	the	values!

Minimum	Values
The	mirror	image	of	min()	is	max(),	which	can	be	used	to	set	a	minimum	value	for	a	property.	It	can
appear	the	same	places	min()	can,	can	be	nested	in	the	same	ways	min()	can,	and	is	generally	just	the
same	except	that	it	picks	the	largest	(closest	to	positive	infinity)	value	from	among	the	alternatives	given.

As	an	example,	perhaps	the	top	of	a	page’s	design	should	be	a	minimum	of	100	pixels	tall,	but	it	can	be
taller	if	conditions	permit.	In	that	case,	you	could	use	something	like:

header	{height:	max(100px,	15vh,	5rem);}

Whichever	of	the	values	is	largest	will	be	used.	For	a	desktop	browser	window,	that	would	probably	be
15vh,	unless	the	base	size	text	is	really	enormous.	For	a	handheld	display,	it’s	more	likely	that	5rem	or
100px	will	be	the	largest	value.	In	effect,	this	sets	a	minimum	size	of	100	pixels	tall,	since	getting	either
15vh	or	5rem	below	that	value	is	easily	possible.

Remember	that	setting	even	a	minimum	value	on	font	sizes	can	create	an	accessibility	problem,	since	a
too-small	minimum	is	still	too	small.	A	good	way	to	handle	this	is	to	always	include	1rem	in	your
max()	expressions	for	font	sizes.	Something	like	this:

.sosumi	{font-size:	max(1vh,	0.75em,	1rem);}

Alternatively,	you	could	not	use	max()	for	font	sizing	at	all.	It’s	probably	best	left	to	box	sizing	and	other
such	uses.

Clamping	Values
If	you’ve	already	been	thinking	about	ways	to	nest	min()	and	max()	to	set	upper	and	lower	bounds	on
a	value,	here’s	a	way	to	not	only	do	that,	but	set	an	“ideal”	value	as	well:	clamp().	This	function	value
takes	three	parameters	representing,	in	order,	the	minimum	allowed	value,	preferred	value,	and	maximum
allowed	value.

For	example,	consider	some	text	you	want	to	be	about	5%	the	height	of	the	viewport,	while	keeping	its
minimum	the	base	font	size	and	its	maximum	three	times	the	text	around	it.	That	would	be	expressed	like
so:

Example	5-1.

footer	{font-size:	clamp(1rem,	2vh,	3em);}

Given	those	styles	and	assuming	the	base	font	size	is	16	pixels,	as	it	is	by	default	in	most	browsers,	then
the	footer	text	will	be	equal	to	the	base	font	size	up	to	a	viewport	height	of	800	pixels	(16	divided	by
.02).	If	the	viewport	gets	taller,	the	text	will	start	to	get	bigger,	unless	doing	so	would	make	it	bigger	than
3em.	If	it	ever	gets	to	the	same	size	as	3em,	then	it	will	stop	growing.	(This	is	fairly	unlikely,	but	one
never	knows.)

In	any	case	where	the	maximum	value	of	a	clamp()	is	computed	to	be	smaller	than	the	minimum	value,
then	the	maximum	is	ignored	and	the	minimum	value	is	used	instead.

You	can	use	clamp()	anywhere	you	can	use	min()	and	max(),	including	nesting	them	inside	each
other.	For	example:

Example	5-2.

footer	{font-size:	clamp(1rem,	max(2vh,	1.5em),	3em);}

This	is	basically	the	same	as	the	previous	example,	except	in	this	case	the	preferred	value	is	either	2%
the	height	of	the	viewport	or	1.5	times	the	size	of	the	parent	element’s	text,	whichever	is	larger.

Attribute	Values
In	a	few	CSS	properties,	it’s	possible	to	pull	in	the	value	of	an	HTML	attribute	defined	for	the	element
being	styled.	This	is	done	with	the	attr()	function.

For	example,	with	generated	content,	you	can	insert	the	value	of	any	attribute.	It	looks	something	like	this
(don’t	worry	about	understanding	the	exact	syntax,	which	we’ll	explore	in	XREF	HERE):

p::before	{content:	"["	attr(id)	"]";}

That	expression	would	prefix	any	paragraph	that	has	an	id	attribute	with	the	value	of	that	id,	enclosed	in
square	brackets.	Therefore	applying	the	previous	style	to	the	following	paragraphs	would	have	the	result
shown	in	Figure	5-8:

<p	id="leadoff">This	is	the	first	paragraph.</p>

<p>This	is	the	second	paragraph.</p>

<p	id="conclusion">This	is	the	third	paragraph.</p>

Figure	5-8.	Inserting	attribute	values

While	attr()	is	supported	in	the	content	property	value,	it	isn’t	parsed.	In	other	words,	if	the
attr()	returns	an	image	URL	from	an	attribute	value,	the	generated	content	will	be	the	URL	written	out
as	text,	and	not	the	image	that	lives	at	that	URL.	As	of	late	2022,	anyway;	there	are	plans	to	change	things
such	that	attr()	can	be	parsed	(and	also	be	used	for	all	properties,	not	just	content).

Color
One	of	the	first	questions	every	starting	web	author	asks	is,	“How	do	I	set	colors	on	my	page?”	Under
HTML,	you	have	two	choices:	you	could	use	one	of	a	large	but	limited	number	of	colors	with	names,	such
as	red	or	purple,	or	employ	a	vaguely	cryptic	method	using	hexadecimal	codes.	Both	of	these	methods
for	describing	colors	remain	in	CSS,	along	with	several—and,	we	think,	more	intuitive—methods.

Named	Colors
Over	the	years,	CSS	has	added	a	set	of	148	colors	that	are	identified	by	a	human-readable	names	like
red	or	firebrickred.	CSS	calls	these,	logically	enough,	named	colors.	In	the	early	days	of	CSS,
there	were	only	the	16	basic	color	keywords	defined	in	HTML	4.01.	These	are	shown	in	Table	5-2.

Table	5-2.	The	basic	16	color	keywords

aqua gray navy silver black green olive

blue lime purple white fuchsia maroon red

So,	let’s	say	you	want	all	first-level	headings	to	be	maroon.	The	best	declaration	would	be:

h1	{color:	maroon;}

Simple	enough,	isn’t	it?	Figure	5-9	shows	a	few	more	examples:

h1	{color:	silver;}

h2	{color:	gray;}

h3	{color:	black;}

Figure	5-9.	Named	colors

You’ve	probably	seen	(and	maybe	even	used)	color	names	other	than	the	ones	listed	earlier.	For	example,
you	could	say:

h1	{color:	lightgreen;}

…and	get	a	light	green	(but	not	exactly	lime)	color	applied	to	h1	elements.

The	CSS	color	specification	includes	those	original	16	named	colors	in	a	longer	list	of	148	color
keywords.	This	extended	list	is	based	on	the	standard	X11	RGB	values	that	have	been	in	use	for	decades,
and	have	been	recognized	by	browsers	for	many	years,	with	the	addition	of	some	color	names	from	SVG
(mostly	involving	variants	of	“gray”	and	“grey”)	and	a	memorial	color.	A	table	of	color	equivalents	for
all	148	keywords	defined	in	the	CSS	Color	Module	Level	4	is	given	in	XREF	HERE.

Color	Keywords
There	are	two	special	keywords	that	can	be	used	anywhere	a	color	value	is	permitted.	These	are
transparent	and	currentColor.

As	its	name	suggests,	transparent	defines	a	completely	transparent	color.	The	CSS	Color	Module
defines	it	to	be	equivalent	to	rgba(0,0,0,0),	and	that’s	its	computed	value.	This	keyword	is	not	often
used	to	set	text	color,	for	example,	but	it	is	the	default	value	for	element	background	colors.	It	can	also	be
used	to	define	element	borders	that	take	up	space,	but	are	not	visible,	and	is	often	used	when	defining
gradients—all	topics	we’ll	cover	in	later	chapters.

By	contrast,	currentColor	means	“whatever	the	computed	value	of	color	is	for	this	element.”
Consider	the	following:

main	{color:	gray;	border-color:	currentColor;}

The	first	declaration	causes	any	main	elements	to	have	a	foreground	color	of	gray.	The	second
declaration	uses	currentColor	to	copy	the	computed	value	of	color—in	this	case	gray—and
apply	it	to	any	borders	the	main	elements	might	have.	Incidentally,	currentColor	is	actually	the
default	value	for	border-color,	which	we’ll	cover	in	Chapter	7.

As	with	all	the	named	colors,	these	color	names	are	case-insensitive.	currentColor	was	shown	here	with
mixed	capitalization	for	legibility,	and	is	generally	written	that	way,	again,	for	legibility.

Fortunately,	there	are	more	detailed	and	precise	ways	to	specify	colors	in	CSS.	The	advantage	is	that,
with	these	methods,	you	can	specify	any	color	in	the	color	spectrum,	not	just	a	limited	list	of	named
colors.

Colors	by	RGB	and	RGBa
Computers	create	colors	by	combining	different	levels	of	the	primary	colors	red,	green,	and	blue,	a
combination	that	is	often	referred	to	as	RGB	color.	So,	it	makes	sense	that	you	be	able	to	specify	your
own	combinations	of	these	primary	colors	in	CSS.	That	solution	is	a	bit	complex,	but	possible,	and	the
payoffs	are	worth	it	because	there	are	very	few	limits	on	which	colors	you	can	produce.	There	are	four
ways	to	affect	color	in	this	manner.

Functional	RGB	colors
There	are	two	color	value	types	that	use	functional	RGB	notation	as	opposed	to	hexadecimal	notation.
The	generic	syntax	for	this	type	of	color	value	is	rgb(color),	where	color	is	expressed	using	a
triplet	of	either	percentages	or	numbers.	The	percentage	values	can	be	in	the	range	0%–100%,	and	the
integers	can	be	in	the	range	0–255.

Thus,	to	specify	white	and	black,	respectively,	using	percentage	notation,	the	values	would	be:

rgb(100%,100%,100%)

rgb(0%,0%,0%)

Using	the	integer-triplet	notation,	the	same	colors	would	be	represented	as:

rgb(255,255,255)

rgb(0,0,0)

An	important	thing	to	remember	is	that	you	can’t	mix	integers	and	percentages	in	the	same	color	value.
Thus,	rgb(255,66.67%,50%)	would	be	invalid	and	thus	ignored.

NOTE
In	more	recent	browsers,	the	separating	commas	in	RGB	values	can	be	replaced	with	simple	whitespace.	Thus,	black	can	be	represented
rgb(0	0	0)	or	rgb(0%	0%	0%).	This	is	true	of	all	the	color	values	we’ll	see	throughout	the	chapter	that	allow	commas,	but	we’ll
mostly	stick	to	the	comma	notation	for	backwards	compatibility	and	clarity’s	sake.	Also	bear	in	mind	that	some	of	the	newer	color	functions
do	not	allow	commas.

Assume	you	want	your	h1	elements	to	be	a	shade	of	red	that	lies	between	the	values	for	red	and	maroon.
red	is	equivalent	to	rgb(100%,0%,0%),	whereas	maroon	is	equal	to	(50%,0%,0%).	To	get	a
color	between	those	two,	you	might	try	this:

h1	{color:	rgb(75%,0%,0%);}

This	makes	the	red	component	of	the	color	lighter	than	maroon,	but	darker	than	red.	If,	on	the	other
hand,	you	want	to	create	a	pale	red	color,	you	would	raise	the	green	and	blue	levels:

h1	{color:	rgb(75%,50%,50%);}

The	closest	equivalent	color	using	integer-triplet	notation	is:

h1	{color:	rgb(191,127,127);}

The	easiest	way	to	visualize	how	these	values	correspond	to	color	is	to	create	a	table	of	gray	values.	The
result	is	shown	in	Figure	5-10:

p.one	{color:	rgb(0%,0%,0%);}

p.two	{color:	rgb(20%,20%,20%);}

p.three	{color:	rgb(40%,40%,40%);}

p.four	{color:	rgb(60%,60%,60%);}

p.five	{color:	rgb(80%,80%,80%);}

p.six	{color:	rgb(0,0,0);}

p.seven	{color:	rgb(51,51,51);}

p.eight	{color:	rgb(102,102,102);}

p.nine	{color:	rgb(153,153,153);}

p.ten	{color:	rgb(204,204,204);}

Figure	5-10.	Text	set	in	shades	of	gray

Since	we’re	dealing	in	shades	of	gray,	all	three	RGB	values	are	the	same	in	each	statement.	If	any	one	of
them	were	different	from	the	others,	then	a	color	hue	would	start	to	emerge.	If,	for	example,
rgb(50%,50%,50%)	were	modified	to	be	rgb(50%,50%,60%),	the	result	would	be	a	medium-
dark	color	with	just	a	hint	of	blue.

It	is	possible	to	use	fractional	numbers	in	percentage	notation.	You	might,	for	some	reason,	want	to
specify	that	a	color	be	exactly	25.5	percent	red,	40	percent	green,	and	98.6	percent	blue:

h2	{color:	rgb(25.5%,40%,98.6%);}

Values	that	fall	outside	the	allowed	range	for	each	notation	are	clipped	to	the	nearest	range	edge,	meaning
that	a	value	that	is	greater	than	100%	or	less	than	0%	will	default	to	those	allowed	extremes.	Thus,	the
following	declarations	would	be	treated	as	if	they	were	the	values	indicated	in	the	comments:

P.one	{color:	rgb(300%,4200%,110%);}			/*		100%,100%,100%		*/

P.two	{color:	rgb(0%,-40%,-5000%);}			/*		0%,0%,0%		*/

p.three	{color:	rgb(42,444,-13);}				/*	42,255,0		*/

Conversion	between	percentages	and	integers	may	seem	arbitrary,	but	there’s	no	need	to	guess	at	the
integer	you	want—there’s	a	simple	formula	for	calculating	them.	If	you	know	the	percentages	for	each	of
the	RGB	levels	you	want,	then	you	need	only	apply	them	to	the	number	255	to	get	the	resulting	values.
Let’s	say	you	have	a	color	of	25	percent	red,	37.5	percent	green,	and	60	percent	blue.	Multiply	each	of
these	percentages	by	255,	and	you	get	63.75,	95.625,	and	153.	Round	these	values	to	the	nearest	integers,
and	voilà:	rgb(64,96,153).

If	you	already	know	the	percentage	values,	there	isn’t	much	point	in	converting	them	into	integers.	Integer
notation	is	more	useful	for	people	who	use	programs	such	as	Photoshop,	which	can	display	integer	values
in	the	Info	dialog,	or	for	those	who	are	so	familiar	with	the	technical	details	of	color	generation	that	they
normally	think	in	values	of	0–255.

RGBa	colors
Many	years	ago,	the	two	functional	RGB	notations	were	extended	into	a	functional	RGBa	notation.	This
notation	adds	an	alpha	value	to	the	end	of	the	RGB	triplets;	thus	“red-green-blue-alpha”	becomes	RGBa.
The	alpha	stands	for	alpha	channel,	which	is	a	measure	of	opacity.

For	example,	suppose	you	wanted	an	element’s	text	to	be	half-opaque	white.	That	way,	any	background
color	behind	the	text	would	“shine	through,”	mixing	with	the	half-transparent	white.	You	would	write	one
of	the	following	two	values:

rgba(255	255	255	/	0.5)

rgba(100%	100%	100%	/	0.5)		/*	commas	would	also	be	allowed	*/

To	make	a	color	completely	transparent,	you	set	the	alpha	value	to	0;	to	be	completely	opaque,	the	correct
value	is	1.	Thus	rgb(0,0,0)	and	rgba(0,0,0,1)	will	yield	precisely	the	same	result	(black).
Figure	5-11	shows	a	series	of	paragraphs	set	in	increasingly	transparent	black,	which	is	the	result	of	the
following	rules.

p.one	{color:	rgba(0,0,0,1);}

p.two	{color:	rgba(0%,0%,0%,0.8);}

p.three	{color:	rgba(0,0,0,0.6);}

p.four	{color:	rgba(0%,0%,0%,0.4);}

p.five	{color:	rgba(0,0,0,0.2);}

Figure	5-11.	Text	set	in	progressive	translucency

Alpha	values	are	always	real	numbers	in	the	range	0	to	1,	or	percentages	in	the	range	0%	to	100%.	Any
value	outside	that	range	will	either	be	ignored	or	reset	to	the	nearest	valid	alpha	value.	You	cannot	use
<percentage>	to	represent	alpha	values,	despite	the	mathematical	equivalence.

Hexadecimal	RGB	colors
CSS	allows	you	to	define	a	color	using	the	same	hexadecimal	color	notation	so	familiar	to	old-school
HTML	web	authors:

h1	{color:	#FF0000;}			/*	set	H1s	to	red	*/

h2	{color:	#903BC0;}			/*	set	H2s	to	a	dusky	purple	*/

h3	{color:	#000000;}			/*	set	H3s	to	black	*/

h4	{color:	#808080;}			/*	set	H4s	to	medium	gray	*/

Computers	have	been	using	hex	notation	for	quite	some	time	now,	and	programmers	are	typically	either
trained	in	its	use	or	pick	it	up	through	experience.	Their	familiarity	with	hexadecimal	notation	likely	led
to	its	use	in	setting	colors	in	HTML.	That	practice	was	carried	over	to	CSS.

Here’s	how	it	works:	by	stringing	together	three	hexadecimal	numbers	in	the	range	00	through	FF,	you
can	set	a	color.	The	generic	syntax	for	this	notation	is	#RRGGBB.	Note	that	there	are	no	spaces,	commas,
or	other	separators	between	the	three	numbers.

Hexadecimal	notation	is	mathematically	equivalent	to	integer-pair	notation.	For	example,
rgb(255,255,255)	is	precisely	equivalent	to	#FFFFFF,	and	rgb(51,102,128)	is	the	same	as

#336680.	Feel	free	to	use	whichever	notation	you	prefer—it	will	be	rendered	identically	by	most	user
agents.	If	you	have	a	calculator	that	converts	between	decimal	and	hexadecimal,	making	the	jump	from
one	to	the	other	should	be	pretty	simple.

For	hexadecimal	numbers	that	are	composed	of	three	matched	pairs	of	digits,	CSS	permits	a	shortened
notation.	The	generic	syntax	of	this	notation	is	#RGB:

h1	{color:	#000;}			/*	set	H1s	to	black	*/

h2	{color:	#666;}			/*	set	H2s	to	dark	gray	*/

h3	{color:	#FFF;}			/*	set	H3s	to	white	*/

As	you	can	see	from	the	markup,	there	are	only	three	digits	in	each	color	value.	However,	since
hexadecimal	numbers	between	00	and	FF	need	two	digits	each,	and	you	have	only	three	total	digits,	how
does	this	method	work?

The	answer	is	that	the	browser	takes	each	digit	and	replicates	it.	Therefore,	#F00	is	equivalent	to
#FF0000,	#6FA	would	be	the	same	as	#66FFAA,	and	#FFF	would	come	out	#FFFFFF,	which	is	the
same	as	white.	Not	every	color	can	be	represented	in	this	manner.	Medium	gray,	for	example,	would	be
written	in	standard	hexadecimal	notation	as	#808080.	This	cannot	be	expressed	in	shorthand;	the	closest
equivalent	would	be	#888,	which	is	the	same	as	#888888.

Hexadecimal	RGBa	colors
Hexadecimal	notation	can	have	a	fourth	hex	value	to	represent	the	alpha	channel	value.	Figure	5-11	shows
a	series	of	paragraphs	set	in	increasingly	transparent	black,	just	as	we	saw	in	the	previous	section,	which
is	the	result	of	the	following	rules:

p.one	{color:	#000000FF;}

p.two	{color:	#000000CC;}

p.three	{color:	#00000099;}

p.four	{color:	#00000066;}

p.five	{color:	#00000033;}

Figure	5-12.	Text	set	in	progressive	translucency,	redux

As	with	non-alpha	hexadecimal	values,	it’s	possible	to	shorten	a	value	composed	of	matched	pairs	to	a
four-digit	value.	Thus,	a	value	of	#663399AA	can	be	written	as	#639A.	If	the	value	has	any	pairs	that
are	not	repetitive,	then	the	entire	eight-digit	value	must	be	written	out:	#663399CA	cannot	be	shortened
to	#639CA.

HSL	and	HSLa	colors
HSL	(hue-saturation-lightness)	color	notation	is	similar	to	HSB	(hue-saturation-brightness),	the	color

system	in	image	editing	software	like	Photoshop,	and	just	as	intuitive.	The	hue	is	expressed	as	an	angle
value,	saturation	is	a	percentage	value	from	0	(no	saturation)	to	100	(full	saturation),	and	lightness	is	a
percentage	value	from	0	(completely	dark)	to	100	(completely	light).	If	you’re	intimately	familiar	with
RGB,	then	HSL	may	be	confusing	at	first.	(But	then,	RGB	is	confusing	for	people	familiar	with	HSL.)

The	hue	angle	is	expressed	in	terms	of	a	circle	around	which	the	full	spectrum	of	colors	progresses.	It
starts	with	red	at	0	degrees	and	then	proceeds	through	the	rainbow	until	it	comes	to	red	again	at	360
degrees.

As	for	the	other	two	values,	saturation	measures	the	intensity	of	a	color.	A	saturation	of	0%	always	yields
a	shade	of	gray,	no	matter	what	hue	angle	you	have	set,	and	a	saturation	of	100%	creates	the	most	vivid
possible	shade	of	that	hue	(in	the	HSL	color	space)	for	a	given	lightness.

Similarly,	lightness	defines	how	dark	or	light	the	color	appears.	A	lightness	of	0%	is	always	black,
regardless	of	the	other	hue	and	saturation	values,	just	as	a	lightness	of	100%	always	yields	white.
Consider	the	results	of	the	following	styles,	illustrated	on	the	left	side	of	Figure	5-13.

p.one	{color:	hsl(0,0%,0%);}

p.two{color:	hsl(60,0%,25%);}

p.three	{color:	hsl(120,0%,50%);}

p.four	{color:	hsl(180,0%,75%);}

p.five	{color:	hsl(240,0%,0%);}

p.six	{color:	hsl(300,0%,25%);}

p.seven	{color:	hsl(360,0%,50%);}

NOTE
Remember	that	in	more	recent	browsers,	the	commas	in	hsl()	values	can	be	replaced	with	whitespace.

Figure	5-13.	Varying	lightness	and	hues

The	gray	you	see	on	the	left	side	isn’t	just	a	function	of	the	limitations	of	print:	every	one	of	those
paragraphs	is	a	shade	of	gray,	because	every	color	value	has	0%	in	the	saturation	(middle)	position.	The
degree	of	lightness	or	darkness	is	set	by	the	lightness	(third)	position.	In	all	seven	examples,	the	hue	angle
changes,	and	in	none	of	them	does	it	matter.	But	that’s	only	so	long	as	the	saturation	remains	at	0%.	If	that
value	is	raised	to,	say,	50%,	then	the	hue	angle	will	become	very	important,	because	it	will	control	what
sort	of	color	you	see.	Consider	the	same	set	of	values	that	we	saw	before,	but	all	set	to	50%	saturation,	as

illustrated	on	the	right	side	of	Figure	5-13.

Just	as	RGB	has	its	RGBa	counterpart,	HSL	has	an	HSLa	counterpart.	This	is	an	HSL	triplet	followed	by
an	alpha	value	in	the	range	0–1.	The	following	HSLa	values	are	all	black	with	varying	shades	of
transparency,	just	as	in	“Hexadecimal	RGBa	colors”	(and	illustrated	in	Figure	5-11):

p.one	{color:	hsla(0,0%,0%,1);}

p.two	{color:	hsla(0,0%,0%,0.8);}

p.three	{color:	hsla(0,0%,0%,0.6);}

p.four	{color:	hsla(0,0%,0%,0.4);}

p.five	{color:	hsla(0,0%,0%,0.2);}

Colors	with	HWB
Colors	can	also	be	represented	in	terms	of	their	Hue,	White	level,	and	Black	level	by	using	the	hwb()
functional	value.	This	function	value	accepts	hue	values	expressed	as	an	angle	value.	After	the	hue	angle,
instead	of	lightness	and	saturation,	whiteness	and	blackness	values	are	specified	as	percentages.

Unlike	HSL,	however,	there	is	no	hwba()	function.	Instead,	the	value	syntax	for	hwb()	allows	an
opacity	to	be	defined	after	the	HWB	values,	separated	from	them	by	a	solidus	(/).	The	Opacity	can	be
expressed	either	as	a	percentage	or	as	a	real	value	from	0	to	1,	inclusive.	Also	unlike	HSL,	commas	are
not	supported:	the	HWB	values	must	be	separated	by	whitespace.

Here	are	some	examples	of	using	HWB	notation:

/*	Varying	shades	of	red	*/

hwb(0	40%	20%)

hwb(360	50%	10%)

hwb(0deg	10%	10%)

hwb(0rad	60%	0%)

hwb(0turn	0%	40%)

/*	Partially	translucent	red	*/

hwb(0	10%	10%	/	0.4)

hwb(0	10%	10%	/	40%)

Lab	colors
Historically,	all	CSS	colors	were	defined	in	the	sRGB	color	space,	which	was	more	than	older	display
monitors	could	represent.	Modern	displays,	on	the	other	hand,	can	handle	about	150%	of	the	the	sRGB
color	space,	which	still	isn’t	the	full	range	of	color	humans	can	perceive,	but	it’s	a	lot	closer.

In	1931,	the	Commission	Internationale	de	l’Éclairage	(International	Commission	on	Illumination),	or
CIE,	defined	a	scientific	system	for	defining	colors	created	via	light,	as	opposed	to	those	created	with
paint	or	dyes.	Now,	almost	a	century	later,	CSS	has	brought	the	work	of	the	CIE	into	its	repertoire.

It	does	this	using	the	lab()	function	value	to	express	color	using	the	CIE	L*a*b*	(hereafter	shortened	as
“Lab”)	color	space.	Lab	is	designed	to	represent	the	entire	range	of	color	that	humans	can	see.	The
lab()	function	accepts	3	to	4	parameters:	lab(L	a	b	/	A).	Similar	to	HWB,	the	parameters	are
space	separated	(no	commas	allowed)	and	a	solidus	(/)	precedes	alpha	value,	if	provided.

The	L	(Lightness)	component	specifies	the	CIE	Lightness,	and	is	a	<percentage>	between	0%
representing	black	and	100%	representing	white,	or	else	a	<number>	from	0	to	1.	The	second
component,	a,	is	the	distance	along	the	a	axis	in	the	Lab	colorspace.	This	axis	runs	from	a	purplish	red	in
the	positive	direction	to	a	shade	of	green	in	the	negative	direction.	The	third	component,	b,	is	the	distance
along	the	b	axis	in	the	Lab	colorspace.	This	axis	runs	from	a	yellow	in	the	positive	direction	to	a	blue-
violet	in	the	negative	direction.

The	fourth,	optional	parameter	is	the	opacity,	with	a	value	between	0	and	1	inclusive,	or	0	to	100%
inclusive.	If	omitted,	the	opacity	defaults	to	1	(100%),	or	full	opacity.

Here	are	some	examples	of	Lab	color	expressed	in	CSS.

lab(29.2345%	39.3825	-20.0664);

lab(52.2345%	40.1645	59.9971);

lab(52.2345%	40.1645	59.9971	/	.5);

The	main	reason	to	bring	Lab	(and	LCH,	which	we’ll	discuss	in	a	moment)	colors	into	CSS	is	that	they
are	systematically	designed	to	be	perceptually	uniform.	What	the	means	is,	color	values	that	share	a
given	coordinate	will	seem	consistent	in	terms	of	that	coordinate.	Two	colors	with	different	hues	but	the
same	lightness	will	appear	to	have	similar	lightnesses.	Two	colors	with	the	same	hue	but	different
lightnesses	will	appear	to	be	shades	of	a	single	hue.	This	is	often	not	the	case	with	RGB	and	HSL	values,
so	Lab	and	LCH	represent	a	big	improvement.

They’re	also	defined	to	be	device-independent,	so	you	should	be	able	to	specify	colors	in	these	color
spaces	and	get	a	visually	consistent	result	from	one	device	to	another.

WARNING
As	of	late	2022,	only	WebKit	supported	lab().

LCH	colors
LCH,	for	“Lightness	Chroma	Hue”,	is	a	version	of	Lab	designed	to	represent	the	entire	spectrum	of	human
vision.	It	does	this	using	a	different	notation:	lch(L	C	H	/	A).	The	main	difference	is	that	C	and	H
are	polar	coordinates,	rather	than	linear	values	along	color	axes.

The	L	(Lightness)	component	is	the	same	as	the	CIE	Lightness,	and	is	a	<percentage>	between	0%
representing	black	and	100%	representing	white.

The	C	(Chroma	amount)	component	roughly	represents	the	“amount	of	color”.	Its	minimum	value	is	0,	and
there	is	no	defined	maximum.	Negative	C	values	are	clamped	to	zero.

The	H	(Hue	angle)	component	is	essentially	a	combination	of	the	a	and	b	values	in	lab().	The	value	0
points	along	the	positive	“a”	axis	(toward	purplish	red),	90	points	along	the	positive	“b”	axis	(toward
mustard	yellow),	180	points	along	the	negative	“a”	axis	(toward	greenish	cyan),	and	270	points	along
the	negative	“b”	axis	(toward	sky	blue).	This	component	loosely	corresponds	to	HSL’s	Hue,	but	the	hue
angles	differ.

The	optional	A	(alpha)	component	can	be	a	<number>	between	0	and	1,	or	else	a	<percentage>,	where
the	number	1	corresponds	to	100%	(full	opacity).	If	present,	it	is	preceded	by	a	solidus	(/).

lch(56%	132	331)

lch(52%	132	8)

lch(52%	132	8	/	50%)

To	give	an	example	of	the	capabilities	of	LCH,	lch(52%	132	8)	is	a	very	bright	magenta	equivalent
to	rgb(118.23%	-46.78%	40.48%).	Notice	the	large	red	value	and	the	negative	green	value,
which	places	the	color	outside	the	sRGB	color	space.	If	you	supplied	that	RGB	value	to	a	browser,	it
would	clamp	the	value	to	rgb(100%	0%	40.48%).	This	is	within	the	sRGB	color	space,	but	is
visually	quite	distinct	from	the	color	defined	by	lch(52%	132	8).

WARNING
As	of	late	2022,	Firefox	did	not	yet	support	lch(),	support	was	just	coming	to	Chrome,	and	it	had	been	present	for	a	while	in	Safari.

Oklab	and	Oklch
There	are	improved	versions	of	Lab	and	LCH	called	Oklab	and	Oklch,	and	these	will	be	supported	by
CSS	using	the	oklab()	and	oklch()	functional	values.	Oklab	was	developed	by	taking	a	large	set	of
visually	similar	colors	and	performing	a	numerical	optimization	on	them,	yielding	a	color	space	with
better	hue	linearity	and	uniformity,	and	better	chroma	uniformity,	than	the	CIE	color	spaces.	Oklch	is	a
polar-coordinate	version	of	Oklab,	just	as	LCH	is	to	Lab.

Because	of	this	improved	uniformity,	Oklab	and	Oklch	will	be	the	default	for	color-interpolation
calculations	in	CSS	going	foward.	However,	as	of	the	time	of	writing	in	late	2022,	only	Safari	supported
the	oklab()	and	oklch()	CSS	functional	values,	and	that	only	recently.

color()
The	color()	function	value	allows	a	color	to	be	specified	in	a	named	colorspace,	rather	than	the
implicit	sRGB	colorspace.	It	accepts	four	space-separated	parameters,	as	well	as	an	optional	fifth
opacity	value	preceded	by	a	solidus	(/).

The	first	parameter	is	a	predefined,	named	color	space.	Possible	values	as	of	early	2022	include	srgb,
srgb-linear,	display-p3,	a98-rgb,	prophoto-rgb,	rec2020,	xyz,	xyz-d50,	and	xyz-
d65	.	The	three	values	that	follow	are	specific	to	the	color	space	declared	in	the	first	parameter.	Some
color	spaces	may	allow	these	values	to	be	percentages,	while	others	may	not.

As	an	example,	the	following	values	should	yield	the	same	color:

#7654CD

rgb(46.27%	32.94%	80.39%)

lab(44.36%	36.05	-58.99)

color(xyz-d50	0.2005	0.14089	0.4472)

color(xyz-d65	0.21661	0.14602	0.59452)

It	is	easily	possible	to	declare	a	color	that	lies	outside	the	gamut	of	a	given	color	space.	For	example,
color(display-p3	-0.6112	1.0079	-0.2192);	is	outside	the	display-p3	gamut.	It’s	still	a
valid	color,	just	not	one	that	can	be	expressed	in	that	color	space.	In	the	case	where	a	color	value	is	valid
but	outside	the	gamut,	it	will	be	mapped	to	the	closest	color	that	lies	inside	the	color	space’s	gamut.

In	cases	where	a	color’s	value	is	straight	up	invalid,	then	the	color	used	is	opaque	black.

WARNING
As	of	late	2022,	Firefox	did	not	yet	support	color(),	support	was	just	coming	to	Chrome,	and	it	had	been	present	for	a	while	in	Safari.

Applying	Color
Since	we’ve	just	gone	through	all	the	different	possible	color	formats,	let’s	take	a	brief	detour	to	talk
about	the	property	that	uses	color	values	the	most	often:	color.

COLOR

Values <color>

Initial	value User	agent-specific

Applies	to All	elements

Computed	value As	specified

Inherited Yes

Animatable Yes

This	property	accepts	as	a	value	any	valid	color	type,	such	as	#FFCC00	or
rgba(100%,80%,0%,0.5).

For	nonreplaced	elements	like	paragraphs	or	em	elements,	color	sets	the	color	of	the	text	in	the
element,	as	illustrated	in	Figure	5-14,	which	is	the	result	of	the	following	code:

<p	style="color:	gray;">This	paragraph	has	a	gray	foreground.</p>

<p>This	paragraph	has	the	default	foreground.</p>

Figure	5-14.	Declared	color	versus	default	color

In	Figure	5-14,	the	default	foreground	color	is	black.	That	doesn’t	have	to	be	the	case,	since	the	user

might	have	set	her	browser	(or	other	user	agent)	to	use	a	different	foreground	(text)	color.	If	the	browser’s
default	text	color	was	set	to	green,	the	second	paragraph	in	the	preceding	example	would	be	green,	not
black—but	the	first	paragraph	would	still	be	gray.

You	need	not	restrict	yourself	to	such	basic	operations.	There	are	plenty	of	ways	to	use	color.	You
might	have	some	paragraphs	that	contain	text	warning	the	user	of	a	potential	problem.	In	order	to	make
this	text	stand	out	more	than	usual,	you	might	decide	to	color	it	red.	Just	apply	a	class	of	warn	to	each
paragraph	that	contains	warning	text	(<p	class="warn">)	and	the	following	rule:

p.warn	{color:	red;}

In	the	same	document,	you	might	decide	that	any	unvisited	hyperlinks	within	a	warning	paragraph	should
be	green:

p.warn	{color:	red;}

p.warn	a:link	{color:	green;}

Then	you	change	your	mind,	deciding	that	warning	text	should	be	dark	red,	and	that	unvisited	links	in	such
text	should	be	medium	purple.	The	preceding	rules	need	only	be	changed	to	reflect	the	new	values,	as
illustrated	in	Figure	5-15,	which	is	the	result	of	the	following	code:

p.warn	{color:	#600;}

p.warn	a:link	{color:	#400040;}

Figure	5-15.	Changing	colors

Another	use	for	color	is	to	draw	attention	to	certain	types	of	text.	For	example,	boldfaced	text	is
already	fairly	obvious,	but	you	could	give	it	a	different	color	to	make	it	stand	out	even	further—let’s	say,
maroon:

b,	strong	{color:	maroon;}

Then	you	decide	that	you	want	all	table	cells	with	a	class	of	highlight	to	contain	light	yellow	text:

td.highlight	{color:	#FF9;}

If	you	don’t	set	a	background	color	for	any	of	your	text,	you	run	the	risk	that	a	user’s	setup	won’t	combine
well	with	your	own.	For	example,	if	a	user	has	set	their	browser’s	background	to	be	a	pale	yellow,	like
#FFC,	then	the	previous	rule	would	generate	light	yellow	text	on	a	pale	yellow	background.	Far	more
likely	is	that	it’s	still	the	default	background	of	white,	against	which	light	yellow	is	still	going	to	be	hard
to	read.	It’s	therefore	generally	a	good	idea	to	set	foreground	and	background	colors	together.	(We’ll	talk
about	background	colors	very	shortly.)

Affecting	Form	Elements
Setting	a	value	for	color	should	(in	theory,	anyway)	apply	to	form	elements.	Declaring	select
elements	to	have	dark	gray	text	should	be	as	simple	as	this:

select	{color:	rgb(33%,33%,33%);}

This	might	also	set	the	color	of	the	borders	around	the	edge	of	the	select	element,	or	it	might	not.	It	all
depends	on	the	user	agent	and	its	default	styles.

You	can	also	set	the	foreground	color	of	input	elements—although,	as	you	can	see	in	Figure	5-16,	doing
so	would	apply	that	color	to	all	inputs,	from	text	to	radio	button	to	checkbox	inputs:

select	{color:	rgb(33%,33%,33%);}

input	{color:	red;}

Figure	5-16.	Changing	form	element	foregrounds

Note	in	Figure	5-16	that	the	text	color	next	to	the	checkboxes	is	still	black.	This	is	because	the	rules
shown	assign	styles	only	to	elements	like	input	and	select,	not	normal	paragraph	(or	other)	text.

Also	note	that	the	checkmark	in	the	checkbox	is	black.	This	is	due	to	the	way	form	elements	are	handled	in
some	web	browsers,	which	typically	use	the	form	widgets	built	into	the	base	operating	system.	Thus,
when	you	see	a	checkbox	and	checkmark,	they	really	aren’t	content	in	the	HTML	document—they’re	user
interface	widgets	that	have	been	inserted	into	the	document,	much	as	an	image	would	be.	In	fact,	form
inputs	are,	like	images,	replaced	elements.	In	theory,	CSS	does	not	style	the	contents	of	replaced
elements.

In	practice,	the	line	is	a	lot	blurrier	than	that,	as	Figure	5-16	demonstrates.	Some	form	inputs	have	the
color	of	their	text	and	even	portions	of	their	UI	changed,	while	others	do	not.	And	since	the	rules	aren’t

explicitly	defined,	behavior	is	inconsistent	across	browsers.	In	short,	form	elements	are	deeply	tricky	to
style	and	should	be	approached	with	extreme	caution.

Inheriting	Color
As	the	definition	of	color	indicates,	the	property	is	inherited.	This	makes	sense,	since	if	you	declare	p
{color:	gray;},	you	probably	expect	that	any	text	within	that	paragraph	will	also	be	gray,	even	if
it’s	emphasized	or	boldfaced	or	whatever.	If	you	want	such	elements	to	be	different	colors,	that’s	easy
enough,	as	illustrated	in	Figure	5-17,	which	is	the	result	of	the	following	code:

em	{color:	red;}

p	{color:	gray;}

Figure	5-17.	Different	colors	for	different	elements

Since	color	is	inherited,	it’s	theoretically	possible	to	set	all	of	the	ordinary	text	in	a	document	to	a	color,
such	as	red,	by	declaring	body	{color:	red;}.	This	should	make	all	text	that	is	not	otherwise
styled	(such	as	anchors,	which	have	their	own	color	styles)	red.

Angles
Since	we	just	recently	finished	talking	about	hue	angles	in	a	number	of	color	value	types,	this	would	be	a
good	time	to	talk	about	angle	units.	Angles	in	general	are	represented	as	<angle>,	which	is	a	<number>
followed	by	one	of	four	unit	types:

deg

Degrees,	of	which	there	are	360	in	a	full	circle.

grad

Gradians,	of	which	there	are	400	in	a	full	circle.	Also	known	as	grades	or	gons.

rad

Radians,	of	which	there	are	2π	(approximately	6.28)	in	a	full	circle.

turn

Turns,	of	which	there	is	one	in	a	full	circle.	This	unit	is	mostly	useful	when	animating	a	rotation	and
you	wish	to	have	it	turn	multiple	times,	such	as	10turn	to	make	it	spin	10	times.	(Sadly,	the
pluralization	turns	is	invalid,	at	least	as	of	early	2022,	and	will	be	ignored.)

To	help	understand	the	relationsihp	between	these	different	angle	types,	Table	5-3	shows	how	some
angles	are	expressed	in	the	various	angle	units.

Table	5-3.	Angle	equivalents

Degrees Gradians Radians Turns

0deg 0grad 0rad 0turn

45deg 50grad 0.785rad 0.125turn

90deg 100grad 1.571rad 0.25turn

180deg 200grad 3.142rad 0.5turn

270deg 300grad 4.712rad 0.75turn

360deg 400grad 6.283rad 1turn

Time	and	Frequency
In	cases	where	a	property	needs	to	express	a	period	of	time,	the	value	is	represented	as	<time>	and	is	a
<number>	followed	by	either	s	(seconds)	or	ms	(milliseconds.)	Time	values	are	most	often	used	in
transitions	and	animations,	either	to	define	durations	or	delays.	The	following	two	declarations	will	have
exactly	the	same	result:

a[href]	{transition-duration:	2.4s;}

a[href]	{transition-duration:	2400ms;}

Time	values	are	also	used	in	aural	CSS,	again	to	define	durations	or	delays,	but	support	for	aural	CSS	is
extremely	limited	as	of	this	writing.

Another	value	type	historically	used	in	aural	CSS	is	<frequency>,	which	is	a	<number>	followed	by
either	Hz	(hertz)	or	kHz	(kilohertz).	As	usual,	the	unit	identifiers	are	case-insensitive,	so	Hz	and	hz	are
equivalent.	The	following	two	declarations	will	have	exactly	the	same	result:

h1	{pitch:	128hz;}

h1	{pitch:	0.128khz;}

Unlike	with	length	values,	for	time	and	frequency	values	the	unit	type	is	always	required,	even	when	the
value	is	0s	or	0hz.

Ratios
There	are	a	couple	of	situations	where	it’s	necessary	to	express	a	ratio	of	two	numbers,	in	which	case	a
<ratio>	value	is	used.	These	values	are	represented	as	two	positive	<number>	values	separated	by	a
solidus	(/),	plus	optional	whitespace.

The	first	integer	refers	to	the	width	(inline-size)	of	an	element,	and	the	second	to	the	height	(block-size).
Thus,	to	express	a	height-to-width	ratio	of	16	to	9,	you	can	write	16/9	or	16	/	9.

As	of	late	2022,	there	is	no	facility	to	express	a	ratio	as	a	single	real	number	(e.g.,	1.777	instead	of
16/9),	nor	to	use	a	colon	separator	instead	of	a	solidus	(e.g.,	16:9).

Position
A	position	value	is	how	you	specify	the	placement	of	an	origin	image	in	a	background	area,	and	is
represented	as	<position>.	Its	syntactical	structure	is	rather	complicated:

[

		[left	|	center	|	right	|	top	|	bottom	|	<percentage>	|	<length>]	|

		[left	|	center	|	right	|	<percentage>	|	<length>]

		[top	|	center	|	bottom	|	<percentage>	|	<length>]	|

		[center	|	[left	|	right]	[<percentage>	|	<length>]?]	&&

		[center	|	[top	|	bottom]	[<percentage>	|	<length>]?]

]

That	might	seem	a	little	nutty,	but	it’s	all	down	to	the	subtly	complex	patterns	that	this	value	type	has	to
allow.

If	you	declare	only	one	value,	such	as	left	or	25%,	then	the	second	value	is	set	to	center.	Thus,
left	is	the	same	as	left	center,	and	25%	is	the	same	as	25%	center.

If	you	declare	(either	implicitly,	as	above,	or	explicitly)	two	values,	and	the	first	one	is	a	<length>	or
<percentage>,	then	it	is	always	considered	to	be	the	horizontal	value.	This	means	that	given	25%
35px,	the	25%	is	a	horizontal	distance	and	the	35px	is	a	vertical	distance.	If	you	swap	them	to	say
35px	25%,	then	35px	is	horizontal	and	25%	is	vertical.	This	means	that	if	you	write	25%	left	or
35px	right,	the	entire	value	is	invalid	because	you	have	supplied	two	horizontal	distances	and	no
vertical	distance.	(Similarly,	a	value	of	right	left	or	top	bottom	is	invalid	and	will	be	ignored.)
On	the	other	hand,	if	you	write	left	25%	or	right	35px,	there	is	no	problem	because	you’ve	given
a	horizontal	distance	(with	the	keyword)	and	a	vertical	distance	(with	the	percentage	or	length).

If	you	declare	four	values	(we’ll	deal	with	three	just	in	a	moment),	then	you	must	have	two	lengths	or
percentages,	each	of	which	is	preceded	by	a	keyword.	In	this	case,	each	length	or	percentage	specifies	an
offset	distance,	and	each	keyword	defines	the	edge	from	which	the	offset	is	calculated.	Thus,	right
10px	bottom	30px	means	an	offset	of	10	pixels	to	the	left	of	the	right	edge,	and	an	offset	of	30
pixels	up	from	the	bottom	edge.	Similarly,	top	50%	left	35px	means	a	50	percent	offset	from	the
top	and	a	35-pixels-to-the-right	offset	from	the	left.

You	can	only	declare	three	position	values	with	the	background-position	property.	If	you	declare
three	values,	the	rules	are	the	same	as	for	four,	except	the	fourth	offset	is	set	to	be	zero	(no	offset).	Thus
right	20px	top	is	the	same	as	right	20px	top	0.

Custom	Properties

If	youve	used	a	preprocessor	like	Less	or	Sass,	you’ve	probably	created	variables	to	hold	values.	CSS
itself	has	this	capability	as	well.	The	technical	term	for	this	is	custom	properties,	even	though	what	these
really	do	is	create	sort	of	variables	in	your	CSS.

Here’s	a	basic	example,	with	the	result	shown	in	Figure	5-18:

html	{

				--base-color:	#639;

				--highlight-color:	#AEA;

}

h1	{color:	var(--base-color);}

h2	{color:	var(--highlight-color);}

Figure	5-18.	Using	custom	values	to	color	headings

There	are	two	things	to	absorb	here.	The	first	is	the	definition	of	the	custom	values	--base-color	and
--highlight-color.	These	are	not	some	sort	of	special	color	types.	They’re	just	names	that	were
picked	to	describe	what	the	values	contain.	We	could	just	as	easily	have	said:

html	{

				--alison:	#639;

				--david:	#AEA;

}

h1	{color:	var(--alison);}

h2	{color:	var(--david);}

You	probably	shouldn’t	do	that	sort	of	thing,	unless	you’re	literally	defining	colors	that	specifically
correspond	to	people	named	Alison	and	David.	(Perhaps	on	an	“About	Our	Team”	page.)	It’s	always
better	to	define	custom	identifiers	that	are	self-documenting—things	like	main-color	or	accent-

color	or	brand-font-face.

The	important	thing	is	that	any	custom	identifier	of	this	type	begins	with	two	hyphens	(--).	It	can	then	be
invoked	later	on	using	a	var()	value	type.	Note	that	these	names	are	case-sensitive,	so	--main-
color	and	--Main-color	are	completely	separate	identifiers.

These	custom	identifiers	are	often	referred	to	as	“CSS	variables,”	which	explains	the	var()	pattern.	An
interesting	feature	of	custom	properties	is	their	ability	to	scope	themselves	to	a	given	portion	of	the	DOM.
If	that	sentence	made	any	sense	to	you,	it	probably	gave	a	little	thrill.	If	not,	here’s	an	example	to	illustrate
scoping,	with	the	result	shown	in	Figure	5-19:

html	{

				--base-color:	#666;

}

aside	{

				--base-color:	#CCC;

}

h1	{color:	var(--base-color);}

<body>

<h1>Heading	1</h1><p>Main	text.</p>

<aside>

				<h1>Heading	1</h1><p>An	aside.</p>

</aside>

<h1>Heading	1</h1><p>Main	text.</p>

</body>

Figure	5-19.	Scoping	custom	values	to	certain	contexts

Notice	how	the	headings	are	a	dark	gray	outside	the	aside	element	and	a	light	gray	inside.	That’s
because	the	variable	--base-color	was	updated	for	aside	elements.	The	new	custom	value	applies
to	any	h1	inside	an	aside	element.

There	are	a	great	many	patterns	possible	with	CSS	variables,	even	if	they	are	confined	to	value
replacement.	Here’s	an	example	suggested	by	Chriztian	Steinmeier	combining	variables	with	the	calc()
function	to	create	a	regular	set	of	indents	for	unordered	lists:

html	{

				--gutter:	3ch;

				--offset:	1;

}

ul	li	{margin-left:	calc(var(--gutter)	*	var(--offset));}

ul	ul	li	{--offset:	2;}

ul	ul	ul	li	{--offset:	3;}

This	particular	example	is	basically	the	same	as	writing:

ul	li	{margin-left:	3ch;}

ul	ul	li	{margin-left:	6ch;}

ul	ul	ul	li	{margin-left:	9ch;}

The	difference	is	that	with	variables,	it’s	simple	to	update	the	--gutter	multiplier	in	one	place	and
have	everything	adjust	automatically,	rather	than	having	to	retype	three	values	and	make	sure	all	the	math
is	correct.

Custom	property	fallbacks
When	you’re	setting	a	value	using	var(),	you	can	specify	a	fallback	value.	For	example,	you	could	say
that	if	a	custom	property	isn’t	defined,	you	want	a	regular	value	used	instead	like	so:

ol	li	{margin-left:	var(--list-indent,	2em);}

Given	that,	if	--list-indent	isn’t	defined,	was	determined	to	be	invalid,	or	is	explicitly	set	to
initial,	2em	will	be	used	instead.	You	just	get	the	one	fallback,	and	it	can’t	be	another	custom
property	name.

That	said,	it	can	be	another	var()	expression,	and	that	nested	var()	can	contain	another	var()	as	its
fallback,	and	so	on	to	infinity.	So	let’s	say	you’re	using	a	pattern	library	that	defines	colors	for	various
interface	elements.	If	those	aren’t	available	for	some	reason,	then	you	could	fall	back	to	a	custom-
property	value	defined	by	your	basic	site	stylesheet.	Then,	if	that’s	also	not	available,	you	could	fall	back
to	a	plain	color	value.	It	would	look	something	like	this:

.popup	{color:	var(--pattern-modal-color,	var(--highlight-color,	maroon));}

The	thing	to	watch	out	for	here	is	that	if	you	manage	to	create	an	invalid	value,	the	whole	things	gets

blown	up	and	the	value	is	either	inherited	or	set	to	its	initial	value,	depending	on	whether	the	property	in
question	is	usually	inherited	or	not,	as	if	it	were	set	to	unset	(see	“unset”).

Suppose	we	wrote	the	following	invalid	var()	values.

:root	{

	 --list-color:	hsl(23,	25%,	50%);

	 --list-indent:	5vw;

}

li	{

	 color:	var(--list-color,	--base-color,	gray);

	 margin-left:	var(--list-indent,	--left-indent,	2em);

}

In	the	first	case,	the	fallback	is	--base-color,	gray	as	a	single	string,	not	something	that’s	parsed,
so	it’s	invalid.	Similarly,	in	the	second	case,	the	fallback	is	the	invalid	--left-indent,	2em.	In
either	case,	if	the	first	custom	property	is	valid,	then	the	invalid	fallback	doesn’t	matter,	because	the
browser	never	gets	to	it.	But	if,	say,	--list-indent	doesn’t	have	a	value,	then	the	browser	will	go	to
the	fallback,	and	here	that’s	invalid.	So	what	happens	next?

For	the	color,	since	the	property	color	is	inherited,	the	list	items	will	inherit	their	color	from	their
parent,	almost	certainly	an	ol	or	ul	element.	If	the	parent’s	color	value	is	fuchsia,	then	the	list
items	will	be	fuchsia.	For	the	left	margin,	the	property	margin-left	is	not	inherited,	so	the	left
margins	of	the	list	items	will	be	set	to	the	initial	value	of	margin-left,	which	is	0.	So	the	list	items
will	have	no	left	margin.

This	also	happens	if	you	try	to	apply	a	value	to	a	property	that	can’t	accept	those	kinds	of	values.
Consider:

:root	{

	 --list-color:	hsl(23,	25%,	50%);

	 --list-indent:	5vw;

}

li	{

	 color:	var(--list-indent,	gray);

	 margin-left:	var(--list-color,	2em);

}

Here,	everything	looks	fine	at	first	glance,	except	the	color	property	is	being	given	a	length	value,	and
the	margin-left	property	is	being	given	a	color	value.	As	a	result,	the	fallbacks	of	gray	and	2em
are	not	used.	This	is	because	the	var()	syntax	is	valid,	so	the	result	is	the	same	as	if	we	declared
color:	5vw	and	margin-left:	hsl(23,	25%,	50%),	both	of	which	are	tossed	out	as
invalid.

This	means	the	outcome	will	be	the	same	as	we	saw	before:	the	list	items	will	inherit	the	color	value
from	their	parents,	and	their	left	margins	will	be	set	to	the	initial	value	of	zero,	just	as	if	the	given	values
were	unset.

Summary
As	we’ve	seen,	CSS	provides	a	wide	range	of	value	and	unit	types.	These	units	can	all	have	their
advantages	and	drawbacks,	depending	on	the	circumstances	in	which	they’re	used.	We’ve	already	seen
some	of	those	circumstances,	and	their	nuances,	will	be	discussed	throughout	the	rest	of	the	book,	as
appropriate.

Chapter	6.	Basic	Visual	Formatting

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	6th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

You’ve	likely	experienced	the	frustration	of	having	your	intended	layout	not	rendered	as	expected.	You
then	added	27	style	rules	to	get	it	perfect,	but	maybe	you	didn’t	really	know	which	rule	solved	your
problem.	With	a	model	as	open	and	powerful	as	that	contained	within	CSS,	no	book	could	hope	to	cover
every	possible	way	of	combining	properties	and	effects.	You	will	undoubtedly	go	on	to	discover	new
ways	of	using	CSS.	With	a	thorough	grasp	of	how	the	visual	rendering	model	works,	however,	you’ll	be
better	able	to	determine	whether	a	behavior	is	a	correct	(if	unexpected)	consequence	of	the	rendering
engine	CSS	defines.

Basic	Boxes
At	its	core,	CSS	assumes	that	every	element	generates	one	or	more	rectangular	boxes,	called	element
boxes.	(Future	versions	of	the	specification	may	allow	for	nonrectangular	boxes,	and	indeed	there	have
been	proposals	to	change	this,	but	for	now	everything	is	still	rectangular.)

Each	element	box	has	a	content	area	at	its	center.	This	content	area	is	surrounded	by	optional	amounts	of
padding,	borders,	outlines,	and	margins.	These	areas	are	considered	optional	because	they	could	all	be
set	to	a	size	of	zero,	effectively	removing	them	from	the	element	box.	An	example	content	area	is	shown	in
Figure	6-1,	along	with	the	surrounding	regions	of	padding,	borders,	and	margins.

mailto:rfernando@oreilly.com

Figure	6-1.	The	content	area	and	its	surroundings

Before	looking	at	the	properties	that	can	alter	the	space	taken	up	by	elements,	let’s	cover	the	vocabulary
needed	to	fully	understand	how	elements	are	laid	out	and	take	up	space.

A	Quick	Primer
First,	we’ll	quickly	review	the	kinds	of	boxes	we’ll	be	discussing,	as	well	as	some	important	terms	that
are	needed	to	follow	the	explanations	to	come:

Block	flow	direction

Also	known	as	the	block	axis.	This	is	the	direction	along	which	block-level	element	boxes	are
stacked.	In	many	languages,	including	all	European	and	European-derived	languages,	this	direction	is
from	top	to	bottom.	In	CJK	(Chinese/Japanese/Korean)	languages,	this	can	be	either	right-to-left	or
top-to-bottom.	The	actual	block	flow	direction	is	set	by	the	writing	mode,	which	is	discussed	in
Chapter	11.

Inline	base	direction

Also	known	as	the	inline	axis.	This	is	the	direction	along	which	lines	of	text	are	written.	In	Romanic
languages,	among	others,	this	is	left-to-right.	In	languages	such	as	Arabic	or	Hebrew,	the	inline	base
direction	is	right-to-left.	In	CJK	(Chinese/Japanese/Korean)	languages,	this	can	be	either	top-to-
bottom	or	left-to-right.	As	with	block	flow,	the	inline	base	direction	is	set	by	the	writing	mode.

Normal	flow

The	default	system	by	which	elements	are	placed	inside	the	browser’s	viewport,	based	on	the	parent’s
writing	mode.	Most	elements	are	in	the	normal	flow,	and	the	only	way	for	an	element	to	leave	the
normal	flow	is	to	be	floated,	positioned,	or	made	into	a	flexible	box,	grid	layout,	or	table	element.

The	discussions	in	this	chapter	will	cover	elements	in	the	normal	flow,	unless	otherwise	stated.

Block	box

This	is	a	box	generated	by	an	element	such	as	a	paragraph,	heading,	or	div.	These	boxes	generate
“blank	spaces”	both	before	and	after	their	boxes	when	in	the	normal	flow	so	that	block	boxes	in	the
normal	flow	stack	along	the	block	flow	axis,	one	after	another.	Pretty	much	any	element	can	be	made
to	generate	a	block	box	by	declaring	display:	block,	though	there	are	other	ways	to	make
elements	generate	block	boxes	(e.g,	float	them	or	make	them	flex	items).

Inline	box

This	is	a	box	generated	by	an	element	such	as	strong	or	span.	These	boxes	are	laid	out	along	the
inline	base	direction,	and	do	not	generate	“line	breaks”	before	or	after	themselves.	An	inline	box
longer	than	the	inline	size	of	its	element	will	(by	default,	if	it’s	non-replaced)	wrap	to	multiple	lines.
Any	element	can	be	made	to	generate	an	inline	box	by	declaring	display:	inline.

Nonreplaced	element

This	is	an	element	whose	content	is	contained	within	the	document.	For	example,	a	paragraph	(p)	is	a
nonreplaced	element	because	its	textual	content	is	found	within	the	element	itself.

Replaced	element

This	is	an	element	that	serves	as	a	placeholder	for	something	else.	The	classic	example	of	a	replaced
element	is	the	img	element,	which	simply	points	to	an	image	file	that	is	inserted	into	the	document’s
flow	at	the	point	where	the	img	element	itself	is	found.	Most	form	elements	are	also	replaced	(e.g.,
<input	type="radio">).

Root	element

This	is	the	element	at	the	top	of	the	document	tree.	In	HTML	documents,	this	is	the	element	<html>.
In	XML	documents,	it	can	be	whatever	the	language	permits:	for	example,	the	root	element	of	RSS
files	is	<rss>,	whereas	in	an	SVG	document,	the	root	element	is	<svg>.

The	Containing	Block
There	is	one	more	kind	of	box	that	we	need	to	examine	in	detail,	and	in	this	case	enough	detail	that	it
merits	its	own	section:	the	containing	block.

Every	element’s	box	is	laid	out	with	respect	to	its	containing	block.	In	a	very	real	way,	the	containing
block	is	the	“layout	context”	for	a	box.	CSS	defines	a	series	of	rules	for	determining	a	box’s	containing
block.

For	a	given	element,	the	containing	block	forms	from	the	content	edge	of	the	nearest	ancestor	element	that
generates	a	list-item	or	block	box,	which	includes	all	table-related	boxes	(e.g.,	those	generated	by	table
cells).	Consider	the	following	markup:

<body>

				<div>

								<p>This	is	a	paragraph.</p>

				</div>

</body>

In	this	very	simple	markup,	the	containing	block	for	the	p	element’s	block	box	is	the	div	element’s	block
box,	as	that	is	the	closest	ancestor	element	box	that	has	a	block	or	a	list	item	box	(in	this	case,	it’s	a	block
box).	Similarly,	the	div’s	containing	block	is	the	body’s	box.	Thus,	the	layout	of	the	p	is	dependent	on
the	layout	of	the	div,	which	is	in	turn	dependent	on	the	layout	of	the	body	element.

And	above	that	in	the	document	tree,	the	layout	of	the	body	element	is	dependent	on	the	layout	of	the
html	element,	whose	box	creates	what	is	called	the	initial	containing	block.	It’s	unique	in	that	the
viewport—the	browser	window	in	screen	media,	or	the	printable	area	of	the	page	in	print	media—
determines	the	dimensions	of	the	initial	containing	block,	not	the	size	of	the	content	of	the	root	element.
This	matters	because	the	content	can	be	shorter,	and	usually	longer,	than	the	size	of	the	viewport.	Most	of
the	time	it	doesn’t	make	a	difference,	but	when	it	comes	to	things	such	as	fixed	positioning	or	viewport
units,	the	difference	is	real.

Now	that	we	understand	some	of	the	terminology,	we	can	address	the	properties	that	make	up	Figure	6-1.
The	various	margin,	border,	and	padding	features,	such	as	border-style,	can	be	set	using	various
side-specific	long-hand	properties,	such	as	margin-inline-start	or	border-bottom-width.
(The	outline	properties	do	not	have	side-specific	properties;	a	change	to	an	outline	property	effects	all
four	sides.)

The	content’s	background—a	color	or	tiled	image,	for	example—is	applied	within	the	padding	and
border	areas	by	default,	but	this	can	be	changed.	The	margins	are	always	transparent,	allowing	the
background(s)	of	any	parent	element(s)	to	be	visible.	Padding	and	borders	cannot	be	of	a	negative	length,
but	margins	can.	We’ll	explore	the	effects	of	negative	margins	later	on.

Borders	are	most	often	generated	using	defined	styles,	with	a	border-style	such	as	solid,
dotted,	or	inset,	and	their	colors	are	set	using	the	border-color	property.	If	no	color	is	set,	the
value	defaults	to	currentColor.	Borders	can	also	be	generated	from	images.	If	a	border	style	has
gaps	of	some	type,	as	with	border-style:	dashed	or	with	a	border	generated	from	a	partially
transparent	image,	then	the	element’s	background	is	visible	through	those	gaps	by	default,	though	it	is
possible	to	clip	the	background	to	stay	inside	the	border	(or	the	padding).

Altering	Element	Display
You	can	affect	the	way	a	user	agent	displays	by	setting	a	value	for	the	property	display

DISPLAY

Values [<display-outside>	ǁ	<display-inside>]	|	<display-listitem>	|	<display-internal>	|	<display-box>	|	
<display-legacy>

Definitions See	below

Initial	value inline

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

<display-outside>

block	|	inline	|	run-in

<display-inside>

flow	|	flow-root	|	table	|	flex	|	grid	|	ruby

<display-listitem>

list-item	&&	<display-outside>?	&&	[flow	|	flow-root]?

<display-internal>

table-row-group	|	table-header-group	|	table-footer-group	|	table-row	|
table-cell	|	table-column-group	|	table-column	|	table-caption	|	ruby-
base	|	ruby-text	|	ruby-base-container	|	ruby-text-container

<display-box>

contents	|	none

<display-legacy>

inline-block	|	inline-list-item	|	inline-table	|	inline-flex	|	inline-
grid

We’re	going	to	ignore	the	ruby-	and	table-related	values,	since	they’re	far	too	complex	for	this	chapter.
We’ll	also	temporarily	ignore	the	value	list-item,	since	it’s	very	similar	to	block	boxes	and	will	be
explored	in	detail	in	XREF	HERE.	For	now,	we’ll	spend	a	moment	talking	about	how	altering	an
element’s	display	role	can	alter	layout.

Changing	Roles
When	it	comes	to	styling	a	document,	it’s	sometimes	handy	to	be	able	to	change	the	type	of	box	an	element
generates.	For	example,	suppose	we	have	a	series	of	links	in	a	nav	that	we’d	like	to	lay	out	as	a	vertical
sidebar:

<nav>

				WidgetCo	Home

				Products

				Services

				Widgety	Fun!

				Support

				About	Us

				Contact

</nav>

By	default,	the	links	will	generate	inline	boxes,	and	thus	get	sort	of	mushed	together	into	what	looks	like	a
short	paragraph	of	nothing	but	links.	We	could	put	all	the	links	into	their	own	paragraphs	or	list	items,	or
we	could	just	make	them	all	block-level	elements,	like	this:

nav	a	{display:	block;}

This	will	make	every	a	element	within	the	navigation	element	nav	generate	a	block	box,	instead	of	their
usual	inline	box.	If	we	add	on	a	few	more	styles,	we	could	have	a	result	like	that	shown	in	Figure	6-2.

Figure	6-2.	Changing	the	display	role	from	inline	to	block

Changing	display	roles	can	be	useful	in	cases	where	you	want	the	navigation	links	to	be	inline	elements	if
the	CSS	isn’t	available	(perhaps	by	failing	to	load),	but	to	lay	out	the	same	links	as	block-level	elements
in	CSS-aware	contexts.	You	could	also	present	the	links	as	inline	on	desktop	and	block	on	mobile,	or	vice
versa.	With	the	links	laid	out	as	blocks,	you	can	style	them	as	you	would	div	or	p	elements,	with	the
advantage	that	the	entire	element	box	becomes	part	of	the	link.

You	may	also	want	to	take	elements	and	make	them	inline.	Suppose	we	have	an	unordered	list	of	names:

<ul	id="rollcall">

				Bob	C.

				Marcio	G.

				Eric	M.

				Kat	M.

				Tristan	N.

				Arun	R.

				Doron	R.

				Susie	W.

Given	this	markup,	say	we	want	to	make	the	names	into	a	series	of	inline	names	with	vertical	bars
between	them	(and	on	each	end	of	the	list).	The	only	way	to	do	so	is	to	change	their	display	role.	The
following	rules	will	have	the	effect	shown	in	Figure	6-3:

#rollcall	li	{display:	inline;	border-right:	1px	solid;	padding:	0	0.33em;}

#rollcall	li:first-child	{border-left:	1px	solid;}

Figure	6-3.	Changing	the	display	role	from	list-item	to	inline

Be	careful	to	note	that	you	are,	for	the	most	part,	changing	the	display	role	of	elements—not	changing	their
inherent	nature.	In	other	words,	causing	a	paragraph	to	generate	an	inline	box	does	not	turn	that	paragraph
into	an	inline	element.	In	HTML,	for	example,	some	elements	are	block	while	others	are	inline.	While	a
span	can	easily	be	placed	inside	a	paragraph,	a	span	should	not	be	wrapped	around	a	paragraph.

We	said	“for	the	most	part”	because	while	CSS	mostly	impacts	presentation	and	not	content,	CSS
properties	can	impact	accessibility	in	more	ways	than	just	color	contrast.	For	example,	changing	the
display	value	can	impact	how	an	element	is	perceived	by	assistive	technologies.	Setting	an	element’s
display	property	to	none	removes	the	element	from	the	accessibility	tree.	Setting	the	display
property	on	a	<table>	to	grid	may	cause	the	table	to	be	interpreted	as	something	other	than	a	data
table,	removing	normal	table	keyboard	navigation,	and	making	the	table	inaccessible	as	a	data	table	to
screen	reader	users.	(This	shouldn’t	happen,	but	it	does	in	some	browsers.)

This	can	be	mitigated	by	setting	the	role	ARIA	(Accessible	Rich	Internet	Applications)	attribute	for	the
table	and	all	its	descendants,	but	in	general,	any	time	a	change	you	make	in	CSS	forces	you	to	make
changes	in	ARIA	roles,	you	should	take	a	moment	to	consider	what	you’re	doing	to	see	if	there	isn’t	a
better	way.

Block	Boxes
Block	boxes	behave	in	predictable,	yet	sometimes	surprising,	ways.	The	handling	of	box	placement	along
the	block	and	inline	axes	can	differ,	for	example.	In	order	to	fully	understand	how	block	boxes	are
handled,	you	must	clearly	understand	a	number	of	aspects	of	these	boxes.	They	are	shown	in	detail	in
Figure	6-4,	which	illustrates	placement	in	two	different	writing	modes.

Figure	6-4.	The	complete	box	model	in	two	different	writing	modes

As	shown	in	Figure	6-4,	there	are	block	directions	and	inline	directions,	and	we	also	have	block	sizes
and	inline	sizes.	Block	and	inline	sizes	are	descriptions	of	the	size	of	the	content	area	(by	default)	along
the	block	and	inline	axes.

By	contrast,	the	width	(sometimes	referred	to	as	the	“physical	width”)	of	a	block	box	is	defined	to	be	the
distance	between	the	inner	edges	of	the	content	area	(again,	by	default)	along	the	horizontal	axis	(left	to
right),	regardless	of	the	writing	direction,	and	the	height	(“physical	height”)	is	the	distance	along	the
vertical	axis	(top	to	bottom).	There	are	properties	available	to	set	all	these	sizes,	which	we’ll	talk	about
shortly.

Something	important	to	note	in	Figure	6-4	is	the	use	of	“start”	and	“end”	to	describe	various	parts	of	the
element	box.	For	example,	there’s	a	“block-start	margin”	and	a	“block-end	margin.”	The	start	edge	is	the
edge	that	you	come	to	first	as	you	move	along	an	axis.

This	may	be	more	clear	if	you	look	at	Figure	6-5	and	trace	your	finger	along	each	axis	from	arrow	tail	to
tip.	As	you	move	along	a	block	axis,	the	first	edge	you	come	to	for	each	element	is	that	element’s	block-
start	edge.	As	you	pass	out	of	the	element,	you	move	through	the	block-end	edges.	Similarly,	as	you	move
along	an	inline	axis,	you	go	through	the	inline-start	edges,	across	the	inline	dimension	of	the	content,	and
then	out	the	inline-end	edges.	Try	it	for	each	of	the	three	examples.

Figure	6-5.	The	block	and	inline	axis	directions	for	three	common	writing	modes

Logical	element	sizing
Because	CSS	recognizes	block	and	inline	axes	for	elements,	it	provides	properties	that	let	you	set	an
explicit	element	size	along	each	axis.

BLOCK-SIZE,	INLINE-SIZE

Values <length>	|	<percentage>	|	min-content	|	max-content	|	fit-content	|	auto

Initial	value auto

Applies	to All	elements	except	nonreplaced	inline	elements,	table	rows,	and	row	groups

Percentages Calculated	with	respect	to	the	length	of	the	element’s	containing	block	along	the	block-flow	axis	(for	block-si
ze)	or	inline-flow	axis	(for	inline-size)

Computed	value For	auto	and	percentage	values,	as	specified;	otherwise,	an	absolute	length,	unless	the	property	does	not	apply	
to	the	element	(then	auto)

Inherited No

Animatable Yes

These	properties	allow	you	to	set	the	size	of	an	element	along	its	block	axis,	or	to	constrain	the	lengths	of
lines	of	text	along	the	inline	axis,	regardless	of	the	direction	of	text	flow.	If	you	say	block-size:
500px,	then	the	element’s	block	size	will	be	five	hundred	pixels	wide,	even	if	that	leads	to	content
spilling	out	of	the	element	box.	(We’ll	discuss	that	in	more	detail	later	in	the	chapter.)

Consider	the	following,	which	has	the	results	shown	in	Figure	6-6	when	applied	in	various	writing
modes.

p	{inline-size:	25ch;}

Figure	6-6.	Sizing	elements	along	their	inline	axis

As	seen	in	Figure	6-6,	the	elements	are	sized	consistently	along	their	inline	axis,	regardless	of	the	writing
direction.	If	you	tilt	your	head	to	the	side,	you	can	see	that	the	lines	wrap	in	exactly	the	same	places.	This
yields	a	consistent	line	length	across	all	writing	modes.

Similarly,	you	can	set	a	block	size	for	elements.	This	is	used	a	bit	more	often	for	replaced	elements	like
images,	but	it	can	be	used	in	any	circumstance	that	makes	sense.	Take	this	as	an	example:

p	img	{block-size:	1.5em;}

Having	done	that,	any	img	element	found	inside	a	p	element	will	have	its	block	size	set	to	one	and	a	half
times	the	size	of	the	surrounding	text.	(This	works	on	images	because	they’re	inline	replaced	elements;	it
wouldn’t	work	on	inline	non-replaced	elements.)	You	could	also	use	block-size	to	constrain	the
block	length	of	grid	layout	items	to	be	a	minimum	or	maximum	size,	such	as	this:

#maingrid	>	nav	{block-size:	clamp(2rem,	4em,	25vh);}

It	should	be	said	that	usually,	block	size	is	determined	automatically,	because	it’s	not	often	that	elements
in	the	normal	flow	have	an	explicitly-set	block	size.	For	example,	if	an	element’s	block	flow	is	top-to-
bottom	and	it’s	eight	lines	long,	and	each	line	is	an	eighth	of	an	inch	tall,	then	its	block	size	will	be	one
inch.	If	it’s	10	lines	tall,	then	the	block	size	is	instead	1.25	inches.	In	either	case,	as	long	as	the	block-
size	is	auto,	the	block	size	is	determined	by	the	content	of	the	element,	not	by	the	author.	This	is
usually	what	you	want,	particularly	for	elements	containing	text.	When	the	block-size	is	explicitly
set,	if	there	isn’t	enough	content	to	fill	the	box,	there	will	be	empty	space	inside	the	box;	if	there	is	more
content	than	can	fit,	the	content	may	overflow	the	box	or	scrollbars	may	appear.

Content-based	sizing	values
Beyond	the	lengths	and	percentages	you	saw	in	the	last	section	for	setting	block	and	inline	sizes,	there	are
a	few	keywords	that	provide	content-based	sizing:

max-content

Take	up	the	most	space	possible	to	fit	in	the	content,	even	suppressing	line-wrapping	in	the	case	of
text	content.

min-content

Take	up	the	least	space	possible	to	fit	in	the	content.

fit-content

Take	up	the	amount	of	space	determined	by	calculating	the	values	of	max-content,	min-
content,	and	regular	content	sizing,	taking	the	maximum	of	min-content	and	regular	sizing,	and
then	taking	the	minimum	of	max-content	and	whichever	value	was	the	maximum	of	min-
content	and	regular	sizing.	Yes,	that	all	sounds	a	bit	confusing,	but	we’ll	explain	it	in	a	moment.

If	you’ve	worked	at	all	with	CSS	Grid	(covered	in	XREF	HERE),	then	you	may	recognize	these

keywords,	as	they	were	originally	defined	as	ways	to	size	grid	items.	Now	they’re	making	their	way	into
other	areas	of	CSS.	Let’s	consider	the	first	two	keywords,	which	are	demonstrated	in	Figure	6-7.

Figure	6-7.	Content	sizing

In	the	first	case,	the	short	wide	one,	that	paragraph	is	set	to	max-content,	and	that’s	what	happened.
The	paragraph	was	made	as	wide	as	needed	to	fit	all	of	the	content.	It’s	as	narrow	as	it	is	only	because
there	isn’t	much	content.	Had	we	added	another	three	sentences,	the	single	line	of	text	would	have	just
kept	going	and	going	with	no	line-wrapping,	even	if	it	ran	right	off	the	page	(or	out	of	the	browser
window).

For	the	second	case,	the	content	is	as	narrow	as	possible	without	forcing	breaks	or	hyphens	inside	words.
In	this	particular	case,	that	means	the	element	is	just	wide	enough	to	fit	the	word	“paragraph,”	which	is
the	longest	word	in	the	content.	For	every	other	line	of	text	in	the	example,	the	browser	places	as	many
words	as	will	fit	into	the	space	needed	for	“paragraph,”	and	goes	to	the	next	line	when	it	runs	out	of
room.	If	we	added	“antidisestablishmentarianism”	to	the	text,	then	the	element	would	become	just	wide
enough	to	fit	that	word,	and	every	other	line	of	text	would	very	likely	contain	multiple	words.

Notice	that,	at	the	end	of	the	min-content	example	in	Figure	6-7,	the	browser	took	advantage	of	the
presence	of	the	hyphen	in	min-content	to	trigger	a	line-wrap	there.	Had	it	not	made	that	choice,	then
min-content	would	almost	certainly	have	been	the	longest	piece	of	content	in	the	paragraph,	and	the
element’s	width	would	have	been	set	to	that	length.	This	means	that	if	your	content	contains	symbols	that
browsers	understand	to	be	natural	line-wrapping	points	(e.g.,	spaces	and	hyphens),	they’ll	likely	be
considered	in	the	min-content	calculations.	If	you	want	to	squeeze	the	element	width	down	even
further,	you	can	enable	auto-hyphenating	of	words	with	the	hyphens	property	(see	Chapter	11).

For	some	more	examples	of	min-content	sizing,	see	Figure	6-8.

Figure	6-8.	Minimum	content	sizing

The	third	keyword,	fit-content,	is	interesting	in	that	it	does	its	best	to	fit	the	element	to	the	content.
What	that	means	in	practice	is	that	if	there	is	only	a	little	content,	the	element’s	inline	size	(usually	its
width)	will	be	just	big	enough	to	enclose	it,	as	if	max-content	were	used.	If	there’s	enough	content	to
wrap	to	multiple	lines	or	otherwise	threaten	to	overflow	the	element’s	container,	the	inline	size	stops
there.	This	is	illustrated	in	Figure	6-9.

Figure	6-9.	Fit-content	sizing

In	each	case,	the	element	is	fit	to	the	content	without	overspilling	the	element’s	container.	At	least,	that’s
what	happen	with	elements	in	the	normal	flow.	The	behavior	can	be	quite	different	in	flexbox	and	grid
contexts,	and	will	be	further	explored	in	later	chapters.

Minimum	and	maximum	logical	sizing
If	you’d	like	to	set	minimum	and	maximum	bounds	on	block	or	inline	sizes,	there	are	some	properties	to
help	you	out.

MIN-BLOCK-SIZE,	MAX-BLOCK-SIZE,	MIN-INLINE-SIZE,	MAX-INLINE-SIZE

Values Same	as	for	block-size	and	inline-size

Initial	value 0

Applies	to Same	as	for	block-size	and	inline-size

Percentages Same	as	for	block-size	and	inline-size

Computed	value Same	as	for	block-size	and	inline-size

Inherited No

Animatable Yes

These	properties	can	be	very	useful	when	you	know	you	want	upper	and	lower	bounds	on	the	sizing	of	an
element’s	box,	and	are	willing	to	allow	the	browser	to	do	whatever	it	wants	as	long	as	it	obeys	those
restrictions.	As	an	example,	you	might	set	part	of	a	layout	like	so:

main	{min-inline-size:	min-content;	max-inline-size:	75ch;}

That	keeps	the	<main>	element	from	getting	any	narrower	than	the	widest	bit	of	inline	content,	whether
that’s	a	long	word	or	an	illustration	or	something	else.	It	also	keeps	the	<main>	element	from	getting	any
wider	than	around	75	characters,	thus	keeping	line	lengths	to	a	readable	amount.

It’s	also	possible	to	set	bounds	on	block	sizing.	A	good	example	is	limiting	any	image	embedded	in	the
normal	flow	to	be	its	intrinsic	size	up	to	a	certain	point.	The	following	CSS	would	have	the	effects	shown
in	Figure	6-10.

#cb1	img	{max-block-size:	2em;}

#cb2	img	{max-block-size:	1em;}

Figure	6-10.	Maximum	block	sizing

Height	and	Width
If	you’ve	used	CSS	for	a	while	or	are	maintaining	legacy	code,	you’re	probably	used	to	thinking	of	“top
margin”	and	“bottom	margin.”	That’s	because,	originally,	all	box	model	aspects	were	described	in	terms
of	their	physical	directions:	top,	right,	bottom,	and	left.	You	can	still	work	with	the	physical	directions!
CSS	has	simply	added	new,	more	text-aware	directions	to	the	mix.

If	you	were	to	change	inline-size	to	width	in	the	previous	code	example,	then	you’d	get	a	result
more	like	that	shown	in	Figure	6-11	(in	which	the	vertical	writing	modes	are	clipped	off	well	short	of
their	full	height).

Figure	6-11.	Sizing	elements’	width

In	Figure	6-11,	the	elements	are	made	40ch	wide	horizontally,	regardless	of	their	writing	mode.	Each
element’s	height	has	been	automatically	determined	by	the	content,	the	specifics	of	the	writing	mode,	and
so	on.

TIP
When	you	use	block	and	inline	properties	like	block-size	instead	of	physical	directions	like	height,	should	your	design	be	applied	to
content	translated	to	other	languages,	the	layout	will	automatically	adjust	to	your	intentions.

HEIGHT,	WIDTH

Values <length>	|	<percentage>	|	min-content	|	max-content	|	fit-content	|	auto

Initial	value auto

Applies	to All	elements	except	nonreplaced	inline	elements,	table	rows,	and	row	groups

Percentages Calculated	with	respect	to	the	vertical	height	(for	height)	or	horizontal	width	(for	width)	of	the	containing	
block;	for	height,	set	to	auto	if	the	height	of	its	containing	block	is	auto

Computed	value For	auto	and	percentage	values,	as	specified;	otherwise,	an	absolute	length,	unless	the	property	does	not	apply	
to	the	element	(then	auto)

Inherited No

Animatable Yes

height	and	width	are	what’s	known	as	physical	properties.	This	means	they	refer	to	physical
directions,	as	opposed	to	the	writing-dependent	directions	of	block	size	and	inline	size.	Thus,	height
really	does	refer	to	the	distance	from	the	top	to	the	bottom	of	the	element’s	inner	edge,	regardless	of	the
direction	of	the	block	axis.

In	writing	with	a	horizontal	inline	axis,	such	as	English	or	Arabic,	if	both	inline-size	and	width
are	set	on	the	same	element,	the	one	declared	later	will	take	precedence	over	the	first	one	declared.	The
same	is	true	if	block-size	and	height	are	both	declared;	if	origin,	layer,	and	specifity	are	the	same,
the	one	declared	last	takes	precedence.	In	vertical	writing	modes,	inline-size	corresponds	to
height,	and	block-size	to	width.

Setting	a	block	box’s	height	or	width	as	a	<length>	means	it	will	be	that	length	tall	or	wide,	regardless
of	the	content	within	it.	If	you	set	an	element	that	generates	a	block	box	to	width:	200px,	then	it	will
be	200	pixels	wide,	even	if	it	has	a	500-pixel-wide	image	inside	it.

Setting	the	value	of	width	to	a	<percentage>	means	the	width	of	the	element	will	be	that	percentage	of
its	containing	block’s	width.	If	you	set	a	paragraph	to	width:	50%	and	its	containing	block	is	1,024
pixels	wide,	then	the	paragraph’s	width	will	be	computed	to	512	pixels.

Things	are	similar	for	height,	except	this	only	works	if	the	containing	block	has	an	explicitly	set	height.
If	the	containing	block’s	height	is	automatically	set,	then	a	percentage	value	is	treated	as	auto	instead,	as
seen	in	the	#cb4	example	in	Figure	6-12.

NOTE
The	handling	of	auto	top	and	bottom	margins	is	different	for	positioned	elements,	as	well	as	flexible-box	and	grid	elements.	The
differences	will	be	covered	in	the	chapters	on	those	topics.

Here	are	some	examples	of	these	values	and	combinations,	with	the	result	shown	in	Figure	6-12.

[id^="cb"]	{border:	1px	solid;}		/*	"cb"	for	"containing	block"	*/

#cb1	{width:	auto;}				#cb1	p	{width:	auto;}

#cb2	{width:	400px;}			#cb2	p	{width:	300px;}

#cb3	{width:	400px;}			#cb3	p	{width:	50%;}

#cb4	{height:	auto;}			#cb4	p	{height:	50%;}

#cb5	{height:	300px;}		#cb5	p	{height:	200px;}

#cb6	{height:	300px;}		#cb6	p	{height:	50%;}

Figure	6-12.	Heights	and	widths

You	can	also	use	max-content	and	min-content	with	the	height	property,	but	in	top-to-bottom
block	flows,	both	are	same	as	height:	auto.	In	writing	modes	where	the	block	axis	is	horizontal,
then	setting	these	values	for	height	will	have	similar	effects	as	setting	them	for	width	in	vertical
block	flows.

Another	important	note:	these	properties	don’t	apply	to	inline	nonreplaced	elements.	For	example,	if	you
try	to	declare	a	height	and	width	for	a	hyperlink	that’s	in	the	normal	flow	and	generates	an	inline	box,
CSS-conformant	browsers	must	ignore	those	declarations.	Assume	the	following	rules:

a:any-link	{color:	red;	background:	silver;	height:	15px;	width:	60px;}

You’ll	end	up	with	red	unvisited	links	on	silver	backgrounds	whose	height	and	width	are	determined	by
the	content	of	the	links.	The	links	will	not	have	content	areas	that	are	15	pixels	tall	by	60	pixels	wide,	as
these	must	be	ignored	when	applied	to	inline	non-replaced	element.	If,	on	the	other	hand,	you	add	a
display	value,	such	as	inline-block	or	block,	then	height	and	width	will	set	the	height	and
width	of	the	links’	content	areas.

Altering	box	sizing
If	it	seems	little	weird	to	use	height	and	width	(and	block-size	and	inline-size)	to	describe
the	sizing	of	the	element’s	content	area	instead	of	its	visible	area,	you	can	make	things	more	intuitive	by
using	the	property	box-sizing.

BOX-SIZING

Values content-box	|	border-box

Initial	value content-box

Applies	to All	elements	that	accept	width	or	height	values

Computed	value As	specified

Inherited No

Animatable No

This	property	changes	what	the	values	of	the	height,	width,	block-size,	and	inline-size
properties	actually	do.

box-sizing	changes	what	the	values	of	the	block-size	and	inline-size	properties	actually
do.	If	you	declare	inline-size:	400px	and	don’t	declare	a	value	for	box-sizing,	then	the
element’s	content	area	will	be	400	pixels	in	the	inline	direction	and	any	padding,	borders,	and	so	on	will

be	added	to	that.	If,	on	the	other	hand,	you	declare	box-sizing:	border-box,	then	the	element	box
will	be	400	pixels	from	the	inline-start	border	edge	to	the	inline-end	border	edge;	any	inline-start	or	-end
border	or	padding	will	be	placed	within	that	distance,	thus	shrinking	the	inline	size	of	the	content	area.
This	is	illustrated	in	Figure	6-13.

Figure	6-13.	The	effects	of	box-sizing

Put	another	way,	if	you	declare	width:	400px	and	don’t	declare	a	value	for	box-sizing,	then	the
element’s	content	area	will	be	400	pixels	wide	and	any	padding,	borders,	and	so	on	will	be	added	to	that.
If,	on	the	other	hand,	you	declare	box-sizing:	border-box,	then	the	element	box	will	be	400
pixels	from	the	left	outer	border	edge	to	the	right	outer	border	edge;	any	left	or	right	border	or	padding
will	be	placed	within	that	distance,	thus	shrinking	the	width	of	the	content	area	(again,	as	seen	in
Figure	6-13).

We’re	talking	about	the	box-sizing	property	here	because,	as	stated,	it	applies	to	“all	elements	that
accept	width	or	height	values”	(because	it	was	defined	before	logical	properties	were
commonplace).	That’s	most	often	elements	generating	block	boxes,	though	it	also	applies	to	replaced
inline	elements	like	images,	as	well	as	inline-block	boxes.

Having	established	how	to	size	elements	in	both	logical	and	physical	ways,	let’s	widen	our	scope	and
look	at	all	the	properties	that	affect	block	sizing.

Block-Axis	Properties
In	total,	block-axis	formatting	is	affected	by	seven	related	properties:	margin-block-start,
border-block-start,	padding-block-start,	height,	padding-block-end,
border-block-end,	and	margin-block-end.	These	properties	are	diagrammed	in	Figure	6-14.
These	properties	will	all	be	covered	in	detail	in	Chapter	7;	here,	we	will	talk	about	the	general	principles
and	behavior	of	these	properties	before	looking	at	the	details	of	their	values.

The	block-start	and	-end	padding	and	borders	must	be	set	to	specific	values,	or	else	they	default	to	a
width	of	zero,	assuming	no	border	style	is	declared.	If	border-style	has	been	set,	then	the	thickness
of	the	borders	is	set	to	be	medium,	which	is	set	to	three	pixels	wide	in	all	known	browsers.	Figure	6-14
provides	an	illustration	in	two	different	writing	modes	for	remembering	which	parts	of	the	box	may	have
a	value	of	auto	and	which	may	not.

Figure	6-14.	The	seven	properties	of	block-axis	formatting,	and	which	of	them	can	be	set	to	auto

Interestingly,	if	either	margin-block-start	or	margin-block-end	is	set	to	auto	for	a	block
box	in	the	normal	flow,	but	not	both,	they	both	evaluate	to	0.	A	value	of	0,	unfortunately,	prevents	easy
block-direction	centering	of	normal-flow	boxes	in	their	containing	blocks	(though	such	centering	is	fairly
straightforward	in	flex	or	grid	layout).

block-size	must	be	set	to	auto	or	to	a	nonnegative	value	of	some	type;	it	can	never	be	less	than	zero.

Auto	block	sizing
In	the	simplest	case,	a	normal-flow	block	box	with	block-size:	auto	is	rendered	just	tall	enough	to
enclose	the	line	boxes	of	its	inline	content	(including	text).	If	an	auto-block-size,	normal-flow	block	box
has	only	block-level	children	and	has	no	block-edge	padding	or	borders,	the	distance	from	its	first	child’s
border-start	edge	to	its	last	child’s	border-end	edge	will	be	the	box’s	block	size.	This	is	the	case	because
the	margins	of	the	child	elements	can	“stick	out”	of	the	element	that	contains	them	thanks	to	what’s	known
as	margin	collapsing,	which	we’ll	talk	about	later.

However,	if	a	block-level	element	has	either	block-start	or	-end	padding,	or	block-start	and	-end	borders,
then	its	block	size	will	be	the	distance	from	the	block-start	margin	edge	of	its	first	child	to	the	block-end
margin	edge	of	its	last	child:

<div	style="block-size:	auto;

				background:	silver;">

				<p	style="margin-block-start:	2em;	margin-block-end:	2em;">A	paragraph!</p>

</div>

<div	style="block-size:	auto;	border-block-start:	1px	solid;

					border-block-end:	1px	solid;	background:	silver;">

				<p	style="margin-block-start:	2em;	margin-block-end:	2em;">

									Another	paragraph!</p>

</div>

Both	of	these	behaviors	are	demonstrated	in	Figure	6-15.

If	we	changed	the	borders	in	the	previous	example	to	padding,	the	effect	on	the	block	size	of	the	div
would	be	the	same:	it	would	still	enclose	the	paragraph’s	margins	within	it.

Figure	6-15.	Auto	block	sizes	with	block-level	children

Percentage	Heights

We	saw	earlier	how	length-value	block	sizes	are	handled,	so	let’s	spend	a	moment	on	percentages.	If	the
block	size	of	a	normal-flow	block	box	is	set	to	a	percentage	value,	then	that	value	is	taken	as	a	percentage
of	the	block	size	of	the	box’s	containing	block,	assuming	the	container	has	an	explicit,	non-auto	block
size	of	its	own.	Given	the	following	markup,	the	paragraph	will	be	3	em	long	along	the	block	axis:

<div	style="block-size:	6em;">

				<p	style="block-size:	50%;">Half	as	tall</p>

</div>

In	cases	where	the	block	size	of	the	containing	block	is	not	explicitly	declared,	percentage	block	sizes	are
reset	to	auto.	If	we	changed	the	previous	example	so	that	the	block-size	of	the	div	is	auto,	the
paragraph	will	now	have	its	block	size	determined	automatically

<div	style="block-size:	auto;">

				<p	style="block-size:	50%;">NOT	half	as	tall;	block	size	reset	to	auto</p>

</div>

These	two	possibilities	are	illustrated	in	Figure	6-16.	(The	spaces	between	the	paragraph	borders	and	the
div	borders	are	the	block-start	and	-end	margins	on	the	paragraphs.)

Figure	6-16.	Percentage	block	sizes	in	different	circumstances

Before	we	move	on,	take	a	closer	look	at	the	first	example	in	Figure	6-16,	the	half-as-tall	paragraph.	It
may	be	half	as	tall,	but	it	isn’t	centered	along	the	block	axis.	That’s	because	the	containing	div	is	6	em
tall,	which	means	the	half-as-tall	paragraph	is	3	em	tall.	It	has	block-start	and	-end	margins	of	1	em	thanks
to	the	browser’s	default	styles,	so	its	overall	block	size	is	5	em.	That	means	there	is	actually	2	em	of
space	between	the	block	end	of	the	paragraph’s	visible	box	and	the	div’s	block-end	border,	not	1	em.
This	is	illustrated	in	detail	in	Figure	6-17.

Figure	6-17.	Block-axis	sizing	and	placement	in	detail

Handling	Content	Overflow
Given	that	it’s	possible	to	set	elements	to	be	specific	sizes,	it	becomes	possible	to	make	an	element	too
small	for	its	content	to	fit	inside.	This	is	more	likely	to	arise	if	block	sizes	are	explicitly	defined,	but	it
can	also	happen	with	inline	sizes,	as	we’ll	see	in	later	sections.	If	this	sort	of	thing	does	happen,	you	can
exert	some	control	over	the	situation	with	the	overflow	shorthand	property.

OVERFLOW

Values [visible	|	hidden	|	clip	|	scroll	|	auto]{1,2}

Initial	value visible

Applies	to Block-level	and	replaced	elements

Computed	value As	specified

Inherited No

Animatable No

The	default	value	of	visible	means	that	the	element’s	content	may	be	visible	outside	the	element’s	box.
Typically,	this	leads	to	the	content	running	outside	its	own	element	box,	but	not	altering	the	shape	of	that
box.	The	following	markup	would	result	in	Figure	6-18:

div#sidebar	{block-size:	7em;	background:	#BBB;	overflow:	visible;}

If	overflow	is	set	to	hidden,	the	element’s	content	is	clipped	at	the	edges	of	the	element	box.	With	the
hidden	value,	there	is	no	way	to	get	at	the	parts	of	the	content	that	are	clipped	off.

If	overflow	is	set	to	clip,	the	element’s	content	is	also	clipped—that	is,	hidden—at	the	edges	of	the
element	box,	with	no	way	to	get	at	the	parts	that	are	clipped	off,	except	via	programmatic	means	such	as
JavaScript’s	HTMLElement.offsetLeft	property.	This	forces	the	designer	to	build	their	own
mechanisms	for	scrolling	or	panning	content	to	make	the	clipped-off	content	available.

If	overflow	is	set	to	scroll,	the	overflowing	content	is	clipped,	but	the	content	can	be	made
available	to	the	user	via	scrolling	methods,	including	a	scroll	bar	(or	set	of	them).	One	possibility	is
depicted	in	Figure	6-18.

If	scroll	is	used,	the	panning	mechanisms	(e.g.,	scroll	bars)	should	always	be	rendered.	To	quote	the
specification,	“this	avoids	any	problem	with	scrollbars	appearing	or	disappearing	in	a	dynamic
environment.”	Thus,	even	if	the	element	has	sufficient	space	to	display	all	its	content,	the	scroll	bars	may
still	appear	and	take	up	space	(though	they	may	not).

In	addition,	when	printing	a	page	or	otherwise	displaying	the	document	in	a	print	medium,	the	content	may
be	displayed	as	though	the	value	of	overflow	were	declared	to	be	visible.

Figure	6-18	illustrates	these	overflow	values,	with	two	of	them	combined	in	a	single	example.

Figure	6-18.	Methods	for	handling	overflowing	content

Finally,	there	is	overflow:	auto.	This	allows	UAs	(user	agents)_	to	determine	which	of	the
previously-described	behaviors	to	use,	although	UAs	are	encouraged	to	provide	a	scrolling	mechanism
whenever	necessary.	This	is	a	potentially	useful	way	to	use	overflow,	since	user	agents	could	interpret	it
to	mean	“provide	scroll	bars	only	when	needed.”	(They	may	not,	but	generally	do.)

Single-Axis	Overflow
Two	properties	make	up	the	overflow	shorthand.	You	can	define	the	overflow	behavior	along	the	X
(horizontal)	and	Y	(vertical)	directions	separately,	either	by	setting	them	both	in	overflow,	or	by	using
the	overflow-x	and	overflow-y	properties.

OVERFLOW-X,	OVERFLOW-Y

Values visible	|	hidden	|	clip	|	scroll	|	auto

Initial	value visible

Applies	to Block-level	and	replaced	elements

Computed	value As	specified

Inherited No

Animatable No

By	setting	the	overflow	behavior	separately	along	each	axis,	you’re	essentially	deciding	where	scrollbars
will	appear,	and	where	they	won’t.	Consider	the	following,	which	is	rendered	in	Figure	6-19.

div.one			{overflow-x:	scroll;	overflow-y:	hidden;}

div.two			{overflow-x:	hidden;	overflow-y:	scroll;}

div.three	{overflow-x:	scroll;	overflow-y:	scroll;}

Figure	6-19.	Setting	overflow	separately	for	X	and	Y

In	the	first	case,	there	is	an	empty	scrollbar	set	up	for	the	X	(horizontal)	axis,	but	none	for	the	Y	(vertical)
axis,	even	though	the	content	overflowed	along	the	Y	axis.	This	is	the	worst	of	both	worlds:	a	scrollbar
that’s	empty	because	it	isn’t	needed,	and	no	scroll	bar	where	it	is	needed.

The	second	case	is	the	much	more	useful	inverse:	there	is	no	scrollbar	set	along	the	X	axis,	but	one	is
available	for	the	Y	axis,	so	the	overflowed	content	can	be	accessed	by	means	of	scrolling.

In	the	third	case,	where	scroll	was	set	for	both	axes,	there	is	access	to	the	overflowing	content	via
scrolling,	but	also	an	unnecessary	scrollbar	(which	is	empty)	for	the	X	axis.	This	is	equivalent	to	simply
declaring	overflow:	scroll.

Which	brings	us	to	the	true	nature	of	overflow:	it’s	a	shorthand	property	that	brings	overflow-x	and
overflow-y	together	under	one	roof.	The	following	is	exactly	equivalent	to	the	previous	example,	and
will	have	the	same	result	shown	in	Figure	6-19.

div.one			{overflow:	scroll	hidden;}

div.two			{overflow:	hidden	scroll;}

div.three	{overflow:	scroll;}	/*	'scroll	scroll'	would	also	work	*/

As	you	see,	you	can	give	overflow	two	keywords,	which	are	always	in	the	order	X,	then	Y.	If	only	one
value	is	given,	then	it’s	used	for	both	the	X	and	Y	axes.	This	is	why	scroll	and	scroll	scroll	are
the	same	thing,	as	values	of	overflow.	Similarly,	hidden	would	be	the	same	as	saying	hidden
hidden.

Negative	Margins	and	Collapsing
Believe	it	or	not,	negative	margins	are	possible.	The	base	effect	is	to	move	the	margin-edge	inward
toward	the	center	of	the	element’s	box.	Consider:

p.neg	{margin-block-start:	-50px;	margin-block-end:	0;

				border:	3px	solid	gray;}

<div	style="width:	420px;	background-color:	silver;	padding:	10px;

												margin-block-start:	50px;	border:	1px	solid;">

				<p	class="neg">

								A	paragraph.

				</p>

				A	div.

</div>

As	we	see	in	Figure	6-20,	the	paragraph	has	been	pulled	upward	by	its	negative	block-start	margin.	Note
that	the	content	of	the	<div>	that	follows	the	paragraph	in	the	markup	has	also	been	pulled	up	the	block
axis	by	50	pixels.

Figure	6-20.	The	effects	of	a	negative	top	margin

Now	compare	the	following	markup	to	the	situation	shown	in	Figure	6-21:

p.neg	{margin-block-end:	-50px;	margin-block-end:	0;

				border:	3px	solid	gray;}

<div	style="width:	420px;	margin-block-start:	50px;">

				<p	class="neg">

								A	paragraph.

				</p>

</div>

<p>

				The	next	paragraph.

</p>

Figure	6-21.	The	effects	of	a	negative	block-end	margin

What’s	happening	in	Figure	6-21?	The	elements	following	the	div	are	placed	according	to	the	location	of
the	block-end	margin	edge	of	the	div,	which	is	50px	higher	than	it	would	be	without	the	negative	margin.
As	Figure	6-21	shows,	the	block-end	of	the	div	is	actually	above	the	visual	block-end	of	its	child
paragraph.	The	next	element	after	the	div	is	the	appropriate	distance	from	the	block-end	of	the	div.

Collapsing	Block	Axis	Margins
An	important	aspect	of	block-axis	formatting	is	the	collapsing	of	adjacent	margins,	which	is	a	way	of
comparing	adjacent	margins	in	the	block	direction,	and	then	using	only	the	largest	of	those	margins	to	set
the	distance	between	the	adjacent	block	elements.	Note	that	collapsing	behavior	applies	only	to	margins.
Padding	and	borders	never	collapse.

An	unordered	list,	where	list	items	follow	one	another	along	the	block	axis,	is	a	perfect	environment	for
studying	margin	collapsing.	Assume	that	the	following	is	declared	for	a	list	that	contains	five	items:

li	{margin-block-start:	10px;	margin-block-end:	15px;}

Each	list	item	has	a	10-pixel	block-start	margin	and	a	15-pixel	block-end	margin.	When	the	list	is
rendered,	however,	the	visible	distance	between	adjacent	list	items	is	15	pixels,	not	25.	This	happens
because,	along	the	block	axis,	adjacent	margins	are	collapsed.	In	other	words,	the	smaller	of	the	two
margins	is	eliminated	in	favor	of	the	larger.	Figure	6-22	shows	the	difference	between	collapsed	and
uncollapsed	margins.

Figure	6-22.	Collapsed	versus	uncollapsed	margins

User	agents	will	collapse	block-adjacent	margins	as	shown	in	the	first	list	in	Figure	6-22,	where	there	are
15-pixel	spaces	between	each	list	item.	The	second	list	shows	what	would	happen	if	browsers	didn’t
collapse	margins,	resulting	in	25-pixel	spaces	between	list	items.

Another	word	to	use,	if	you	don’t	like	“collapse,”	is	“overlap.”	Although	the	margins	are	not	really
overlapping,	you	can	visualize	what’s	happening	using	the	following	analogy.

If	you	prefer	visual	analogies,	imagine	that	each	element,	such	as	a	paragraph,	is	a	small	piece	of	paper
with	the	content	of	the	element	written	on	it.	Around	each	piece	of	paper	is	some	amount	of	clear	plastic,
which	represents	the	margins.	The	first	piece	of	paper	(say	an	h1	piece)	is	laid	down	on	the	canvas.	The
second	(a	paragraph)	is	laid	below	it	along	the	block	axis	and	then	slid	upwards	along	that	axis	until	the
edge	of	one	piece’s	plastic	touches	the	edge	of	the	other’s	paper.	If	the	first	piece	of	paper	has	half	an	inch
of	plastic	along	its	block-end	edge,	and	the	second	has	a	third	of	an	inch	along	its	block-start,	then	when
they	slide	together,	the	first	piece’s	block-end	plastic	will	touch	the	block-start	edge	of	the	second	piece
of	paper.	The	two	are	now	done	being	placed	on	the	canvas,	and	the	plastic	attached	to	the	pieces	is
overlapping.

Collapsing	also	occurs	where	multiple	margins	meet,	such	as	at	the	end	of	a	list.	Adding	to	the	earlier
example,	let’s	assume	the	following	rules	apply:

ul	{margin-block-end:	15px;}

li	{margin-block-start:	10px;	margin-block-end:	20px;}

h1	{margin-block-start:	28px;}

The	last	item	in	the	list	has	a	block-end	margin	of	20	pixels,	the	block-end	margin	of	the	ul	is	15	pixels,
and	the	block-start	margin	of	a	succeeding	h1	is	28	pixels.	So	once	the	margins	have	been	collapsed,	the
distance	between	the	end	of	the	last	li	in	the	list	and	the	beginning	of	the	h1	is	28	pixels,	as	shown	in
Figure	6-23.

Figure	6-23.	Collapsing	in	detail

If	you	add	a	border	or	padding	to	a	containing	block,	this	causes	the	margins	of	its	child	elements	to	be
entirely	contained	within	it.	We	can	see	this	behavior	in	operation	by	adding	a	border	to	the	ul	element	in
the	previous	example:

ul	{margin-block-end:	15px;	border:	1px	solid;}

li	{margin-block-start:	10px;	margin-block-end:	20px;}

h1	{margin-block-start:	28px;}

With	this	change,	the	block-end	margin	of	the	li	element	is	now	placed	inside	its	parent	element	(the
ul).	Therefore,	the	only	margin	collapsing	that	takes	place	is	between	the	ul	and	the	h1,	as	illustrated	in
Figure	6-24.

Figure	6-24.	Collapsing	(or	not)	with	borders	added	to	the	mix

Negative	margin	collapsing	is	slightly	different.	When	a	negative	margin	participates	in	margin
collapsing,	the	browser	takes	the	absolute	value	of	the	negative	margin	and	subtracts	it	from	any	adjacent
positive	margins.	In	other	words,	the	negative	length	is	added	to	the	positive	length(s),	and	the	resulting
value	is	the	distance	between	the	elements,	even	if	that	distance	is	a	negative	length.	Figure	6-25	provides
some	concrete	examples.

Figure	6-25.	Examples	of	negative	block-axis	margins

Now	let’s	consider	an	example	where	the	margins	of	a	list	item,	an	unordered	list,	and	a	paragraph	are	all
collapsed.	In	this	case,	the	unordered	list	and	paragraph	are	assigned	negative	margins:

li	{margin-block-end:	20px;}

ul	{margin-block-end:	-15px;}

h1	{margin-block-start:	-18px;}

The	negative	margin	of	the	greatest	magnitude	(-18px)	is	added	to	the	largest	positive	margin	(20px),
yielding	20px	-	18px	=	2px.	Thus,	there	are	only	two	pixels	between	the	block-end	of	the	list	item’s
content	and	the	block-start	of	the	h1’s	content,	as	we	can	see	in	Figure	6-26.

Figure	6-26.	Collapsing	margins	and	negative	margins,	in	detail

When	elements	overlap	each	other	due	to	negative	margins,	it’s	hard	to	tell	which	elements	are	on	top	of
others.	You	may	also	have	noticed	that	very	few	of	the	examples	in	this	section	use	background	colors.	If
they	did,	the	background	color	of	a	following	element	might	overwrite	the	content	of	a	preceding	element.
This	is	expected	behavior,	since	browsers	usually	render	elements	in	order	from	beginning	to	end,	so	a
normal-flow	element	that	comes	later	in	the	document	can	generally	be	expected	to	overwrite	an	earlier
element,	assuming	the	two	end	up	overlapping.

Inline-Axis	Formatting
Laying	out	elements	along	the	inline	axis	can	be	more	complex	than	you’d	think.	Part	of	the	complexity	has
to	do	with	the	default	behavior	of	box-sizing.	With	the	default	value	of	content-box,	the	value
given	for	inline-size	affects	the	inline	width	of	the	content	area,	not	the	entire	visible	element	box.
Consider	the	following	example,	where	the	inline	axis	runs	left	to	right:

<p	style="inline-size:	200px;">wideness?</p>

This	makes	the	paragraph’s	content	area	200	pixels	wide.	If	we	give	the	element	a	background,	this	will
be	quite	obvious.	However,	any	padding,	borders,	or	margins	you	specify	are	added	to	the	width	value.
Suppose	we	do	this:

<p	style="inline-size:	200px;	padding:	10px;	margin:	20px;">wideness?</p>

The	visible	element	box	is	now	220	pixels	in	inline	size,	since	we’ve	added	10	pixels	of	padding	to
every	side	of	the	content.	The	margins	will	now	extend	another	20	pixels	to	both	inline	sides	for	an
overall	element	inline	size	of	260	pixels.	This	is	illustrated	in	Figure	6-27.

Figure	6-27.	Additive	padding	and	margin

If	we	change	the	styles	to	use	box-sizing:	border-box,	then	the	results	will	be	different.	In	that
case,	the	visible	box	will	be	200	pixels	wide	along	the	inline	axis	with	a	content	inline	size	of	180	pixels,
and	a	total	of	40	pixels	of	margin	on	the	inline	sides,	giving	an	overall	box	inline	size	of	240	pixels,	as
illustrated	in	Figure	6-28.

Figure	6-28.	Subtractive	padding

In	either	case,	there	is	a	rule	in	the	CSS	specification	that	says	the	sum	of	the	inline	components	of	a	block
box	in	the	normal	flow	always	equals	the	inline	size	of	the	containing	block	(which	is	why,	as	we’ll	see	in
just	a	bit,	margin:	auto	centers	content	in	the	inline	direction).	Let’s	consider	two	paragraphs	within
a	div	whose	margins	have	been	set	to	be	1em,	and	whose	box-sizing	value	is	the	default
content-box.	The	content	size	(the	value	of	inline-size)	of	each	paragraph	in	this	example,	plus
its	inline-start	and	-end	padding,	borders,	and	margins,	will	always	add	up	to	the	inline	size	of	the	div’s
content	area.

Let’s	say	the	inline	size	of	the	div	is	30em.	That	makes	the	sum	total	of	the	content	size,	padding,
borders,	and	margins	of	each	paragraph	30	em.	In	Figure	6-29,	the	“blank”	space	around	the	paragraphs	is
actually	their	margins.	If	the	div	had	any	padding,	there	would	be	even	more	blank	space,	but	that	isn’t
the	case	here.

Figure	6-29.	Element	boxes	are	as	wide	as	the	inline	width	of	their	containing	block

Inline-axis	Properties
The	seven	properties	of	inline	formatting	are	margin-inline-start,	border-inline-start,
padding-inline-start,	inline-size,	padding-inline-end,	padding-inline-
end,	and	padding-inline-end,	and	are	diagrammed	in	Figure	6-30.

The	values	of	these	seven	properties	must	add	up	to	the	inline	size	of	the	element’s	containing	block,
which	is	usually	the	value	of	inline-size	for	a	block	element’s	parent	(since	block-level	elements

nearly	always	have	block-level	elements	for	parents).

Of	these	seven	properties,	only	three	may	be	set	to	auto:	the	inline	size	of	the	element’s	content,	and	the
inline-start	and	-end	margins.	The	remaining	properties	must	be	set	either	to	specific	values	or	default	to	a
width	of	zero.	Figure	6-30	shows	which	parts	of	the	box	can	take	a	value	of	auto	and	which	cannot.
(That	said,	CSS	is	forgiving:	If	any	part	that	can’t	accept	auto	is	erroneously	set	to	auto,	it	will	default
to	0.)

Figure	6-30.	The	seven	properties	of	inline-axis	formatting,	and	which	of	them	can	be	set	to	auto

inline-size	must	either	be	set	to	auto	or	a	nonnegative	value	of	some	type.	When	you	do	use	auto
in	inline-axis	formatting,	different	effects	can	occur.

Using	auto
There	can	be	situations	where	it	makes	a	lot	of	sense	to	explicitly	set	one	or	more	of	the	inline	margins
and	size	to	be	auto.	By	default,	the	two	inline	margins	are	set	to	0	and	the	inline	size	is	set	to	auto.
Let’s	explore	how	moving	the	auto	around	can	have	different	effects,	and	why.

Only	One	auto
If	you	set	one	of	inline-size,	margin-inline-start,	or	margin-inline-end	to	a	value
of	auto,	and	give	the	other	two	properties	specific	values,	then	the	property	that	is	set	to	auto	is	set	to
the	length	required	to	make	the	element	box’s	overall	inline	size	equal	to	the	parent	element’s	content
inline	size.

In	other	words,	let’s	say	the	sum	of	the	seven	inline-axis	properties	must	equal	500	pixels,	no	padding	or
borders	are	set,	the	inline-end	margin	and	inline	size	are	set	to	100px,	and	the	inline-start	margin	is	set
to	auto.	The	inline-start	margin	will	thus	be	300	pixels	wide:

div	{inline-size:	500px;}

p	{margin-inline-start:	auto;	margin-inline-end:	100px;

				inline-size:	100px;}	/*	inline-start	margin	evaluates	to	300px	*/

In	a	sense,	auto	can	be	used	to	make	up	the	difference	between	everything	else	and	the	required	total.
However,	what	if	all	three	of	these	properties	(both	inline	margins	and	the	inline	size)	are	set	to	100px
and	none	of	them	are	set	to	auto?

In	the	case	where	all	three	properties	are	set	to	something	other	than	auto—or,	in	CSS	parlance,	when
these	formatting	properties	have	been	overconstrained—then	the	margin	at	the	inline-end	is	always
forced	to	be	auto.	This	means	that	if	both	inline	margins	and	the	inline	size	are	set	to	100px,	then	the
user	agent	will	reset	the	inline-end	margin	to	auto.	The	inline-end	margin’s	width	will	then	be	set
according	to	the	rule	that	one	auto	value	“fills	in”	the	distance	needed	to	make	the	element’s	overall
inline	size	equal	that	of	its	containing	block’s	content	inline	size.	Figure	6-31	shows	the	result	of	the
following	markup	in	left-to-right	languages	like	English:

div	{inline-size:	500px;}

p	{margin-inline-start:	100px;	margin-inline-end:	100px;

				inline-size:	100px;}	/*	inline-end	margin	forced	to	be	300px	*/

Figure	6-31.	Overriding	the	inline-end	margin’s	value

If	both	side	margins	are	set	explicitly,	and	inline-size	is	set	to	auto,	then	inline-size	will	be
whatever	value	is	needed	to	reach	the	required	total	(which	is	the	content	inline	size	of	the	parent
element).	The	results	of	the	following	markup	are	shown	in	Figure	6-32:

p	{margin-inline-start:	100px;	margin-inline-end:	100px;

					inline-size:	auto;}

The	case	shown	in	Figure	6-32	is	the	most	common	case,	since	it	is	equivalent	to	setting	the	margins	and
not	declaring	anything	for	the	inline-size.	The	result	of	the	following	markup	is	exactly	the	same	as
that	shown	in	Figure	6-32:

p	{margin-inline-start:	100px;	margin-inline-end:	100px;}	/*	same	as	before	*/

Figure	6-32.	Automatic	inline	sizing

You	might	be	wondering	what	happens	if	box-sizing	is	set	to	padding-box.	In	that	case,	all	the
same	principles	described	here	apply,	which	is	why	this	section	only	discussed	inline-size	and	the
inline-side	margins	without	introducing	any	padding	or	borders.

In	other	words,	the	handling	of	inline-size:	auto	in	this	section	and	the	following	sections	is	the
same	regardless	of	the	value	of	box-sizing.	The	details	of	what	gets	placed	where	inside	the	box-
sizing-defined	box	may	vary,	but	the	treatment	of	auto	values	does	not,	because	box-sizing
determines	what	inline-size	refers	to,	not	how	it	behaves	in	relation	to	the	margins.

More	Than	One	auto
Now	let’s	see	what	happens	when	two	of	the	three	properties	(inline-size,	margin-inline-
start,	and	margin-inline-end)	are	set	to	auto.	If	both	margins	are	set	to	auto	but	the
inline-size	is	set	to	a	specific	length,	as	shown	in	the	following	code,	then	they	are	set	to	equal
lengths,	thus	centering	the	element	within	its	parent	along	the	inline	axis.	This	is	illustrated	in	Figure	6-33.

div	{inline-size:	500px;}

p	{inline-size:	300px;	margin-inline-start:	auto;	margin-inline-end:	auto;}

		/*	each	margin	is	100	pixels,	because	(500-300)/2	=	100	*/

Figure	6-33.	Setting	an	explicit	inline	size

Another	way	of	sizing	elements	along	the	inline	axis	is	to	set	one	of	the	inline	margins	and	the	inline-
size	to	auto.	In	this	case,	the	margin	set	to	be	auto	is	reduced	to	zero:

div	{inline-size:	500px;}

p	{margin-inline-start:	auto;	margin-inline-end:	100px;	inline-size:	auto;}

		/*	inline-start	margin	evaluates	to	0;	inline-size	becomes	400px		*/

The	inline-size	is	then	set	to	the	value	necessary	to	make	the	element	fill	its	containing	block;	in	the
preceding	example,	it	would	be	400	pixels,	as	shown	in	Figure	6-34.

Figure	6-34.	What	happens	when	both	the	inline-size	and	the	inline-start	margin	are	auto

Too	Many	autos
Finally,	what	happens	when	all	three	properties	are	set	to	auto?	The	answer:	both	margins	are	set	to
zero,	and	the	inline-size	is	made	as	wide	as	possible.	This	result	is	the	same	as	the	default	situation,
when	no	values	are	explicitly	declared	for	margins	or	the	inline	size.	In	such	a	case,	the	margins	default	to
zero	and	the	inline-size	defaults	to	auto.

Note	that	since	inline	margins	do	not	collapse	(unlike	block	margis,	as	discussed	earlier),	the	padding,
borders,	and	margins	of	a	parent	element	can	affect	the	inline	layout	its	children.	The	effect	is	indirect	in
that	the	margins	(and	so	on)	of	an	element	can	induce	an	offset	for	child	elements.	The	results	of	the
following	markup	are	shown	in	Figure	6-35:

div	{padding:	50px;	background:	silver;}

p	{margin:	30px;	padding:	0;	background:	white;}

Figure	6-35.	Offset	is	implicit	in	the	parent’s	margins	and	padding

Negative	Margins
As	seen	in	the	section	on	block-axis	margins,	it’s	possible	to	set	negative	values	for	inline-axis	margins.
Setting	negative	inline	margins	can	result	in	some	interesting	effects.

Remember	that	the	total	of	the	seven	inline-axis	properties	always	equals	the	inline	size	of	the	content
area	of	the	parent	element.	As	long	as	all	inline	properties	are	zero	or	greater,	an	element’s	inline	size	can
never	be	greater	than	its	parent’s	content	area	inline	size.	However,	consider	the	following	markup,
depicted	in	Figure	6-36:

div	{inline-size:	500px;	border:	3px	solid	black;}

p.wide	{margin-inline-start:	10px;	margin-inline-end:	-50px;

				inline-size:	auto;}

Figure	6-36.	Wider	children	through	negative	margins

Yes	indeed,	the	child	element	is	wider	than	its	parent	along	the	inline	axis!	This	is	mathematically	correct.
If	we	solve	for	inline	size:

The	540px	is	the	evaluation	of	inline-size:	auto,	which	is	the	number	needed	to	balance	out	the
rest	of	the	values	in	the	equation.	Even	though	it	leads	to	a	child	element	sticking	out	of	its	parent,	it	all
works	because	the	values	of	the	seven	properties	add	up	to	the	required	total.

Now,	let’s	add	some	borders	to	the	mix:

div	{inline-size:	500px;	border:	3px	solid	black;}

p.wide	{margin-inline-start:	10px;	margin-inline-end:	-50px;

				inline-size:	auto;	border:	3px	solid	gray;}

The	resulting	change	will	be	a	reduction	in	the	evaluated	width	of	inline-size:

Or,	if	we	rearrange	the	equation	to	solve	for	the	content	size	instead	of	setting	it	up	to	solve	for	the	width
of	the	parent:

If	we	were	to	introduce	padding,	then	the	value	of	inline-size	would	drop	even	more	(assuming
box-sizing:	content-box).

Conversely,	it’s	possible	to	have	auto	inline-end	margins	evaluate	to	negative	amounts.	If	the	values	of
other	properties	force	the	inline-end	margin	to	be	negative	in	order	to	satisfy	the	requirement	that

elements	be	no	wider	than	their	containing	block,	then	that’s	what	will	happen.	Consider:

div	{inline-size:	500px;	border:	3px	solid	black;}

p.wide	{margin-inline-start:	10px;	margin-inline-end:	auto;

				inline-size:	600px;	border:	3px	solid	gray;}

The	equation	works	out	like	this:

In	this	case,	the	inline-end	margin	evaluates	to	-116px.	No	matter	what	explicit	value	it’s	given	in	the
CSS,	it	will	still	be	forced	to	-116px	because	of	the	rule	stating	that	when	an	element’s	dimensions	are
overconstrained,	the	inline-end	margin	is	reset	to	whatever	is	needed	to	make	the	numbers	work	out
correctly.

Let’s	consider	another	example,	illustrated	in	Figure	6-37,	where	the	inline-start	margin	is	set	to	be
negative:

div	{inline-size:	500px;	border:	3px	solid	black;}

p.wide	{margin-inline-start:	-50px;	margin-inline-end:	10px;

				inline-size:	auto;	border:	3px	solid	gray;}

Figure	6-37.	Setting	a	negative	inline-start	margin

With	a	negative	inline-start	margin,	not	only	does	the	paragraph	spill	beyond	the	borders	of	the	<div>,
but	it	also	spills	beyond	the	edge	of	the	browser	window	itself!

Remember:	padding,	borders,	and	content	widths	(and	heights)	can	never	be	negative.	Only	margins	can
be	less	than	zero.

Percentages
When	it	comes	to	percentage	values	for	the	inline	size,	padding,	and	margins,	the	same	basic	rules	we
discussed	in	previous	sections	apply.	It	doesn’t	really	matter	whether	the	values	are	declared	with	lengths
or	percentages.

Percentages	can	be	very	useful.	Suppose	we	want	an	element’s	content	to	be	two-thirds	the	inline	size	of
its	containing	block,	the	padding	sides	to	be	5%	each,	the	inline-start	margin	to	be	5%,	and	the	inline-end
margin	to	take	up	the	slack.	That	would	be	written	something	like:

<p	style="inline-size:	67%;

					padding-inline-end:	5%;	padding-inline-start:	5%;

					margin-inline-end:	auto;	margin-inline-start:	5%;">

					playing	percentages</p>

The	inline-end	margin	would	evaluate	to	18%	(100%	-	67%	-	5%	-	5%	-	5%)	of	the	width	of	the
containing	block.

Mixing	percentages	and	length	units	can	be	tricky,	however.	Consider	the	following	example:

<p	style="inline-size:	67%;	padding-inline-end:	2em;	padding-inline-start:	2em;

					margin-inline-end:	auto;	margin-inline-start:	5em;">mixed	lengths</p>

In	this	case,	the	element’s	box	can	be	defined	like	this:

5em	+	0	+	2	em	+	67%	+	2	em	+	0	+	auto	=	containing	block	width

In	order	for	the	inline-end	margin’s	inline	size	to	evaluate	to	zero,	the	element’s	containing	block	must	be
27.272727	em	wide	(with	the	content	area	of	the	element	being	18.272727	em	wide)	along	the	inline	axis.
Any	wider	than	that	and	the	inline-end	margin	will	evaluate	to	a	positive	value.	Any	narrower	and	the
inline-end	margin	will	be	a	negative	value.

The	situation	gets	even	more	complicated	if	we	start	mixing	length-value	unity	types,	like	this:

<p	style="inline-size:	67%;

					padding-inline-end:	15px;	padding-inline-start:	10px;

					margin-inline-end:	auto;	margin-inline-start:	5em;">more	mixed	lengths</p>

And,	just	to	make	things	more	complex,	borders	cannot	accept	percentage	values,	only	length	values.	The
bottom	line	is	that	it	isn’t	really	possible	to	create	a	fully	flexible	element	based	solely	on	percentages
unless	you’re	willing	to	avoid	using	borders	or	use	approaches	such	as	flexible	box	layout.	That	said,	if
you	do	need	to	mix	percentages	and	length	units,	using	the	calc()	and	minmax()	value	functions	can
be	a	life-changer,	or	at	least	a	layout-changer.

Replaced	Elements
So	far,	we’ve	been	dealing	with	the	inline-axis	formatting	of	nonreplaced	block	boxes	in	the	normal	flow
of	text.	Replaced	elements	are	a	bit	simpler	to	manage.	All	of	the	rules	given	for	nonreplaced	blocks	hold
true,	with	one	exception:	if	inline-size	is	auto,	then	the	inline-size	of	the	element	is	the
content’s	intrinsic	width.	(“Intrinsic”	means	the	original	size;	the	size	the	element	is	by	default	when	no
external	factors	are	applied	to	it.)	The	image	in	the	following	example	will	be	20	pixels	wide	because
that’s	the	width	of	the	original	image:

If	the	actual	image	were	100	pixels	wide	instead,	then	the	element	(and	thus	the	image)	would	be	laid	out
as	100	pixels	wide.

It’s	possible	to	override	this	rule	by	assigning	a	specific	value	to	inline-size.	Suppose	we	modify
the	previous	example	to	show	the	same	image	three	times,	each	with	a	different	width	value:

This	is	illustrated	in	Figure	6-38.

Figure	6-38.	Changing	replaced	element	inline	sizes

Note	that	the	block	size	of	the	elements	also	increases.	When	a	replaced	element’s	inline-size	is
changed	from	its	intrinsic	width,	the	value	of	block-size	is	scaled	to	match,	maintaining	the	object’s
initial	aspect	ratio,	unless	block-size	has	been	set	to	an	explicit	value	of	its	own.	The	reverse	is	also
true:	if	block-size	is	set,	but	inline-size	is	left	as	auto,	then	the	inline	size	is	scaled
proportionately	to	the	change	in	block	size.

List	Items
List	items	have	a	few	special	rules	of	their	own.	They	are	typically	preceded	by	a	marker,	such	as	a	round
bullet	mark	or	a	number.

The	marker	attached	to	a	list	item	element	can	be	either	outside	the	content	of	the	list	item	or	treated	as	an
inline	marker	at	the	beginning	of	the	content,	depending	on	the	value	of	the	property	list-style-
position,	as	illustrated	in	Figure	6-39.

Figure	6-39.	Markers	outside	and	inside	the	list

If	the	marker	stays	outside	the	content,	then	it	is	placed	some	distance	from	the	inline-start	content	edge	of
the	content.	No	matter	how	the	list’s	styles	are	altered,	the	marker	stays	the	same	distance	from	the	content
edge.

Remember	that	list-item	boxes	define	containing	blocks	for	their	descendant	boxes,	just	like	regular	block
boxes.

NOTE
List	markers	are	discussed	in	more	detail,	including	how	to	create	and	style	them	using	the	::marker	pseudo-element,	in	XREF	HERE.

Box	Sizing	With	Aspect	Ratios
There	may	be	times	when	you	want	to	size	an	element	by	is	aspect	ratio,	which	means	its	block	and	inline
sizes	exists	in	a	specific	ratio.	Old	TVs	used	to	have	a	4-to-3	width-to-height	ratio,	for	example;	HD
video	resolutions	have	a	16:9	aspect	ratio.	You	might	want	to	force	elements	to	be	square	while	still
letting	their	sizes	flex.	In	these	cases,	the	aspect-ratio	property	can	help.

ASPECT-RATIO

Values auto	ǁ	<ratio>

Initial	value auto

Applies	to All	elements	except	inline	boxes	and	internal	table	and	ruby	boxes

Computed	value If	<ratio>,	a	pair	of	numbers;	otherwise	auto

Inherited No

Animatable Yes

Let’s	say	we	know	we’ll	have	a	bunch	of	elements,	and	we	don’t	know	how	wide	or	tall	each	will	be,	but
we	want	them	all	to	be	squares.	First,	pick	an	axis	you	want	to	size	on.	We’ll	use	height	here.	Make
sure	the	other	axis	is	auto-sized,	and	set	an	aspect	ratio,	like	this:

.gallery	div	{width:	auto;	aspect-ratio:	1/1;}

Figure	6-40	shows	the	same	set	of	HTML,	both	with	and	without	the	previous	CSS	applied.

Figure	6-40.	A	gallery	with	and	without	aspect	ratios	defined

The	ratio	is	maintained	over	the	distances	defined	by	box-sizing	(see	“Altering	box	sizing”),	so	given
the	following	CSS,	the	result	will	be	an	element	whose	outer	border	distances	are	in	an	exact	2:1	ratio.

.cards	div	{height:	auto;	box-sizing:	border-box;	aspect-ratio:	2/1;}

The	default	value,	auto,	means	that	boxes	that	have	an	intrinsic	aspect	ratio	—	boxes	generated	by
images,	for	example	—	will	use	that	aspect	ratio.	For	elements	that	don’t	have	an	intrinsic	aspect	ratio,
such	as	most	HTML	elements	like	<div>,	<p>,	and	so	on,	the	axis	sizes	of	the	box	will	be	determined
by	the	content.

Inline	Formatting
Inline	formatting	isn’t	as	simple	as	formatting	block-level	elements,	which	just	generate	block	boxes	and
usually	don’t	allow	anything	to	coexist	with	them.	By	contrast,	look	inside	a	block-level	element,	such	as
a	paragraph.	You	may	well	ask,	how	was	the	size	and	wrapping	of	each	line	determined?	What	controls
their	arrangement?	How	can	I	affect	it?

Line	Layout
In	order	to	understand	how	lines	are	generated,	first	consider	the	case	of	an	element	containing	one	very
long	line	of	text,	as	shown	in	Figure	6-41.	Note	that	we’ve	put	a	border	around	the	line	by	wrapping	the
entire	line	in	a	span	element	and	then	assigning	it	a	border	style:

span	{border:	1px	dashed	black;}

Figure	6-41.	A	single-line	inline	element

Figure	6-41	shows	the	simplest	case	of	an	inline	element	contained	by	a	block-level	element.	It’s	no
different	in	its	way	than	a	paragraph	with	two	words	in	it.

In	order	to	get	from	this	simplified	state	to	something	more	familiar,	all	we	have	to	do	is	determine	how
wide	(along	the	inline	axis)	the	element	should	be,	and	then	break	up	the	line	so	that	the	resulting	pieces
will	fit	into	the	content	inline	size	of	the	element.	Therefore,	we	arrive	at	the	state	shown	in	Figure	6-42.

Figure	6-42.	A	multiple-line	inline	element

Nothing	has	really	changed.	All	we	did	was	take	the	single	line	and	break	it	into	pieces,	and	then	stack
those	pieces	one	after	the	other	along	the	direction	of	the	block	flow.

In	Figure	6-42,	the	borders	for	each	line	of	text	also	happen	to	coincide	with	the	top	and	bottom	of	each
line.	This	is	true	only	because	no	padding	has	been	set	for	the	inline	text.	Notice	that	the	borders	actually
overlap	each	other	slightly;	for	example,	the	bottom	border	of	the	first	line	is	just	below	the	top	border	of
the	second	line.	This	is	because	the	border	is	actually	drawn	on	the	next	pixel	to	the	outside	of	each	line.
Since	the	lines	are	touching	each	other,	their	borders	overlap	as	shown	in	Figure	6-42.

NOTE
For	simplicity’s	sake,	we’re	going	to	use	terms	like	“top”	and	“bottom”	when	talking	about	the	edges	of	line	boxes.	In	this	context,	the	top
of	a	line	box	is	the	one	closest	to	the	block-start,	and	the	bottom	of	a	line	box	is	the	one	closest	to	the	block-end.	Similarly,	“tall”	and	“short”
will	refer	to	the	size	of	line	boxes	along	the	block	axis.

If	we	alter	the	span	styles	to	have	a	background	color,	the	actual	placement	of	the	lines	becomes	more
clear.	Consider	Figure	6-43,	which	shows	four	paragraphs	in	each	of	two	different	writing	modes,	and	the
effects	of	different	values	of	text-align	(see	Chapter	11),	by	each	paragraph	having	the	backgrounds
of	its	lines	filled	in.

Figure	6-43.	Showing	lines	in	different	alignments	and	writing	modes

As	Figure	6-43	shows,	not	every	line	reaches	to	the	edge	of	its	parent	paragraph’s	content	area,	which	has
been	denoted	with	a	dashed	gray	border.	For	the	left-aligned	paragraph,	the	lines	are	all	pushed	flush
against	the	left	content	edge	of	the	paragraph,	and	the	end	of	each	line	happens	wherever	the	line	is
broken.	The	reverse	is	true	for	the	right-aligned	paragraph.	For	the	centered	paragraph,	the	centers	of	the
lines	are	aligned	with	the	center	of	the	paragraph.

In	the	last	case,	where	the	value	of	text-align	is	justify,	each	line	(except	the	last)	is	forced	to	be
as	wide	as	the	paragraph’s	content	area	so	that	the	line’s	edges	touch	the	content	edges	of	the	paragraph.
The	difference	between	the	natural	length	of	the	line	and	the	width	of	the	paragraph’s	content	area	is	made
up	by	altering	the	spacing	between	letters	and	words	in	each	line.	Therefore,	the	value	of	word-
spacing	can	be	overridden	when	the	text	is	justified.	(The	value	of	letter-spacing	cannot	be
overridden	if	it	is	a	length	value.)

That	pretty	well	covers	how	lines	are	generated	in	the	simplest	cases.	As	you’re	about	to	see,	however,
the	inline	formatting	model	is	far	from	simple.

Basic	Terms	and	Concepts
Before	we	go	any	further,	let’s	review	some	terms	of	inline	layout,	which	will	be	crucial	in	navigating	the
following	sections:

Anonymous	text

This	is	any	string	of	characters	that	is	not	contained	within	an	inline	element.	Thus,	in	the	markup	<p>
I'm	so	happy!</p>,	the	sequences	“	I’m	”	and	“	happy!”	are	anonymous	text.
Note	that	the	spaces	are	part	of	the	text,	since	a	space	is	a	character	like	any	other.

Em	box

This	is	defined	in	the	given	font,	otherwise	known	as	the	character	box.	Actual	glyphs	can	be	taller	or
shorter	than	their	em	boxes.	In	CSS,	the	value	of	font-size	determines	the	height	of	each	em	box.

Content	area

In	nonreplaced	elements,	the	content	area	can	be	one	of	two	things,	and	the	CSS	specification	allows
user	agents	to	choose	which	one.	The	content	area	can	be	the	box	described	by	the	em	boxes	of	every
character	in	the	element,	strung	together;	or	it	can	be	the	box	described	by	the	character	glyphs	in	the
element.	In	this	book,	we	use	the	em	box	definition	for	simplicity’s	sake,	and	that’s	what	is	used	by
most	browsers.	In	replaced	elements,	the	content	area	is	the	intrinsic	height	of	the	element	plus	any
margins,	borders,	or	padding.

Leading

Leading	(pronounced	“led-ing”)	is	the	difference	between	the	values	of	font-size	and	line-
height.	This	difference	is	divided	in	half,	with	one	half	applied	to	the	top	and	one	half	to	the	bottom
of	the	content	area.	These	additions	to	the	content	area	are	called,	perhaps	unsurprisingly,	half-

leading.	Leading	is	applied	only	to	nonreplaced	elements.

Inline	box

This	is	the	box	described	by	the	addition	of	the	leading	to	the	content	area.	For	nonreplaced	elements,
the	height	of	the	inline	box	of	an	element	will	be	exactly	equal	to	the	value	of	the	line-height
property.	For	replaced	elements,	the	height	of	the	inline	box	of	an	element	will	be	exactly	equal	to	the
content	area,	since	leading	is	not	applied	to	replaced	elements.

Line	box

This	is	the	shortest	box	that	bounds	the	highest	and	lowest	points	of	the	inline	boxes	that	are	found	in
the	line.	In	other	words,	the	top	edge	of	the	line	box	is	placed	along	the	top	of	the	highest	inline	box
top,	and	the	bottom	of	the	line	box	is	placed	along	the	bottom	of	the	lowest	inline	box	bottom.
Remember	that	“top”	and	“bottom”	are	considered	with	respect	to	the	block	flow	direction.

CSS	also	contains	a	set	of	behaviors	and	useful	concepts	that	fall	outside	of	the	preceding	list	of	terms
and	definitions:

The	content	area	of	an	inline	box	is	analogous	to	the	content	box	of	a	block	box.

The	background	of	an	inline	element	is	applied	to	the	content	area	plus	any	padding.

Any	border	on	an	inline	element	surrounds	the	content	area	plus	any	padding.

Padding,	borders,	and	margins	on	nonreplaced	inline	elements	have	no	vertical	effect	on	the	inline
elements	or	the	boxes	they	generate;	that	is,	they	do	not	affect	the	height	of	an	element’s	inline	box
(and	thus	the	line	box	that	contains	the	element).

Margins	and	borders	on	replaced	elements	do	affect	the	height	of	the	inline	box	for	that	element	and,
by	implication,	the	height	of	the	line	box	for	the	line	that	contains	the	element.

One	more	thing	to	note:	inline	boxes	are	vertically	aligned	within	the	line	according	to	their	values	for	the
property	vertical-align	(see	Chapter	11).

Before	moving	on,	let’s	look	at	a	step-by-step	process	for	constructing	a	line	box,	which	you	can	use	to
see	how	the	various	pieces	of	a	line	fit	together	to	determine	its	height.

Determine	the	height	of	the	inline	box	for	each	element	in	the	line	by	following	these	steps:

1.	 Find	the	values	of	font-size	and	line-height	for	each	inline	nonreplaced	element	and	text
that	is	not	part	of	a	descendant	inline	element	and	combine	them.	This	is	done	by	subtracting	the
font-size	from	the	line-height,	which	yields	the	leading	for	the	box.	The	leading	is	split	in
half	and	applied	to	the	top	and	bottom	of	each	em	box.

2.	 Find	the	value	of	height,	along	with	the	values	for	the	margins,	padding,	and	borders	along	the
block-start	and	block-end	edges	of	each	replaced	element,	and	add	them	together.

3.	 Figure	out,	for	each	content	area,	how	much	of	it	is	above	the	baseline	for	the	overall	line	and	how
much	of	it	is	below	the	baseline.	This	is	not	an	easy	task:	you	must	know	the	position	of	the	baseline

for	each	element	and	piece	of	anonymous	text	and	the	baseline	of	the	line	itself,	and	then	line	them	all
up.	In	addition,	the	block-end	edge	of	a	replaced	element	sits	on	the	baseline	for	the	overall	line.

4.	 Determine	the	vertical	offset	of	any	elements	that	have	been	given	a	value	for	vertical-align.
This	will	tell	you	how	far	up	or	down	that	element’s	inline	box	will	be	moved	along	the	block	axis,
and	that	will	change	how	much	of	the	element	is	above	or	below	the	baseline.

5.	 Now	that	you	know	where	all	of	the	inline	boxes	have	come	to	rest,	calculate	the	final	line	box
height.	To	do	so,	just	add	the	distance	between	the	baseline	and	the	highest	inline	box	top	to	the
distance	between	the	baseline	and	the	lowest	inline	box	bottom.

Let’s	consider	the	whole	process	in	detail,	which	is	the	key	to	intelligently	styling	inline	content.

Line	Heights
First,	know	that	all	elements	have	a	line-height,	whether	it’s	explicitly	declared	or	not.	This	value
greatly	influences	the	way	inline	elements	are	displayed,	so	let’s	give	it	due	attention.

A	line’s	height	(or	the	height	of	a	line	box)	is	determined	by	the	height	of	its	constituent	elements	and	other
content,	such	as	text.	It’s	important	to	understand	that	line-height	actually	affects	inline	elements	and
other	inline	content,	not	block-level	elements—at	least,	not	directly.	We	can	set	a	line-height	value
for	a	block-level	element,	but	the	value	will	have	a	visual	impact	only	as	it’s	applied	to	inline	content
within	that	block-level	element.	Consider	the	following	empty	paragraph,	for	example:

<p	style="line-height:	0.25em;"></p>

Without	content,	the	paragraph	won’t	have	anything	to	display,	so	we	won’t	see	anything.	The	fact	that	this
paragraph	has	a	line-height	of	any	value—be	it	0.25em	or	25in—makes	no	difference	without
some	content	to	create	a	line	box.

We	can	set	a	line-height	value	for	a	block-level	element	and	have	that	apply	to	all	of	the	content
within	the	block,	whether	it’s	contained	in	an	inline	element	or	anonymous	text.	In	a	certain	sense,	then,
each	line	of	text	contained	within	a	block-level	element	is	its	own	inline	element,	whether	or	not	it’s
surrounded	by	tags.	If	you	like,	picture	a	fictional	tag	sequence	like	this:

<p>

<line>This	is	a	paragraph	with	a	number	of</line>

<line>lines	of	text	that	make	up	the</line>

<line>contents.</line>

</p>

Even	though	the	line	tags	don’t	actually	exist,	the	paragraph	behaves	as	if	they	did,	and	each	line	of	text
“inherits”	styles	from	the	paragraph.	You	only	bother	to	create	line-height	rules	for	block-level
elements	so	you	don’t	have	to	explicitly	declare	a	line-height	for	all	of	their	inline	elements,
fictional	or	otherwise.

The	fictional	line	element	actually	clarifies	the	behavior	that	results	from	setting	line-height	on	a
block-level	element.	According	to	the	CSS	specification,	declaring	line-height	on	a	block-level

element	sets	a	minimum	line	box	height	for	the	content	of	that	block-level	element.	Declaring
p.spacious	{line-height:	24pt;}	means	that	the	minimum	heights	for	each	line	box	is	24
points.	Technically,	content	can	inherit	this	line	height	only	if	an	inline	element	does	so.	Most	text	isn’t
contained	by	an	inline	element.	If	you	pretend	that	each	line	is	contained	by	the	fictional	line	element,
the	model	works	out	very	nicely.

Inline	Nonreplaced	Elements
Building	on	our	formatting	knowledge,	let’s	move	on	to	the	construction	of	lines	that	contain	only
nonreplaced	elements	(or	anonymous	text).	Then	you’ll	be	in	a	good	position	to	understand	the	differences
between	nonreplaced	and	replaced	elements	in	inline	layout.

NOTE
In	this	section,	we’ll	use	“top”	and	“bottom”	to	label	where	half-leading	is	placed	and	how	line	boxes	are	placed	together.	Always
remember	that	these	terms	are	in	relation	to	the	direction	of	block	flow:	the	“top”	edge	of	an	inline	box	is	the	one	closest	to	the	block-start
edge,	and	the	“bottom”	edge	of	an	inline	box	is	closest	to	its	block-end	edge.	Similarly,	“height”	means	the	the	distance	along	the	inline	box’s
block	axis,	and	“width”	the	distance	along	its	inline	axis.

Building	the	Boxes
First,	for	an	inline	nonreplaced	element	or	piece	of	anonymous	text,	the	value	of	font-size	determines
the	height	of	the	content	area.	If	an	inline	element	has	a	font-size	of	15px,	then	the	content	area’s
height	is	15	pixels	because	all	of	the	em	boxes	in	the	element	are	15	pixels	tall,	as	illustrated	in	Figure	6-
44.

Figure	6-44.	Em	boxes	determine	content	area	height

The	next	thing	to	consider	is	the	value	of	line-height	for	the	element,	and	the	difference	between	it
and	the	value	of	font-size.	If	an	inline	nonreplaced	element	has	a	font-size	of	15px	and	a
line-height	of	21px,	then	the	difference	is	six	pixels.	The	user	agent	splits	the	six	pixels	in	half	and
applies	half	(3	pixels)	to	the	top	and	half	(3	pixels)	to	the	bottom	of	the	content	area,	which	yields	the
inline	box.	This	process	is	illustrated	in	Figure	6-45.

Figure	6-45.	Content	area	plus	leading	equals	inline	box

Now,	let’s	break	stuff	so	we	can	better	understand	how	line	height	works.	Assume	the	following	is	true:

<p	style="font-size:	12px;	line-height:	12px;">

This	is	text,	some	of	which	is	emphasized,	plus	other	text

which	is	<strong	style="font-size:	24px;">strongly	emphasized

and	which	is

larger	than	the	surrounding	text.

</p>

In	this	example,	most	of	the	text	has	a	font-size	of	12px,	while	the	text	in	one	inline	nonreplaced
element	has	a	size	of	24px.	However,	all	of	the	text	has	a	line-height	of	12px	since	line-
height	is	an	inherited	property.	Therefore,	the	strong	element’s	line-height	is	also	12px.

Thus,	for	each	piece	of	text	where	both	the	font-size	and	line-height	are	12px,	the	content
height	does	not	change	(since	the	difference	between	12px	and	12px	is	zero),	so	the	inline	box	is	12
pixels	high.	For	the	strong	text,	however,	the	difference	between	line-height	and	font-size	is
-12px.	This	is	divided	in	half	to	determine	the	half-leading	(-6px),	and	the	half-leading	is	added	to
both	the	top	and	bottom	of	the	content	height	to	arrive	at	an	inline	box.	Since	we’re	adding	a	negative
number	in	both	cases,	the	inline	box	ends	up	being	12	pixels	tall.	The	12-pixel	inline	box	is	centered
vertically	within	the	24-pixel	content	height	of	the	element,	so	the	inline	box	is	actually	smaller	than	the
content	area.

So	far,	it	sounds	like	we’ve	done	the	same	thing	to	each	bit	of	text,	and	that	all	the	inline	boxes	are	the
same	size,	but	that’s	not	quite	true.	The	inline	boxes	in	the	second	line,	although	they’re	the	same	size,
don’t	actually	line	up	because	the	text	is	all	baseline-aligned	(see	Figure	6-46),	a	concept	we’ll	discuss
later	in	the	chapter.

Since	inline	boxes	determine	the	height	of	the	overall	line	box,	their	placement	with	respect	to	each	other
is	critical.	The	line	box	is	defined	as	the	distance	from	the	top	of	the	highest	inline	box	in	the	line	to	the
bottom	of	the	lowest	inline	box,	and	the	top	of	each	line	box	butts	up	against	the	bottom	of	the	line	box	for
the	preceding	line.

In	Figure	6-46,	there	are	three	boxes	being	laid	out	for	a	single	line	of	text:	the	two	anonymous	text	boxes
to	either	side	of	the	strong	element,	and	the	strong	element	itself.	Because	the	enclosing	paragraph

has	a	line-height	of	12px,	each	of	the	three	boxes	will	have	a	12-pixel-tall	inline	box.	These	inline
boxes	are	centered	within	the	content	area	of	each	box.	The	boxes	then	have	their	baselines	lined	up,	so
the	text	all	shares	a	common	baseline.

But	because	of	where	the	inline	boxes	fall	with	respect	to	those	baselines,	the	inline	box	of	the	strong
element	is	a	little	bit	higher	than	the	inline	boxes	of	the	anonymous	text	boxes.	Thus,	the	distance	from	the
top	of	the	strong’s	inline	box	to	the	bottoms	of	the	anonymous	inline	boxes	is	more	than	12	pixels,
while	the	visible	content	of	the	line	isn’t	completely	contained	within	the	line	box.

Figure	6-46.	Inline	boxes	within	a	line

After	all	that,	the	middle	line	of	text	is	placed	between	two	other	lines	of	text,	as	depicted	in	Figure	6-47.
The	bottom	edge	of	the	first	line	of	text	is	placed	against	the	top	edge	of	the	line	of	text	we	saw	in
Figure	6-46.	Similarly,	the	top	edge	of	the	third	line	of	text	is	placed	against	the	bottom	edge	of	the	middle
line	of	text.	Because	the	middle	line	of	text	has	a	slightly	taller	line	box,	the	result	is	that	the	lines	of	text
look	irregular,	because	the	distances	between	the	three	baselines	are	not	consistent.

Figure	6-47.	Line	boxes	within	a	paragraph

NOTE
In	just	a	bit,	we’ll	explore	ways	to	cope	with	this	behavior	and	methods	for	achieving	consistent	baseline	spacing.	(Spoiler:	Unitless	values
for	the	win!)

Vertical	Alignment
If	we	change	the	vertical	alignment	of	the	inline	boxes,	the	same	height	determination	principles	apply.
Suppose	that	we	give	the	strong	element	a	vertical	alignment	of	4px:

<p	style="font-size:	12px;	line-height:	12px;">

This	is	text,	some	of	which	is	emphasized,	plus	other	text

which	is	<strong	style="font-size:	24px;	vertical-align:	4px;">strongly

emphasized		and	that	is

larger	than	the	surrounding	text.

</p>

That	small	change	raises	the	strong	element	four	pixels,	which	pushes	up	both	its	content	area	and	its
inline	box.	Because	the	strong	element’s	inline	box	top	was	already	the	highest	in	the	line,	this	change
in	vertical	alignment	also	pushes	the	top	of	the	line	box	upward	by	four	pixels,	as	shown	in	Figure	6-48.

Figure	6-48.	Vertical	alignment	affects	line	box	height

NOTE
A	formal	definition	for	vertical-align	can	be	found	in	Chapter	11.

Let’s	consider	another	situation.	Here,	we	have	another	inline	element	in	the	same	line	as	the	strong	text,
and	its	alignment	is	other	than	the	baseline:

<p	style="font-size:	12px;	line-height:	12px;">

This	is	text,	some	of	which	is	emphasized,

plus	other	text	that	is	<strong	style="font-size:	24px;	vertical-align:	4px;">

strong	and	tall	and	is

larger	than	the	surrounding	text.

</p>

Now	we	have	the	same	result	as	in	our	earlier	example,	where	the	middle	line	box	is	taller	than	the	other
line	boxes.	However,	notice	how	the	“tall”	text	is	aligned	in	Figure	6-49.

Figure	6-49.	Aligning	an	inline	element	to	the	line	box

In	this	case,	the	top	of	the	“tall”	text’s	inline	box	is	aligned	with	the	top	of	the	line	box.	Since	the	“tall”
text	has	equal	values	for	font-size	and	line-height,	the	content	height	and	inline	box	are	the
same.	However,	consider	this:

<p	style="font-size:	12px;	line-height:	12px;">

This	is	text,	some	of	which	is	emphasized,

plus	other	text	that	is	<strong	style="font-size:	24px;	vertical-align:	4px;">

strong	and	

tall	and	is
	larger	than	the	surrounding	text.

</p>

Since	the	line-height	for	the	“tall”	text	is	less	than	its	font-size,	the	inline	box	for	that	element
is	smaller	than	its	content	area.	This	tiny	fact	changes	the	placement	of	the	text	itself,	because	the	top	of	its
inline	box	must	be	aligned	with	the	top	of	the	line	box	for	its	line.	Thus,	we	get	the	result	shown	in
Figure	6-50.

Figure	6-50.	Text	protruding	from	the	line	box	(again)

In	relation	to	the	terms	we’ve	been	using	in	this	chapter,	the	effects	of	the	assorted	keyword	values	of
vertical-align	are:

top

Aligns	the	top	(block-start	edge)	of	the	element’s	inline	box	with	the	top	of	the	containing	line	box.

bottom

Aligns	the	bottom	(block-end	edge)	of	the	element’s	inline	box	with	the	bottom	of	the	containing	line
box.

text-top

Aligns	the	top	(block-start	edge)	of	the	element’s	inline	box	with	the	top	of	the	parent’s	content	area.

text-bottom

Aligns	the	bottom	(block-end	edge)	of	the	element’s	inline	box	with	the	bottom	of	the	parent’s	content
area.

middle

Aligns	the	vertical	midpoint	of	the	element’s	inline	box	with	0.5ex	above	the	baseline	of	the	parent.

super

Moves	the	content	area	and	inline	box	of	the	element	upward	along	the	block	axis.	The	distance	is	not
specified	and	may	vary	by	user	agent.

sub

The	same	as	super,	except	the	element	is	moved	downward	along	the	block	axis	instead	of	upward.

<percentage>

Shifts	the	element	up	or	down	the	block	axis	by	the	distance	defined	by	taking	the	declared	percentage
of	the	element’s	value	for	line-height.

Managing	the	line-height
In	previous	sections,	you	saw	that	changing	the	line-height	of	an	inline	element	can	cause	text	from
one	line	to	overlap	another.	In	each	case,	though,	the	changes	were	made	to	individual	elements.	So	how
can	you	affect	the	line-height	of	elements	in	a	more	general	way	in	order	to	keep	content	from
overlapping?

One	way	to	do	this	is	to	use	the	em	unit	in	conjunction	with	an	element	whose	font-size	has	changed.
For	example:

p	{line-height:	1em;}

strong	{font-size:	250%;	line-height:	1em;}

<p>

Not	only	does	this	paragraph	have	"normal"	text,	but	it	also

contains	a	line	in	which	some	big	text	is	found.

This	large	text	helps	illustrate	our	point.

</p>

By	setting	a	line-height	for	the	strong	element,	we	increase	the	overall	height	of	the	line	box,
providing	enough	room	to	display	the	strong	element	without	overlapping	any	other	text	and	without
changing	the	line-height	of	all	lines	in	the	paragraph.	We	use	a	value	of	1em	so	that	the	line-
height	for	the	strong	element	will	be	set	to	the	same	size	as	strong’s	font-size.	Remember,
line-height	is	set	in	relation	to	the	font-size	of	the	element	itself,	not	the	parent	element.	The
results	are	shown	in	Figure	6-51.

Figure	6-51.	Assigning	the	line-height	property	to	inline	elements

Make	sure	you	really	understand	the	previous	sections,	because	things	will	get	trickier	when	we	try	to	add
borders.	Let’s	say	we	want	to	put	five-pixel	borders	around	any	hyperlink:

a:any-link	{border:	5px	solid	blue;}

If	we	don’t	set	a	large	enough	line-height	to	accommodate	the	border,	it	will	be	in	danger	of
overwriting	other	lines.	We	could	increase	the	size	of	the	inline	box	for	hyperlinks	using	line-height,
as	we	did	for	the	strong	element	in	the	earlier	example;	in	this	case,	we’d	just	need	to	make	the	value
of	line-height	10	pixels	larger	than	the	value	of	font-size	for	those	links.	However,	that	will	be

difficult	if	we	don’t	actually	know	the	size	of	the	font	in	pixels.

Another	solution	is	to	increase	the	line-height	of	the	paragraph.	This	will	affect	every	line	in	the
entire	element,	not	just	the	line	in	which	the	bordered	hyperlink	appears:

p	{line-height:	1.8em;}

a:link	{border:	5px	solid	blue;}

Because	there	is	extra	space	added	above	and	below	each	line,	the	border	around	the	hyperlink	doesn’t
impinge	on	any	other	line,	as	shown	in	Figure	6-52.

Figure	6-52.	Increasing	line-height	to	leave	room	for	inline	borders

This	approach	works	because	all	of	the	text	is	the	same	size.	If	there	were	other	elements	in	the	line	that
changed	the	height	of	the	line	box,	our	border	situation	might	also	change.	Consider	the	following:

p	{font-size:	14px;	line-height:	24px;}

a:link	{border:	5px	solid	blue;}

strong	{font-size:	150%;	line-height:	1.5em;}

Given	these	rules,	the	height	of	the	inline	box	of	a	strong	element	within	a	paragraph	will	be	31.5
pixels	(14	×	1.5	×	1.5),	and	that	will	also	be	the	height	of	the	line	box.	In	order	to	keep	baseline	spacing
consistent,	we	must	make	the	p	element’s	line-height	equal	to	or	greater	than	32px.

Baselines	and	line	heights
The	actual	height	of	each	line	box	depends	on	the	way	its	component	elements	line	up	with	one	another.
This	alignment	tends	to	depend	very	much	on	where	the	baseline	falls	within	each	element	(or	piece	of
anonymous	text)	because	that	location	determines	how	the	inline	boxes	are	arranged	vertically.

Consistent	baseline	spacing	tends	to	be	more	of	an	art	than	a	science.	If	you	declare	all	of	your	font	sizes
and	line	heights	using	a	single	unit,	such	as	ems,	then	you	have	a	good	chance	of	consistent	baseline
spacing.	If	you	mix	units,	however,	that	feat	becomes	a	great	deal	more	difficult,	if	not	impossible.	As	of
mid-2022,	there	are	proposals	for	properties	that	would	let	authors	enforce	consistent	baseline	spacing
regardless	of	the	inline	content,	which	would	greatly	simplify	certain	aspects	of	online	typography.	None
of	these	proposed	properties	have	been	implemented,	which	makes	their	adoption	a	distant	hope	at	best.

Scaling	Line	Heights
The	best	way	to	set	line-height,	as	it	turns	out,	is	to	use	a	raw	number	as	the	value.	This	method	is
best	because	the	number	becomes	the	scaling	factor,	and	that	factor	is	an	inherited,	not	a	computed,
value.	Let’s	say	we	want	the	line-height`s	of	all	elements	in	a	document	to	be

one	and	a	half	times	their	`font-size.	We	would	declare:

body	{line-height:	1.5;}

This	scaling	factor	of	1.5	is	passed	down	from	element	to	element,	and,	at	each	level,	the	factor	is	used	as
a	multiplier	of	the	font-size	of	each	element.	Therefore,	the	following	markup	would	be	displayed	as
shown	in	Figure	6-53:

p	{font-size:	15px;	line-height:	1.5;}

small	{font-size:	66%;}

strong	{font-size:	200%;}

<p>This	paragraph	has	a	line-height	of	1.5	times	its	font-size.	In	addition,

any	elements	within	it	<small>such	as	this	small	element</small>	also	have

line-heights	1.5	times	their	font-size...and	that	includes	this	big

element	right	here.	By	using	a	scaling	factor,	line-heights	scale

to	match	the	font-size	of	any	element.</p>

In	this	example,	the	line	height	for	the	small	element	turns	out	to	be	15	pixels,	and	for	the	strong
element,	it’s	45	pixels.	If	we	don’t	want	our	big	strong	text	to	generate	too	much	extra	leading,	we	can
give	it	its	own	line-height	value,	which	will	override	the	inherited	scaling	factor:

p	{font-size:	15px;	line-height:	1.5;}

small	{font-size:	66%;}

strong	{font-size:	200%;	line-height:	1em;}

Figure	6-53.	Using	a	scaling	factor	for	line-height

Adding	Box	Properties
As	you	may	recall	from	previous	discussions,	while	padding,	margins,	and	borders	may	all	be	applied	to
inline	nonreplaced	elements,	these	properties	have	no	impact	on	the	height	of	the	inline	element’s	line
box.

The	border	edge	of	inline	elements	is	controlled	by	the	font-size,	not	the	line-height.	In	other
words,	if	a	span	element	has	a	font-size	of	12px	and	a	line-height	of	36px,	its	content	area
is	12px	high,	and	the	border	will	surround	that	content	area.

Alternatively,	we	can	assign	padding	to	the	inline	element,	which	will	push	the	borders	away	from	the	text
itself:

span	{padding:	4px;}

Note	that	this	padding	does	not	alter	the	actual	shape	of	the	content	height,	and	so	it	will	not	affect	the
height	of	the	inline	box	for	this	element.	Similarly,	adding	borders	to	an	inline	element	will	not	affect	the
way	line	boxes	are	generated	and	laid	out,	as	illustrated	in	Figure	6-54	(both	with	and	without	the	four-
pixel	padding).

Figure	6-54.	Padding	and	borders	do	not	alter	line-height

As	for	margins,	they	do	not,	practically	speaking,	apply	to	the	block	edges	of	an	inline	nonreplaced
element,	as	they	don’t	affect	the	height	of	the	line	box.	The	inline	ends	of	the	element	are	another	story.

Recall	the	idea	that	an	inline	element	is	basically	laid	out	as	a	single	line	and	then	broken	up	into	pieces.
So,	if	we	apply	margins	to	an	inline	element,	those	margins	will	appear	at	its	beginning	and	end:	these	are
the	inline-start	and	inline-end	margins,	respectively.	Padding	also	appears	at	these	edges.	Thus,	although
padding	and	margins	(and	borders)	do	not	affect	line	heights,	they	can	still	affect	the	layout	of	an
element’s	content	by	pushing	text	away	from	its	ends.	In	fact,	negative	inline-start	and	-end	margins	can
pull	text	closer	to	the	inline	element,	or	even	cause	overlap,	as	Figure	6-55	shows.

So,	what	happens	when	an	inline	element	has	a	background	and	enough	padding	to	cause	the	lines’
backgrounds	to	overlap?	Take	the	following	situation	as	an	example:

p	{font-size:	15px;	line-height:	1em;}

p	span	{background:	#FAA;

					padding-block-start:	10px;	padding-block-end:	10px;}

All	of	the	text	within	the	span	element	will	have	a	content	area	15	pixels	tall,	and	we’ve	applied	10
pixels	of	padding	to	the	top	and	bottom	of	each	content	area.	The	extra	pixels	won’t	increase	the	height	of
the	line	box,	which	would	be	fine,	except	there	is	a	background	color.	Thus,	we	get	the	result	shown	in
Figure	6-55.

Figure	6-55.	Padding	and	margins	on	inline	elements

CSS	explicitly	states	that	the	line	boxes	are	drawn	in	document	order:	“This	will	cause	the	borders	on

subsequent	lines	to	paint	over	the	borders	and	text	of	previous	lines.”	The	same	principle	applies	to
backgrounds	as	well,	as	Figure	6-55	shows.

Changing	Breaking	Behavior
In	the	previous	section,	you	saw	that	when	an	inline	nonreplaced	element	is	broken	across	multiple	lines,
it’s	treated	as	if	it	were	one	long	single-line	element	that’s	sliced	into	smaller	boxes,	one	slice	per	line
break.	That’s	actually	just	the	default	behavior,	and	it	can	be	changed	via	the	property	box-
decoration-break.

BOX-DECORATION-BREAK

Values slice	|	clone

Initial	value slice

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

The	default	value,	slice,	is	what	we	saw	in	the	previous	section.	The	other	value,	clone,	causes	each
fragement	of	the	element	to	be	drawn	as	if	it	were	a	standalone	box.	What	does	that	mean?	Compare	the
two	examples	in	Figure	6-56,	in	which	exactly	the	same	markup	and	styles	are	treated	as	either	sliced	or
cloned.

Many	of	the	differences	may	be	apparent,	but	a	few	are	perhaps	more	subtle.	Among	the	effects	are	the
application	of	padding	to	each	element’s	fragment,	including	at	the	ends	where	the	line	breaks	occurred.
Similarly,	the	border	is	drawn	around	each	fragment	individually,	instead	of	being	broken	up.

Figure	6-56.	Sliced	and	cloned	inline	fragments

More	subtly,	notice	how	the	background-image	positioning	changes	between	the	two.	In	the	sliced
version,	background	images	are	sliced	along	with	everything	else,	meaning	that	only	one	of	the	fragments
contains	the	origin	image.	In	the	cloned	version,	however,	each	background	acts	as	its	own	copy,	so	each
has	its	own	origin	image.	This	means,	for	example,	that	even	if	we	have	a	nonrepeated	background	image,

it	will	appear	once	in	each	fragment	instead	of	only	in	one	fragment.

The	box-decoration-break	property	will	most	often	be	used	with	inline	boxes,	but	it	actually
applies	in	any	situation	where	there’s	a	break	in	an	element—for	example,	when	a	page	break	interrupts
an	element	in	paged	media.	In	such	a	case,	each	fragment	is	a	separate	slice.	If	we	set	box-
decoration-break:	clone,	then	each	box	fragment	will	be	treated	as	a	copy	when	it	comes	to
borders,	padding,	backgrounds,	and	so	on.	The	same	holds	true	in	multicolumn	layout:	if	an	element	is
split	by	a	column	break,	the	value	of	box-decoration-break	will	affect	how	it	is	rendered.

Glyphs	Versus	Content	Area
Even	in	cases	where	you	try	to	keep	inline	nonreplaced	element	backgrounds	from	overlapping,	it	can	still
happen,	depending	on	which	font	is	in	use.	The	problem	lies	in	the	difference	between	a	font’s	em	box	and
its	character	glyphs.	Most	fonts,	as	it	turns	out,	don’t	have	em	boxes	whose	heights	match	the	character
glyphs.

That	may	sound	very	abstract,	but	it	has	practical	consequences.	The	“painting	area”	of	an	inline
nonreplaced	element	is	left	to	the	user	agent.	If	a	user	agent	takes	the	em	box	to	be	the	height	of	the	content
area,	then	the	background	of	an	inline	nonreplaced	element	will	be	equal	to	the	height	of	the	em	box
(which	is	the	value	of	font-size).	If	a	user	agent	uses	the	maximum	ascender	and	descender	of	the
font,	then	the	background	may	be	taller	or	shorter	than	the	em	box.	Therefore,	you	could	give	an	inline
nonreplaced	element	a	line-height	of	1em	and	still	have	its	background	overlap	the	content	of	other
lines.

Inline	Replaced	Elements
Inline	replaced	elements,	such	as	images,	are	assumed	to	have	an	intrinsic	height	and	width;	for	example,
an	image	will	be	a	certain	number	of	pixels	high	and	wide.	Therefore,	a	replaced	element	with	an
intrinsic	height	can	cause	a	line	box	to	become	taller	than	normal.	This	does	not	change	the	value	of
line-height	for	any	element	in	the	line,	including	the	replaced	element	itself.	Instead,	the	line	box	is
made	just	tall	enough	to	accommodate	the	replaced	element,	plus	any	box	properties.	In	other	words,	the
entirety	of	the	replaced	element—content,	margins,	borders,	and	padding—is	used	to	define	the	element’s
inline	box.	The	following	styles	lead	to	one	such	example,	as	shown	in	Figure	6-57:

p	{font-size:	15px;	line-height:	18px;}

img	{block-size:	30px;	margin:	0;	padding:	0;	border:	none;}

Figure	6-57.	Replaced	elements	can	increase	the	height	of	the	line	box	but	not	the	value	of	line-height

Despite	all	the	blank	space,	the	effective	value	of	line-height	has	not	changed,	either	for	the
paragraph	or	the	image	itself.	line-height	has	no	effect	on	the	image’s	inline	box.	Because	the	image
in	Figure	6-57	has	no	padding,	margins,	or	borders,	its	inline	box	is	equivalent	to	its	content	area,	which
is,	in	this	case,	30	pixels	tall.

Nonetheless,	an	inline	replaced	element	still	has	a	value	for	line-height.	Why?	In	the	most	common
case,	it	needs	the	value	in	order	to	correctly	position	the	element	if	it’s	been	vertically	aligned.	Recall
that,	for	example,	percentage	values	for	vertical-align	are	calculated	with	respect	to	an	element’s	line-
height.	Thus:

p	{font-size:	15px;	line-height:	18px;}

img	{vertical-align:	50%;}

<p>The	image	in	this	sentence	

will	be	raised	9	pixels.</p>

The	inherited	value	of	line-height	causes	the	image	to	be	raised	nine	pixels	instead	of	some	other
number.	Without	a	value	for	line-height,	it	wouldn’t	be	possible	to	perform	percentage-value
vertical	alignments.	The	height	of	the	image	itself	has	no	relevance	when	it	comes	to	vertical	alignment;
the	value	of	line-height	is	all	that	matters.

However,	for	other	replaced	elements,	it	might	be	important	to	pass	on	a	line-height	value	to
descendant	elements	within	that	replaced	element.	An	example	would	be	an	SVG	image,	which	can	use
CSS	to	style	text	found	within	the	image.

Adding	Box	Properties
After	everything	we’ve	just	been	through,	applying	margins,	borders,	and	padding	to	inline	replaced
elements	almost	seems	simple.

Padding	and	borders	are	applied	to	replaced	elements	as	usual;	padding	inserts	space	around	the	actual
content	and	the	border	surrounds	the	padding.	What’s	unusual	about	the	process	is	that	these	two	things
actually	influence	the	height	of	the	line	box	because	they	are	part	of	the	inline	box	of	an	inline	replaced
element	(unlike	inline	nonreplaced	elements).	Consider	Figure	6-58,	which	results	from	the	following
styles:

img	{block-size:	50px;	inline-size:	50px;}

img.one	{margin:	0;	padding:	0;	border:	3px	dotted;}

img.two	{margin:	10px;	padding:	10px;	border:	3px	solid;}

Note	that	the	first	line	box	is	made	tall	enough	to	contain	the	image,	whereas	the	second	is	tall	enough	to
contain	the	image,	its	padding,	and	its	border.

Figure	6-58.	Adding	padding,	borders,	and	margins	to	an	inline	replaced	element	increases	its	inline	box

Margins	are	also	contained	within	the	line	box,	but	they	have	their	own	wrinkles.	Setting	a	positive
margin	is	no	mystery;	it	will	make	the	inline	box	of	the	replaced	element	taller.	Setting	negative	margins
has	a	similar	effect:	it	decreases	the	size	of	the	replaced	element’s	inline	box.	This	is	illustrated	in
Figure	6-59,	where	we	can	see	that	a	negative	top	margin	is	pulling	down	the	line	above	the	image:

img.two	{margin-block-start:	-10px;}

Negative	margins	operate	the	same	way	on	block-level	elements,	as	shown	earlier	in	the	chapter.	In	this
case,	the	negative	margins	make	the	replaced	element’s	inline	box	smaller	than	ordinary.	Negative
margins	are	the	only	way	to	cause	inline	replaced	elements	to	bleed	into	other	lines,	and	it’s	why	the
boxes	that	replaced	inline	elements	generate	are	often	assumed	to	be	inline-block.

Figure	6-59.	The	effect	of	negative	margins	on	inline	replaced	elements

Replaced	Elements	and	the	Baseline
You	may	have	noticed	by	now	that,	by	default,	inline	replaced	elements	sit	on	the	baseline.	If	you	add
bottom	(block-end)	padding,	a	margin,	or	a	border	to	the	replaced	element,	then	the	content	area	will
move	upward	along	the	block	axis.	Replaced	elements	do	not	have	baselines	of	their	own,	so	the	next	best
thing	is	to	align	the	bottom	of	their	inline	boxes	with	the	baseline.	Thus,	it	is	actually	the	outer	block-end
margin	edge	that	is	aligned	with	the	baseline,	as	illustrated	in	Figure	6-60.

Figure	6-60.	Inline	replaced	elements	sit	on	the	baseline

This	baseline	alignment	leads	to	an	unexpected	(and	unwelcome)	consequence:	an	image	placed	in	a	table
cell	all	by	itself	should	make	the	table	cell	tall	enough	to	contain	the	line	box	containing	the	image.	The
resizing	occurs	even	if	there	is	no	actual	text,	not	even	whitespace,	in	the	table	cell	with	the	image.
Therefore,	the	common	sliced-image	and	spacer-GIF	designs	of	years	past	can	fall	apart	quite
dramatically	in	modern	browsers.	(We	know	that	you	don’t	create	such	things,	but	this	is	still	a	handy
context	in	which	to	explain	this	behavior.)	Consider	the	simplest	case:

td	{font-size:	12px;}

<td></td>

Under	the	CSS	inline	formatting	model,	the	table	cell	will	be	12	pixels	tall,	with	the	image	sitting	on	the
baseline	of	the	cell.	So	there	might	be	three	pixels	of	space	below	the	image	and	eight	above	it,	although
the	exact	distances	would	depend	on	the	font	family	used	and	the	placement	of	its	baseline.

This	behavior	is	not	confined	to	images	inside	table	cells;	it	will	also	happen	in	any	situation	where	an
inline	replaced	element	is	the	sole	descendant	of	a	block-level	or	table-cell	element.	For	example,	an
image	inside	a	div	will	also	sit	on	the	baseline.

Here’s	another	interesting	effect	of	inline	replaced	elements	sitting	on	the	baseline:	if	we	apply	a	negative
bottom	(block-end)	margin,	the	element	will	actually	get	pulled	downward	because	the	bottom	of	its
inline	box	will	be	higher	than	the	bottom	of	its	content	area.	Thus,	the	following	rule	would	have	the
result	shown	in	Figure	6-61:

p	img	{margin-block-end:	-10px;}

Figure	6-61.	Pulling	inline	replaced	elements	down	with	a	negative	block-end	margin

This	can	easily	cause	a	replaced	element	to	bleed	into	following	lines	of	text,	as	Figure	6-61	shows.

Inline-Block	Elements
As	befits	the	hybrid	look	of	the	value	name	inline-block,	inline-block	elements	are	indeed	a	hybrid
of	block-level	and	inline	elements.

An	inline-block	element	relates	to	other	elements	and	content	as	an	inline	box	just	as	an	image	would:
Inline-block	elements	are	formatted	within	a	line	as	a	replaced	element.	This	means	the	bottom	(block-
end)	edge	of	the	inline-block	element	will	rest	on	the	baseline	of	the	text	line	by	default	and	will	not	line
break	within	itself.

Inside	the	inline-block	element,	the	content	is	formatted	as	though	the	element	were	block-level.	The
properties	width	and	height	apply	to	the	element	(and	thus	so	does	box-sizing),	as	they	do	to	any
block-level	or	inline	replaced	element,	and	those	properties	will	increase	the	height	of	the	line	if	they	are
taller	than	the	surrounding	content.

Let’s	consider	some	example	markup	that	should	help	make	this	clearer:

<div	id="one">

			This	text	is	the	content	of	a	block-level	level	element.	Within	this

			block-level	element	is	another	block-level	element.		<p>Look,	it's	a	block-level

			paragraph.</p>	Here's	the	rest	of	the	DIV,	which	is	still	block-level.

</div>

<div	id="two">

			This	text	is	the	content	of	a	block-level	level	element.	Within	this

			block-level	element	is	an	inline	element.		<p>Look,	it's	an	inline

			paragraph.</p>		Here's	the	rest	of	the	DIV,	which	is	still	block-level.

</div>

<div	id="three">

			This	text	is	the	content	of	a	block-level	level	element.	Within	this

			block-level	element	is	an	inline-block	element.		<p>Look,	it's	an	inline-block

			paragraph.</p>		Here's	the	rest	of	the	DIV,	which	is	still	block-level.

</div>

To	this	markup,	we	apply	the	following	rules:

div	{margin:	1em	0;	border:	1px	solid;}

p	{border:	1px	dotted;}

div#one	p	{display:	block;	inline-size:	6em;	text-align:	center;}

div#two	p	{display:	inline;	inline-size:	6em;	text-align:	center;}

div#three	p	{display:	inline-block;	inline-size:	6em;	text-align:	center;}

The	result	of	this	stylesheet	is	depicted	in	Figure	6-62.

Figure	6-62.	The	behavior	of	an	inline-block	element

Notice	that	in	the	second	div,	the	inline	paragraph	is	formatted	as	normal	inline	content,	which	means
width	and	text-align	get	ignored	(since	they	do	not	apply	to	inline	elements).	For	the	third	div,
however,	the	inline-block	paragraph	honors	both	properties,	since	it	is	formatted	as	a	block-level
element.	That	paragraph’s	margins	also	force	its	line	of	text	to	be	much	taller,	since	it	affects	line	height
as	though	it	were	a	replaced	element.

If	an	inline-block	element’s	width	is	not	defined	or	explicitly	declared	auto,	the	element	box	will
shrink	to	fit	the	content.	That	is,	the	element	box	is	exactly	as	wide	as	necessary	to	hold	the	content,	and
no	wider.	Inline	boxes	act	the	same	way,	although	they	can	break	across	lines	of	text,	whereas	inline-
block	elements	cannot.	Thus,	we	have	the	following	rule,	when	applied	to	the	previous	markup	example:

div#three	p	{display:	inline-block;	block-size:	4em;}

This	will	create	a	tall	box	that’s	just	wide	enough	to	enclose	the	content,	as	shown	in	Figure	6-63.

Figure	6-63.	Autosizing	of	an	inline-block	element

Flow	Display

The	display	values	flow	and	flow-root	deserve	a	moment	of	explanation.	Declaring	an	element	to
be	laid	out	using	display:	flow	means	that	it	should	use	block-and-inline	layout,	the	same	as	normal.
That	is,	unless	it’s	combined	with	inline,	in	which	case	it	generates	an	inline	box.

In	other	words,	the	first	two	of	the	following	rules	will	result	in	a	block	box,	whereas	the	third	will	yield
an	inline	box.

#first	{display:	flow;}

#second	{display:	block	flow;}

#third	{display:	inline	flow;}

The	reason	for	this	pattern	is	that	CSS	is	(very)	slowly	moving	to	a	system	where	there	are	two	kinds	of
display:	the	outer	display	type	and	the	inner	display	type.	Value	keywords	like	block	and	inline
represent	the	outer	display	type,	which	provides	how	the	display	box	interacts	with	its	surroundings.	The
inner	display,	in	this	case	flow,	describes	what	should	happen	inside	the	element.

This	approach	allows	for	declarations	like	display:	inline	block	to	indicate	an	element	should
generate	a	block	formatting	context	within,	but	relate	to	its	surrounding	content	as	an	inline	element.	(The
new	two-term	display	value	has	the	same	effect	as	the	fully	supported	inline-block	value.)

display:	flow-root,	on	the	other	hand,	always	generates	a	block	box,	with	a	new	block	formatting
context	inside	itself.	This	is	the	sort	of	thing	that	would	be	applied	to	the	root	element	of	a	document,	like
html,	to	say	“this	is	where	the	formatting	root	lies.”

The	old	display	values	you	may	be	familiar	with	are	still	available.	Table	6-1	shows	how	the	old
values	will	be	represented	using	the	new	values.

Table	6-1.	Equivalent	display	values

Old	values New	values

block block	flow

inline inline	flow

inline-block inline	flow-root

list-item list-item	block	flow

inline-list-item list-item	inline	flow

table block	table

inline-table inline	table

flex block	flex

inline-flex inline	flex

grid block	grid

inline-grid inline	grid

Contents	Display
There	is	one	fascinating	new	addition	to	display,	which	is	the	value	contents.	When	applied	to	an
element,	display:	contents	causes	the	element	to	be	removed	from	page	formatting,	and
effectively	“elevates”	its	child	elements	to	its	level.	As	an	example,	consider	the	following	basic	CSS
and	HTML:

ul	{border:	1px	solid	red;}

li	{border:	1px	solid	silver;}

The	first	list	item.

List	Item	II:	The	Listening.

List	item	the	third.

That	will	yield	an	unordered	list	with	a	red	border,	and	three	list	items	with	silver	borders.

If	we	then	apply	display:	contents	to	the	ul	element,	the	user	agent	will	render	things	as	if	the
	and		lines	had	been	deleted	from	the	document	source.	The	difference	in	the	regular	result
and	the	contents	result	is	shown	in	Figure	6-64.

Figure	6-64.	A	regular	unordered	list,	and	one	with	display:	contents

The	list	items	are	still	list	items,	and	act	like	them,	but	visually,	the	ul	is	gone,	as	if	had	never	been.	The
means	not	only	does	its	border	go	away,	but	also	the	top	and	bottom	margins	that	usually	separate	the	list
from	surrounding	content.	This	is	why	the	second	list	in	Figure	6-64	appears	higher	up	than	the	first.

Other	Display	Values
There	are	a	great	many	more	display	values	we	haven’t	covered	in	this	chapter,	and	won’t.	The	various
table-related	values	will	come	up	in	XREF	HERE,	and	we’ll	talk	about	list	items	again	in	XREF	HERE.

The	values	we	won’t	really	talk	about	are	the	ruby-related	values,	which	need	their	own	book	and	are
poorly	supported	as	of	late	2022.

Element	Visibility
In	addition	to	everything	we’ve	discussed	in	the	chapter,	you	can	also	control	the	visibility	of	an	entire
element.

VISIBILITY

Values visible	|	hidden	|	collapse

Initial	value visible

Applies	to All	elements

Computed	value As	specified

Inherited Yes

Animatable A	visibility

Note No	really,	that’s	what	the	specification	says:	“A	visibility”

If	an	element	is	set	to	have	visibility:	visible,	then	it	is,	as	you	might	expect,	visible.	If	an
element	is	set	to	visibility:	hidden,	it	is	made	“invisible”	(to	use	the	wording	in	the
specification).	In	its	invisible	state,	the	element	still	affects	the	document’s	layout	as	though	it	were
visible.	In	other	words,	the	element	is	still	there—you	just	can’t	see	it.

Note	the	difference	between	this	and	display:	none.	In	the	latter	case,	the	element	is	not	displayed
and	is	removed	from	the	document	altogether	so	that	it	doesn’t	have	any	effect	on	document	layout.
Figure	6-65	shows	a	document	in	which	an	inline	element	inside	a	paragraph	has	been	set	to	hidden,
based	on	the	following	styles	and	markup:

em.trans	{visibility:	hidden;	border:	3px	solid	gray;	background:	silver;

				margin:	2em;	padding:	1em;}

<p>

				This	is	a	paragraph	which	should	be	visible.	Nulla	berea	consuetudium	ohio

				city,	mutationem	dolore.	<em	class="trans">Humanitatis	molly	shannon

				ut	lorem.	Doug	dieken	dolor	possim	south	euclid.

</p>

Figure	6-65.	Making	elements	invisible	without	suppressing	their	element	boxes

Everything	visible	about	a	hidden	element—such	as	content,	background,	and	borders—is	made	invisible.
The	space	is	still	there	because	the	element	is	still	part	of	the	document’s	layout.	We	just	can’t	see	it.

It’s	possible	to	set	the	descendant	element	of	a	hidden	element	to	be	visible.	This	causes	the
element	to	appear	wherever	it	normally	would,	despite	the	fact	that	the	ancestor	is	invisible.	In	order	to
do	so,	we	explicitly	declare	the	descendant	element	visible,	since	visibility	is	inherited:

p.clear	{visibility:	hidden;}

p.clear	em	{visibility:	visible;}

As	for	visbility:	collapse,	this	value	is	used	in	CSS	table	rendering	and	flexible	box	layout,
where	it	has	an	effect	very	similar	to	display:	none.	The	difference	is	that	in	table	rendering,	a	row
or	column	that’s	been	set	to	visibility:	hidden	is	hidden	and	the	space	they	would	have	occupied
is	removed,	but	any	cells	in	the	hidden	row	or	column	are	used	to	determine	the	layout	of	intersecting
columns	or	rows.	This	allows	authors	to	quickly	hide	or	show	rows	and	columns	without	forcing	the
browser	to	recalculate	the	layout	of	the	whoe	table.

If	collapse	is	applied	to	an	element	that	isn’t	a	flex	item	or	part	of	a	table,	then	it	has	the	same	meaning
as	hidden.

Animating	visibility
If	you	want	to	animate	a	change	from	visibile	visibility	to	one	of	the	other	values	of	visibility,	that
is	possible.	The	catch	is	that	it	isn’t	a	slow	fade	from	one	to	the	other.	Instead,	the	browser	calculates
where	in	the	animation	a	change	from	0	to	1	(or	vice	versa)	would	reach	the	end	value,	and	instantly
changes	the	value	of	visibility	at	that	point.	Thus,	if	an	element	set	to	visibility:	hidden
and	then	animated	to	visibility:	visible,	the	element	will	be	completely	invisible	until	the	end
point	is	reached,	at	which	time	it	will	become	instantly	visible.	(See	XREF	HERE	for	more	information
on	animating	CSS	properties.)

TIP
If	you	want	to	fade	from	being	invisible	to	visible,	don’t	animate	visibility.	Animate	opacity	instead.

Summary
Although	some	aspects	of	the	CSS	formatting	model	may	seem	counterintuitive	at	first,	they	begin	to	make
sense	the	more	one	works	with	them.	In	many	cases,	rules	that	seem	nonsensical	or	even	idiotic	turn	out	to
exist	in	order	to	prevent	bizarre	or	otherwise	undesirable	document	displays.	Block-level	elements	are	in
many	ways	easy	to	understand,	and	affecting	their	layout	is	typically	a	simple	task.	Inline	elements,	on	the
other	hand,	can	be	trickier	to	manage,	as	a	number	of	factors	come	into	play,	not	least	of	which	is	whether
the	element	is	replaced	or	nonreplaced.

Chapter	7.	Padding,	Borders,	Outlines,	and
Margins

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	7th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

In	Chapter	6,	we	talked	about	the	basics	of	element	display.	In	this	chapter,	we’ll	look	at	the	CSS
properties	and	values	you	can	use	to	affect	how	element	boxes	are	drawn	and	separated	from	each	other.
These	include	the	padding,	borders,	and	margins	around	an	element,	as	well	as	any	outlines	that	may	be
added.

Basic	Element	Boxes
As	you	may	be	aware,	all	document	elements	generate	a	rectangular	box	called	the	element	box,	which
describes	the	amount	of	space	that	an	element	occupies	in	the	layout	of	the	document.	Therefore,	each	box
influences	the	position	and	size	of	other	element	boxes.	For	example,	if	the	first	element	box	in	the
document	is	an	inch	tall,	then	the	next	box	will	begin	at	least	an	inch	below	the	top	of	the	document.	If	the
first	element	box	is	changed	and	made	to	be	two	inches	tall,	every	following	element	box	will	shift
downward	an	inch,	and	the	second	element	box	will	begin	at	least	two	inches	below	the	top	of	the
document.

By	default,	a	visually	rendered	document	is	composed	of	a	number	of	rectangular	boxes	that	are
distributed	so	that	they	don’t	overlap.	Boxes	can	overlap	if	they	have	been	manually	positioned	or	placed
on	a	grid,	and	visual	overlap	can	occur	if	negative	margins	are	used	on	normal-flow	elements.

In	order	to	understand	how	margins,	padding,	and	borders	are	handled,	you	must	understand	the	box
model,	illustrated	in	Figure	7-1.

mailto:rfernando@oreilly.com

Figure	7-1.	The	CSS	box	model

The	diagram	in	Figure	7-1	intentionally	omits	outlines,	for	reasons	that	will	hopefully	be	clear	once	we
discuss	outlines.

NOTE
The	height	and	width	of	the	content	area,	as	well	as	the	sizing	of	content	area	along	the	block	and	inline	directions,	are	covered	in
Chapter	6.	If	you	find	some	of	the	rest	of	this	chapter	a	little	confusing	because	of	the	way	height,	width,	block-axis,	and	inline-axis	are
discussed,	refer	to	that	chapter	for	a	detailed	explanation.

Padding
Just	beyond	the	content	area	of	an	element,	we	find	its	padding,	nestled	between	the	content	and	any
borders.	The	simplest	way	to	set	padding	is	by	using	the	property	padding.

PADDING

Values [<length>	|	<percentage>]{1,4}

Initial	value Not	defined	for	shorthand	elements

Applies	to All	elements	except	internal	table	elements	other	than	table	cells

Percentages Refer	to	the	width	of	the	containing	block

Computed	value See	individual	properties	(padding-top,	etc.)

Inherited No

Animatable Yes

Note padding	can	never	be	negative

This	property	accepts	any	length	value,	or	a	percentage	value.	So	if	you	want	all	h2	elements	to	have	2
em	of	padding	on	all	sides,	it’s	this	easy	(see	Figure	7-2):

h2	{padding:	2em;	background-color:	silver;}

Figure	7-2.	Adding	padding	to	elements

As	Figure	7-2	illustrates,	the	background	of	an	element	extends	into	the	padding	by	default.	If	the
background	is	transparent,	setting	padding	will	create	some	extra	transparent	space	around	the	element’s
content,	but	any	visible	background	will	extend	into	the	padding	area	(and	beyond,	as	we’ll	see	in	a	later
section).

NOTE
Visible	backgrounds	can	be	prevented	from	extending	into	the	padding	by	using	the	property	background-clip	(see	Chapter	8).

By	default,	elements	have	no	padding.	The	separation	between	paragraphs,	for	example,	has	traditionally
been	enforced	with	margins	alone	(as	we’ll	see	later	on).	On	the	other	hand,	without	padding,	the	border
of	an	element	will	come	very	close	to	the	content	of	the	element	itself.	Thus,	when	putting	a	border	on	an
element,	it’s	usually	a	good	idea	to	add	some	padding	as	well,	as	Figure	7-3	illustrates.

Figure	7-3.	The	effect	of	padding	on	bordered	block-level	elements

Any	length	value	is	permitted,	from	ems	to	inches.	The	simplest	way	to	set	padding	is	with	a	single	length
value,	which	is	applied	equally	to	all	four	padding	sides.	At	times,	however,	you	might	desire	a	different
amount	of	padding	on	each	side	of	an	element.	If	you	want	all	h1	elements	to	have	a	top	padding	of	10
pixels,	a	right	padding	of	20	pixels,	a	bottom	padding	of	15	pixels,	and	a	left	padding	of	5	pixels,	you	can
just	say:

h1	{padding:	10px	20px	15px	5px;}

The	order	of	the	values	is	important,	and	follows	this	pattern:

padding:	top	right	bottom	left

A	good	way	to	remember	this	pattern	is	to	keep	in	mind	that	the	four	values	go	clockwise	around	the
element,	starting	from	the	top.	The	padding	values	are	always	applied	in	this	order,	so	to	get	the	effect	you
want,	you	have	to	arrange	the	values	correctly.

An	easy	way	to	remember	the	order	in	which	sides	must	be	declared,	other	than	thinking	of	it	as	being
clockwise	from	the	top,	is	to	keep	in	mind	that	getting	the	sides	in	the	correct	order	helps	you	avoid
“TRouBLe”—that	is,	TRBL,	for	“Top	Right	Bottom	Left.”

This	ordering	reveals	that	padding,	like	height	and	width,	is	a	physcial	property:	it	refers	to	the
physical	directions	of	the	page,	such	as	top	or	left,	rather	than	being	based	on	writing	direction.	(There
are	writing-mode	padding	properties,	as	we’ll	see	in	a	bit.)

It’s	entirely	possible	to	mix	up	the	types	of	length	value	you	use.	You	aren’t	restricted	to	using	a	single
length	type	in	a	given	rule,	but	can	use	whatever	makes	sense	for	a	given	side	of	the	element,	as	shown
here:

h2	{padding:	14px	5em	0.1in	3ex;}	/*	value	variety!	*/

Figure	7-4	shows	you,	with	a	little	extra	annotation,	the	results	of	this	declaration.

Figure	7-4.	Mixed-value	padding

Replicating	Values
Sometimes,	the	values	you	enter	can	get	a	little	repetitive:

p	{padding:	0.25em	1em	0.25em	1em;}		/*	TRBL	-	Top	Right	Bottom	Left	*/

You	don’t	have	to	keep	typing	in	pairs	of	numbers	like	this,	though.	Instead	of	the	preceding	rule,	try	this:

p	{padding:	0.25em	1em;}

These	two	values	are	enough	to	take	the	place	of	four.	But	how?	CSS	defines	a	few	rules	to	accommodate
fewer	than	four	values	for	padding	(and	many	other	shorthand	properties).	These	are:

If	the	value	for	left	is	missing,	use	the	value	provided	for	right.

If	the	value	for	bottom	is	also	missing,	use	the	value	provided	for	top.

If	the	value	for	right	is	also	missing,	use	the	value	provided	for	top.

If	you	prefer	a	more	visual	approach,	take	a	look	at	the	diagram	shown	in	Figure	7-5.

Figure	7-5.	Value-replication	pattern

In	other	words,	if	three	values	are	given	for	padding,	the	fourth	(left)	is	copied	from	the	second	(right).
If	two	values	are	given,	the	fourth	is	copied	from	the	second,	and	the	third	(bottom)	from	the	first	(top).
Finally,	if	only	one	value	is	given,	all	the	other	sides	copy	that	value.

This	mechanism	allows	authors	to	supply	only	as	many	values	as	necessary,	as	shown	here:

h1	{padding:	0.25em	0	0.5em;}	/*	same	as	'0.25em	0	0.5em	0'	*/

h2	{padding:	0.15em	0.2em;}			/*	same	as	'0.15em	0.2em	0.15em	0.2em'	*/

p	{padding:	0.5em	10px;}						/*	same	as	'0.5em	10px	0.5em	10px'	*/

p.close	{padding:	0.1em;}					/*	same	as	'0.1em	0.1em	0.1em	0.1em'	*/

The	method	presents	a	small	drawback,	which	you’re	bound	to	eventually	encounter.	Suppose	you	want	to
set	the	top	and	left	padding	for	h1	elements	to	be	10	pixels,	and	the	bottom	and	right	padding	to	be	20
pixels.	In	that	case,	you	have	to	write	the	following:

h1	{padding:	10px	20px	20px	10px;}	/*	can't	be	any	shorter	*/

You	get	what	you	want,	but	it	takes	a	while	to	get	it	all	in.	Unfortunately,	there	is	no	way	to	cut	down	on
the	number	of	values	needed	in	such	a	circumstance.	Let’s	take	another	example,	one	where	you	want	all
of	the	padding	to	be	zero—except	for	the	left	padding,	which	should	be	3	em:

h2	{padding:	0	0	0	3em;}

Using	padding	to	separate	the	content	areas	of	elements	can	be	trickier	than	using	the	traditional	margins,
although	it’s	not	without	its	rewards.	For	example,	to	keep	paragraphs	the	traditional	“one	blank	line”
apart	with	padding,	you’d	have	to	write:

p	{margin:	0;	padding:	0.5em	0;}

The	half-em	top	and	bottom	padding	of	each	paragraph	butt	up	against	each	other	and	total	an	em	of

separation.	Why	would	you	bother	to	do	this?	Because	then	you	could	insert	separation	borders	between
the	paragraphs,	and	the	side	borders	will	touch	to	form	the	appearance	of	a	solid	line.	Both	these	effects
are	illustrated	in	Figure	7-6:

p	{margin:	0;	padding:	0.5em	0;	border-bottom:	1px	solid	gray;

				border-left:	3px	double	black;}

Figure	7-6.	Using	padding	instead	of	margins

Single-Side	Padding
There’s	a	way	to	assign	a	value	to	the	padding	on	a	single	side	of	an	element.	Four	ways,	actually.	Let’s
say	you	only	want	to	set	the	left	padding	of	h2	elements	to	be	3em.	Rather	than	writing	out	padding:
0	0	0	3em,	you	can	take	this	approach:

h2	{padding-left:	3em;}

padding-left	is	one	of	four	properties	devoted	to	setting	the	padding	on	each	of	the	four	sides	of	an
element	box.	Their	names	will	come	as	little	surprise.

PADDING-TOP,	PADDING-RIGHT,	PADDING-BOTTOM,	PADDING-LEFT

Values <length>	|	<percentage>

Initial	value 0

Applies	to All	elements

Percentages Refer	to	the	width	of	the	containing	block

Computed	value For	percentage	values,	as	specified;	for	length	values,	the	absolute	length

Inherited No

Animatable Yes

Note Padding	values	can	never	be	negative

These	properties	operate	in	a	manner	consistent	with	their	names.	For	example,	the	following	two	rules
will	yield	the	same	amount	of	padding	(assuming	no	other	CSS):

h1	{padding:	0	0	0	0.25in;}

h2	{padding-left:	0.25in;}

Similarly,	these	rules	are	will	create	equal	padding:

h1	{padding:	0.25in	0	0;}		/*	left	padding	is	copied	from	right	padding	*/

h2	{padding-top:	0.25in;}

For	that	matter,	so	will	these	rules:

h1	{padding:	0	0.25in;}

h2	{padding-right:	0.25in;	padding-left:	0.25in;}

It’s	possible	to	use	more	than	one	of	these	single-side	properties	in	a	single	rule;	for	example:

h2	{padding-left:	3em;	padding-bottom:	2em;

				padding-right:	0;	padding-top:	0;

				background:	silver;}

As	you	can	see	in	Figure	7-7,	the	padding	is	set	as	we	wanted.	In	this	case,	it	might	have	been	easier	to
use	padding	after	all,	like	so:

h2	{padding:	0	0	2em	3em;}

Figure	7-7.	More	than	one	single-side	padding

In	general,	once	you’re	trying	to	set	padding	for	more	than	one	side,	it’s	easier	to	use	the	shorthand
padding.	From	the	standpoint	of	your	document’s	display,	however,	it	doesn’t	really	matter	which
approach	you	use,	so	choose	whichever	is	easiest	for	you.

Logical	Padding
As	we’ll	see	throughout	this	chapter,	physical	properties	have	logical	counterparts,	with	names	that
follow	a	consistent	pattern.	For	height	and	width,	there	were	block-size	and	inline-size.
For	padding,	there	is	a	set	of	four	properties	that	correspond	to	the	padding	at	the	start	and	end	of	the
block	direction	and	the	inline	direction.	These	are	called	logical	properties,	because	they	use	a	little
logic	to	determine	which	physical	side	they	should	be	applied	to.

PADDING-BLOCK-START,	PADDING-BLOCK-END,	PADDING-INLINE-START,
PADDING-INLINE-END

Values <length>	|	<percentage>

Initial	value 0

Applies	to All	elements

Percentages Refer	to	the	width	of	the	containing	block

Computed	value For	percentage	values,	as	specified;	for	length	values,	the	absolute	length

Inherited No

Animatable Yes

Note Padding	values	can	never	be	negative

These	properties	are	handy	for	when	you	want	to	make	sure	your	text	has	padding	that	has	a	consistent
effect	regardless	of	the	writing	direction.	For	example,	you	might	want	a	little	bit	of	padding	to	set	the
background	edges	away	from	the	start	and	end	of	each	block	element,	and	more	padding	to	the	sides	of
each	line	of	text.	Here’s	a	way	to	make	that	happen,	with	the	result	shown	in	Figure	7-8:

p	{

					padding-block-start:	0.25em;

					padding-block-end:	0.25em;

					padding-inline-start:	1em;

					padding-inline-end:	1em;

}

Figure	7-8.	Logical	padding

WARNING
As	of	late	2022,	percentage	values	for	these	logical	padding	properties	are	always	calculated	with	respect	to	the	physical	width	or	height	of
the	element’s	container,	not	its	logical	width	or	height.	Thus,	for	example,	padding-inline-start:	10%	will	calculate	to	100	pixels
when	the	container	has	width:	1000px,	even	in	a	vertical	writing	mode.	This	may	change	going	forward,	but	that	is	the	consistent	(and
specified)	behavior	as	of	this	writing.

It’s	a	little	tedious	to	explicitly	declare	a	padding	value	for	each	side	of	an	element	individually,	and	there
are	two	shorthand	properties	to	help:	one	for	the	block	axis,	and	one	for	the	inline	axis.

PADDING-BLOCK,	PADDING-INLINE

Values [<length>	|	<percentage>]{1,2}

Initial	value 0

Applies	to All	elements

Percentages Refer	to	the	width	of	the	containing	block

Computed	value For	percentage	values,	as	specified;	for	length	values,	the	absolute	length

Inherited No

Animatable Yes

Note Padding	values	can	never	be	negative

With	these	shorthand	properties,	you	can	set	block	padding	in	one	go,	and	inline	padding	in	another.	The
following	CSS	would	have	the	same	result	as	that	shown	in	“Logical	Padding”.

p	{

					padding-block:	0.25em;

					padding-inline:	1em;

}

These	properties	each	accept	one	or	two	values.	If	there	are	two	values,	then	they’re	always	in	the	order
start	end.	If	there’s	only	one	value,	as	shown	before,	then	the	same	value	is	used	for	both	the	start	and	end
sides.	Thus,	to	give	an	element	10	pixels	of	block-start	padding	and	1em	of	block-end	padding,	you	could
write:

p	{

					padding-block:	10px	1em;

}

There	isn’t	a	more	compact	shorthand	for	logical	padding,	unfortunately—no	padding-logical	that
accepts	four	values,	the	way	padding	does.	There	have	been	proposals	to	extend	the	padding

property	with	a	keyword	value	(such	as	logical)	to	allow	it	to	set	logical	padding	instead	of	physical
padding,	but	as	of	late	2022,	those	proposals	have	not	been	adopted.	As	of	this	writing,	the	most	compact
you	can	get	with	logical	padding	is	to	use	padding-block	and	padding-inline.

Percentage	Values	and	Padding
It’s	possible	to	set	percentage	values	for	the	padding	of	an	element.	Percentages	are	computed	in	relation
to	the	width	of	the	parent	element’s	content	area,	so	they	change	if	the	parent	element’s	width	changes	in
some	way.

For	example,	assume	the	following,	which	is	illustrated	in	Figure	7-9:

p	{padding:	10%;	background-color:	silver;}

<div	style="width:	600px;">

				<p>

								This	paragraph	is	contained	within	a	DIV	that	has	a	width	of	600	pixels,

								so	its	padding	will	be	10%	of	the	width	of	the	paragraph's	parent

								element.	Given	the	declared	width	of	600	pixels,	the	padding	will	be	60

								pixels	on	all	sides.

				</p>

</div>

<div	style="width:	300px;">

				<p>

								This	paragraph	is	contained	within	a	DIV	with	a	width	of	300	pixels,

								so	its	padding	will	still	be	10%	of	the	width	of	the	paragraph's	parent.

								There	will,	therefore,	be	half	as	much	padding	on	this	paragraph	as	that

								on	the	first	paragraph.

				</p>

</div>

Figure	7-9.	Padding,	percentages,	and	the	widths	of	parent	elements

You	may	have	noticed	something	odd	about	the	paragraphs	in	Figure	7-9.	Not	only	did	their	side	padding
change	according	to	the	width	of	their	parent	elements,	but	so	did	their	top	and	bottom	padding.	That’s	the
desired	behavior	in	CSS.	Refer	back	to	the	property	definition,	and	you’ll	see	that	percentage	values	are
defined	to	be	relative	to	the	width	of	the	parent	element.	This	applies	to	the	top	and	bottom	padding	as
well	as	to	the	left	and	right.	Thus,	given	the	following	styles	and	markup,	the	top	padding	of	the	paragraph
will	be	50	px:

div	p	{padding-top:	10%;}

<div	style="width:	500px;">

				<p>

								This	is	a	paragraph,	and	its	top	margin	is	10%	the	width	of	its	parent

								element.

				</p>

</div>

If	all	this	seems	strange,	consider	that	most	elements	in	the	normal	flow	are	(as	we	are	assuming)	as	tall
as	necessary	to	contain	their	descendant	elements,	including	padding.	If	an	element’s	top	and	bottom
padding	were	a	percentage	of	the	parent’s	height,	an	infinite	loop	could	result	where	the	parent’s	height
was	increased	to	accommodate	the	top	and	bottom	padding,	which	would	then	have	to	increase	to	match
the	new	height,	and	so	on.

Rather	than	ignore	percentages	for	top	and	bottom	padding,	the	specification	authors	decided	to	make	it
relate	to	the	width	of	the	parent’s	content	area,	which	does	not	change	based	on	the	width	of	its
descendants.	This	allows	authors	to	get	a	consistent	padding	all	the	way	around	an	element	by	using	the
same	percentage	on	all	four	sides.

By	contrast,	consider	the	case	of	elements	without	a	declared	width.	In	such	cases,	the	overall	width	of
the	element	box	(including	padding)	is	dependent	on	the	width	of	the	parent	element.	This	leads	to	the
possibility	of	fluid	pages,	where	the	padding	on	elements	enlarges	or	reduces	to	match	the	actual	size	of
the	parent	element.	If	you	style	a	document	so	that	its	elements	use	percentage	padding,	then	as	the	user
changes	the	width	of	a	browser	window,	the	padding	will	expand	or	shrink	to	fit.	The	design	choice	is	up
to	you.

It’s	also	possible	to	mix	percentages	with	length	values.	Thus,	to	set	h2	elements	to	have	top	and	bottom
padding	of	one-half	em,	and	side	padding	of	10%	the	width	of	their	parent	elements,	you	can	declare	the
following,	illustrated	in	Figure	7-10:

h2	{padding:	0.5em	10%;}

Figure	7-10.	Mixed	padding

Here,	although	the	top	and	bottom	padding	will	stay	constant	in	any	situation,	the	side	padding	will	change
based	on	the	width	of	the	parent	element.

Padding	and	Inline	Elements
You	may	or	may	not	have	noticed	that	the	discussion	so	far	has	been	solely	about	padding	set	for	elements
that	generate	block	boxes.	When	padding	is	applied	to	inline	nonreplaced	elements,	things	can	get	a	little
different.

Let’s	say	you	want	to	set	top	and	bottom	padding	on	strongly	emphasized	text:

strong	{padding-top:	25px;	padding-bottom:	50px;}

This	is	allowed	in	the	specification,	but	since	you’re	applying	the	padding	to	an	inline	nonreplaced
element,	it	will	have	absolutely	no	effect	on	the	line	height.	Since	padding	is	transparent	when	there’s	no
visible	background,	the	preceding	declaration	will	have	no	visual	effect	whatsoever.	This	happens
because	padding	on	inline	nonreplaced	elements	doesn’t	change	the	line	height	of	an	element.

Be	careful:	an	inline	nonreplaced	element	with	a	background	color	and	padding	can	have	a	background
that	extends	above	and	below	the	element,	like	this:

strong	{padding-top:	0.5em;	background-color:	silver;}

Figure	7-11	gives	you	an	idea	of	what	this	might	look	like.

Figure	7-11.	Top	padding	on	an	inline	nonreplaced	element

The	line	height	isn’t	changed,	but	since	the	background	color	does	extend	into	the	padding,	each	line’s
background	ends	up	overlapping	the	lines	that	come	before	it.	That’s	the	expected	result.

The	preceding	behaviors	are	true	only	for	the	top	and	bottom	sides	of	inline	nonreplaced	elements;	the	left
and	right	sides	are	a	different	story.	We’ll	start	by	considering	the	case	of	a	small,	inline	nonreplaced
element	within	a	single	line.	Here,	if	you	set	values	for	the	left	or	right	padding,	they	will	be	visible,	as
Figure	7-12	makes	clear	(so	to	speak):

strong	{padding-left:	25px;	background:	silver;}

Figure	7-12.	An	inline	nonreplaced	element	with	left	padding

Note	the	extra	space	between	the	end	of	the	word	just	before	the	inline	nonreplaced	element	and	the	edge
of	the	inline	element’s	background.	You	can	add	that	extra	space	to	both	ends	of	the	inline	if	you	want:

strong	{padding-left:	25px;	padding-right:	25px;	background:	silver;}

As	expected,	Figure	7-13	shows	a	little	extra	space	on	the	right	and	left	sides	of	the	inline	element,	and	no

extra	space	above	or	below	it.

Figure	7-13.	An	inline	nonreplaced	element	with	25-pixel	side	padding

Now,	when	an	inline	nonreplaced	element	stretches	across	multiple	lines,	the	situation	changes	a	bit.
Figure	7-14	shows	what	happens	when	an	inline	nonreplaced	element	with	a	padding	is	displayed	across
multiple	lines:

strong	{padding:	0	25px;	background:	silver;}

The	left	padding	is	applied	to	the	beginning	of	the	element	and	the	right	padding	to	the	end	of	it.	By
default,	padding	is	not	applied	to	the	right	and	left	side	of	each	line.	Also,	you	can	see	that,	if	not	for	the
padding,	the	line	may	have	broken	after	“background.”	instead	of	where	it	did.	padding	only	affects
line	breaking	by	changing	the	point	at	which	the	element’s	content	begins	within	a	line.

Figure	7-14.	An	inline	nonreplaced	element	with	25-pixel	side	padding	displayed	across	two	lines	of	text

NOTE
The	way	padding	is	(or	isn’t)	applied	to	the	ends	of	each	line	box	can	be	altered	with	the	property	box-decoration-break.	See
Chapter	6	for	more	details.

Padding	and	Replaced	Elements
It	is	possible	to	apply	padding	to	replaced	elements.	The	most	surprising	case	for	most	people	is	that	you
can	apply	padding	to	an	image,	like	this:

img	{background:	silver;	padding:	1em;}

Regardless	of	whether	the	replaced	element	is	block-level	or	inline,	the	padding	will	surround	its	content,
and	the	background	color	will	fill	into	that	padding,	as	shown	in	Figure	7-15.	You	can	also	see	in
Figure	7-15	that	padding	will	push	a	replaced	element’s	border	(dashed,	in	this	case)	away	from	its

content.

Figure	7-15.	Padding	replaced	elements

Now,	remember	all	that	stuff	about	how	padding	on	inline	nonreplaced	elements	doesn’t	affect	the	height
of	the	lines	of	text?	You	can	throw	it	all	out	for	replaced	elements,	because	they	have	a	different	set	of
rules.	As	you	can	see	in	Figure	7-16,	the	padding	of	an	inline	replaced	element	very	much	affects	the
height	of	the	line.

Figure	7-16.	Padding	replaced	elements

The	same	goes	for	borders	and	margins,	as	we’ll	soon	see.

Note	that	if	the	image	in	Figure	7-16	had	not	loaded,	or	had	somehow	been	set	to	have	zero	height	and
width,	the	padding	would	still	be	rendered	around	the	spot	where	the	element	should	have	been
displayed,	even	if	that	spot	has	no	height	or	width.

WARNING
As	of	late	2022,	there	was	still	uncertainty	over	what	to	do	about	styling	form	elements	such	as	input,	which	are	replaced	elements.	It	is
not	entirely	clear	where	the	padding	of	a	checkbox	resides,	for	example.	Therefore,	as	of	this	writing,	some	browsers	ignore	padding	(and
other	forms	of	styling)	for	form	elements,	while	others	apply	the	styles	as	best	they	can.

Borders
Beyond	the	padding	of	an	element	are	its	borders.	The	border	of	an	element	is	just	one	or	more	lines	that
surround	the	content	and	padding	of	an	element.	By	default,	the	background	of	the	element	stops	at	the
outer	border	edge,	since	the	background	does	not	extend	into	the	margins,	and	the	border	is	just	inside	the
margin,	and	is	thus	drawn	“underneath”	the	border.	This	matters	when	parts	of	the	border	are	transparent,
such	as	with	dashed	borders.

Every	border	has	three	aspects:	its	width,	or	thickness;	its	style,	or	appearance;	and	its	color.	The	default
value	for	the	width	of	a	border	is	medium,	which	was	explicitly	declared	to	be	three	pixels	wide	in
2022.	Despite	this,	the	reason	you	don’t	usually	see	borders	is	that	the	default	style	is	none,	which
prevents	them	from	existing	at	all.	(This	lack	of	existence	can	also	reset	the	border-width	value,	but
we’ll	get	to	that	in	a	little	while.)

Finally,	the	default	border	color	is	the	foreground	color	of	the	element	itself.	If	no	color	has	been
declared	for	the	border,	then	it	will	be	the	same	color	as	the	text	of	the	element.	If,	on	the	other	hand,	an
element	has	no	text—let’s	say	it	has	a	table	that	contains	only	images—the	border	color	for	that	table	will
be	the	text	color	of	its	parent	element	(thanks	to	the	fact	that	color	is	inherited).	Thus,	if	a	table	has	a
border,	and	the	body	is	its	parent,	given	this	rule:

body	{color:	purple;}

…then,	by	default,	the	border	around	the	table	will	be	purple	(assuming	the	user	agent	doesn’t	set	a	color
for	tables).

The	CSS	specification	defines	the	background	area	of	an	element	to	extend	to	the	outside	edge	of	the
border,	at	least	by	default.	This	is	important	because	some	borders	are	intermittent—for	example,
dotted	and	dashed	borders—so	the	element’s	background	should	appear	in	the	spaces	between	the
visible	portions	of	the	border.

NOTE
Visible	backgrounds	can	be	prevented	from	extending	into	the	border	area	by	using	the	property	background-clip.	See	Chapter	8	for
details.

Borders	with	Style
We’ll	start	with	border	styles,	which	are	the	most	important	aspect	of	a	border—not	because	they	control
the	appearance	of	the	border	(although	they	certainly	do	that)	but	because	without	a	style,	there	wouldn’t
be	any	border	at	all.

BORDER-STYLE

Values [none	|	hidden	|	solid	|	dotted	|	dashed	|	double	|	groove	|	ridge	|	inset	|	outset]{1,4}

Initial	value Not	defined	for	shorthand	properties

Applies	to All	elements

Computed	value: See	individual	properties	(border-top-style,	etc.)

Inherited No

Animatable No

Note According	to	CSS2,	HTML	user	agents	are	only	required	to	support	solid	and	none;	the	rest	of	the	values	
(except	for	hidden)	may	be	interpreted	as	solid.	This	restriction	was	dropped	in	CSS2.1.

CSS	defines	10	distinct	non-inherit	styles	for	the	property	border-style,	including	the	default
value	of	none.	The	styles	are	demonstrated	in	Figure	7-17.

The	style	value	hidden	is	equivalent	to	none,	except	when	applied	to	tables,	where	it	has	a	slightly
different	effect	on	border-conflict	resolution.

Figure	7-17.	Border	styles

As	for	double,	it’s	defined	such	that	the	width	of	the	two	lines	it	creates,	plus	the	width	of	the	space
between	them,	is	equal	to	the	value	of	border-width	(discussed	in	the	next	section).	However,	the
CSS	specification	doesn’t	say	whether	one	of	the	lines	should	be	thicker	than	the	other,	or	if	they	should
always	be	the	same	width,	or	if	the	space	should	be	thicker	or	thinner	than	the	lines.	All	of	these	things
are	left	up	to	the	user	agent	to	decide,	and	the	author	has	no	reliable	way	to	influence	the	final	result.

All	the	borders	shown	in	Figure	7-17	are	based	on	a	color	value	of	gray,	which	makes	all	of	the
visual	effects	easier	to	see.	The	look	of	a	border	style	is	always	based	in	some	way	on	the	color	of	the
border,	although	the	exact	method	may	vary	between	user	agents.	The	way	browsers	treat	colors	in	the
border	styles	inset,	outset,	groove,	and	ridge	can	and	does	vary.	For	example,	Figure	7-18
illustrates	two	different	ways	a	browser	could	render	an	inset	border.

Figure	7-18.	Two	valid	ways	of	rendering	inset

Note	how	one	browser	takes	the	gray	value	for	the	bottom	and	right	sides,	and	a	darker	gray	for	the	top
and	left;	the	other	makes	the	bottom	and	right	lighter	than	gray	and	the	top	and	left	darker,	but	not	as	dark
as	the	first	browser.

Now	let’s	define	a	border	style	for	images	that	are	inside	any	unvisited	hyperlink.	We	might	make	them
outset,	so	they	have	a	“raised	button”	look,	as	depicted	in	Figure	7-19:

a:link	img	{border-style:	outset;}

Figure	7-19.	Applying	an	outset	border	to	a	hyperlinked	image

By	default,	the	color	of	the	border	is	based	on	the	element’s	value	for	color,	which	in	this	circumstance
is	likely	to	be	blue.	This	is	because	the	image	is	contained	with	a	hyperlink,	and	the	foreground	color	of
hyperlinks	is	usually	blue.	If	you	so	desired,	you	could	change	that	color	to	silver,	like	this:

a:link	img	{border-style:	outset;	color:	silver;}

The	border	will	now	be	based	on	the	light	grayish	silver,	since	that’s	now	the	foreground	color	of	the
image—even	though	the	image	doesn’t	actually	use	it,	it’s	still	passed	on	to	the	border.	We’ll	talk	about
another	way	to	change	border	colors	in	the	section	“Border	Colors”.

Remember,	though,	that	the	color-shifting	in	borders	is	up	to	the	user	agent.	Let’s	go	back	to	the	blue
outset	border	and	compare	it	in	two	different	browsers,	as	shown	in	Figure	7-20.

Again,	notice	how	one	browser	shifts	the	colors	to	the	lighter	and	darker,	while	another	just	shifts	the
“shadowed”	sides	to	be	darker	than	blue.	This	is	why,	if	a	specific	set	of	colors	is	desired,	authors
usually	set	the	exact	colors	they	want	instead	of	using	a	border	style	like	outset	and	leaving	the	result
up	to	the	browser.	We’ll	soon	see	just	how	to	do	that.

Figure	7-20.	Two	outset	borders

Multiple	styles
It’s	possible	to	define	more	than	one	style	for	a	given	border.	For	example:

p.aside	{border-style:	solid	dashed	dotted	solid;}

The	result	is	a	paragraph	with	a	solid	top	border,	a	dashed	right	border,	a	dotted	bottom	border,	and	a
solid	left	border.

Again	we	see	the	TRBL	order	of	values,	just	as	we	saw	in	our	discussion	of	setting	padding	with
multiple	values.	All	the	same	rules	about	value	replication	apply	to	border	styles,	just	as	they	did	with
padding.	Thus,	the	following	two	statements	would	have	the	same	effect,	as	depicted	in	Figure	7-21:

p.new1	{border-style:	solid	none	dashed;}

p.new2	{border-style:	solid	none	dashed	none;}

Figure	7-21.	Equivalent	style	rules

Single-side	styles

There	may	be	times	when	you	want	to	set	border	styles	for	just	one	side	of	an	element	box,	rather	than	all
four.	That’s	where	the	single-side	border	style	properties	come	in.

BORDER-TOP-STYLE,	BORDER-RIGHT-STYLE,	BORDER-BOTTOM-STYLE,
BORDER-LEFT-STYLE

Values none	|	hidden	|	dotted	|	dashed	|	solid	|	double	|	groove	|	ridge	|	inset	|	outset

Initial	value none

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

Single-side	border	style	properties	are	fairly	self-explanatory.	If	you	want	to	change	the	style	for	the
bottom	border,	for	example,	you	use	border-bottom-style.

It’s	not	uncommon	to	see	border	used	in	conjunction	with	a	single-side	property.	Suppose	you	want	to
set	a	solid	border	on	three	sides	of	a	heading,	but	not	have	a	left	border,	as	shown	in	Figure	7-22.

Figure	7-22.	Removing	the	left	border

There	are	two	ways	to	accomplish	this,	each	one	equivalent	to	the	other:

h1	{border-style:	solid	solid	solid	none;}

/*	the	above	is	the	same	as	the	below	*/

h1	{border-style:	solid;	border-left-style:	none;}

What’s	important	to	remember	is	that	if	you’re	going	to	use	the	second	approach,	you	have	to	place	the
single-side	property	after	the	shorthand,	as	is	usually	the	case	with	shorthands.	This	is	because
border-style:	solid	is	actually	a	declaration	of	border-style:	solid	solid	solid
solid.	If	you	put	border-style-left:	none	before	the	border-style	declaration,	the
shorthand’s	value	will	override	the	single-side	value	of	none.

Logical	styles
If	you	want	your	borders	to	be	styled	in	relation	to	where	they	sit	in	the	writing	mode’s	flow,	rather	than
be	pinned	to	physical	directions,	then	these	are	the	border-styling	properties	for	you.

BORDER-BLOCK-START-STYLE,	BORDER-BLOCK-END-STYLE,	BORDER-
INLINE-START-STYLE,	BORDER-INLINE-END-STYLE

Values none	|	hidden	|	dotted	|	dashed	|	solid	|	double	|	groove	|	ridge	|	inset	|	outset

Initial	value none

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

BORDER-BLOCK-STYLE,	BORDER-INLINE-STYLE

Values [none	|	hidden	|	dotted	|	dashed	|	solid	|	double	|	groove	|	ridge	|	inset	|	outset]{1,2}

Initial	value none

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

As	with	padding-block	and	padding-inline,	border-block-style	and	border-
inline-style	each	accept	one	or	two	values.	If	two	values	are	given,	then	they	are	taken	in	the	order
of	start	end.	That	is	to	say,	given	the	following	CSS,	you’ll	get	a	result	like	that	shown	in	Figure	7-23.

p	{border-block-style:	solid	double;	border-inline-style:	dashed	dotted;}

Figure	7-23.	Logical	border	styles

You	could	get	the	same	result	in	the	following,	more	verbose	manner:

p	{

					border-block-start-style:	solid;

					border-block-end-style:	double;

					border-inline-start-style:	dashed;

					border-inline-end-style:	dotted;

}

The	only	difference	between	the	two	patterns	is	the	number	of	characters	you	have	to	type,	so	really,
which	one	you	use	is	up	to	you.

Border	Widths
Once	you’ve	assigned	a	border	a	style,	the	next	step	is	to	give	it	some	width,	most	easily	by	using	the
property	border-width	or	one	of	its	cousin	properties.

BORDER-WIDTH

Values [thin	|	medium	|	thick	|	<length>]{1,4}

Initial	value Not	defined	for	shorthand	properties

Applies	to All	elements

Computed	value See	individual	properties	(border-top-style,	etc.)

Inherited No

Animatable Yes

BORDER-TOP-WIDTH,	BORDER-RIGHT-WIDTH,	BORDER-BOTTOM-WIDTH,
BORDER-LEFT-WIDTH

Values thin	|	medium	|	thick	|	<length>

Initial	value medium

Applies	to All	elements

Computed	value An	absolute	length,	or	0	if	the	style	of	the	border
is	none	or	hidden

Inherited No

Animatable Yes

Each	of	these	properties	is	used	to	set	the	width	on	a	specific	border	side,	just	as	with	the	margin
properties.

NOTE
As	of	2022,	border	widths	still	cannot	be	given	percentage	values,	which	is	rather	a	shame.

There	are	four	ways	to	assign	width	to	a	border:	you	can	give	it	a	length	value	such	as	4px	or	0.1em,	or
use	one	of	three	keywords.	These	keywords	are	thin,	medium	(the	default	value),	and	thick.	These
keywords	don’t	necessarily	correspond	to	any	particular	width,	but	are	defined	in	relation	to	one	another.
According	to	the	specification,	thick	is	always	wider	than	medium,	which	is	in	turn	always	wider	than
thin.	Which	makes	sense.

However,	the	exact	widths	are	not	defined,	so	one	user	agent	could	set	them	to	be	equivalent	to	5px,
3px,	and	2px,	while	another	sets	them	to	be	3px,	2px,	and	1px.	No	matter	what	width	the	user	agent
uses	for	each	keyword,	it	will	be	the	same	throughout	the	document,	regardless	of	where	the	border
occurs.	So	if	medium	is	the	same	as	2px,	then	a	medium-width	border	will	always	be	two	pixels	wide,
whether	the	border	surrounds	an	h1	or	a	p	element.	Figure	7-24	illustrates	one	way	to	handle	these	three
keywords,	as	well	as	how	they	relate	to	each	other	and	to	the	content	they	surround.

Figure	7-24.	The	relation	of	border-width	keywords	to	each	other

Let’s	suppose	a	paragraph	has	a	background	color	and	a	border	style	set:

p	{background-color:	silver;

				border-style:	solid;}

The	border’s	width	is,	by	default,	medium.	We	can	change	that	easily	enough:

p	{background-color:	silver;

				border-style:	solid;	border-width:	thick;}

Border	widths	can	be	taken	to	fairly	ridiculous	extremes,	such	as	setting	1000-pixel	borders,	though	this
is	rarely	necessary	(or	advisable).

It’s	possible	to	set	widths	for	individual	sides,	using	two	familiar	methods.	The	first	is	to	use	any	of	the
specific	properties	mentioned	at	the	beginning	of	the	section,	such	as	border-bottom-width.	The
other	way	is	to	use	value	replication	in	border-width,	following	the	usual	TRBL	pattern,	which	is
illustrated	in	Figure	7-25:

h1	{border-style:	dotted;	border-width:	thin	0px;}

p	{border-style:	solid;	border-width:	15px	2px	8px	5px;}

Figure	7-25.	Value	replication	and	uneven	border	widths

Logical	border	widths
That	said,	if	you	want	to	set	border	widths	based	on	writing	direction,	then	there	are	the	usual
complement	of	logical	counterparts	to	go	with	the	physical	properties.

BORDER-BLOCK-WIDTH,	BORDER-INLINE-WIDTH

Values [thin	|	medium	|	thick	|	<length>]{1,2}

Initial	value Not	defined	for	shorthand	properties

Applies	to All	elements

Computed	value See	individual	properties	(border-top-style,	etc.)

Inherited No

Animatable Yes

BORDER-BLOCK-START-WIDTH,	BORDER-BLOCK-END-WIDTH,	BORDER-
INLINE-START-WIDTH,	BORDER-INLINE-END-WIDTH

Values thin	|	medium	|	thick	|	<length>

Initial	value medium

Applies	to All	elements

Computed	value An	absolute	length,	or	0	if	the	style	of	the	border
is	none	or	hidden

Inherited No

Animatable Yes

As	we	saw	with	the	border	widths,	these	can	either	be	set	one	side	at	a	time,	or	compressed	into	the
border-block-width	and	border-inline-width	properties.	The	following	two	rules	will
have	exactly	the	same	effect:

p	{

					border-block-width:	thick	thin;

					border-inline-width:	1em	5px;

}

p	{

					border-inline-start-width:	1em;

					border-inline-end-width:	5px;

					border-block-start-width:	thick;

					border-block-end-width:	thin;

}

No	border	at	all
So	far,	we’ve	talked	only	about	using	a	visible	border	style	such	as	solid	or	outset.	Let’s	consider
what	happens	when	you	set	border-style	to	none:

p	{border-style:	none;	border-width:	20px;}

Even	though	the	border’s	width	is	20px,	the	style	is	set	to	none.	In	this	case,	not	only	does	the	border’s
style	vanish,	so	does	its	width.	The	border	just	ceases	to	be.	Why?

If	you’ll	remember,	the	terminology	used	earlier	in	the	chapter	was	that	a	border	with	a	style	of	none
does	not	exist.	Those	words	were	chosen	very	carefully,	because	they	help	explain	what’s	going	on	here.
Since	the	border	doesn’t	exist,	it	can’t	have	any	width,	so	the	width	is	automatically	set	to	0	(zero),	no
matter	what	you	try	to	define.	After	all,	if	a	drinking	glass	is	empty,	you	can’t	really	describe	it	as	being
half-full	of	nothing.	You	can	discuss	the	depth	of	a	glass’s	contents	only	if	it	has	actual	contents.	In	the
same	way,	talking	about	the	width	of	a	border	makes	sense	only	in	the	context	of	a	border	that	exists.

This	is	important	to	keep	in	mind	because	it’s	a	common	mistake	to	forget	to	declare	a	border	style.	This
leads	to	all	kinds	of	author	frustration	because,	at	first	glance,	the	styles	appear	correct.	Given	the
following	rule,	though,	no	h1	element	will	have	a	border	of	any	kind,	let	alone	one	that’s	20	pixels	wide:

h1	{border-width:	20px;}

Since	the	default	value	of	border-style	is	none,	failure	to	declare	a	style	is	exactly	the	same	as
declaring	border-style:	none.	Therefore,	if	you	want	a	border	to	appear,	you	need	to	declare	a
border	style.

Border	Colors
Compared	to	the	other	aspects	of	borders,	setting	the	color	is	pretty	easy.	CSS	uses	the	physical	shorthand
property	border-color,	which	can	accept	up	to	four	color	values	 	at	one	time.

BORDER-COLOR

Values <color>{1,4}

Initial	value Not	defined	for	shorthand	properties

Applies	to All	elements

Computed	value See	individual	properties	(border-top-color,	etc.)

Inherited No

Animatable Yes

If	there	are	fewer	than	four	values,	value	replication	takes	effect	as	usual.	So	if	you	want	h1	elements	to
have	thin	gray	top	and	bottom	borders	with	thick	green	side	borders,	and	medium	gray	borders	around	p
elements,	the	following	styles	will	suffice,	with	the	result	shown	in	Figure	7-26:

h1	{border-style:	solid;	border-width:	thin	thick;	border-color:	gray	green;}

p	{border-style:	solid;	border-color:	gray;}

Figure	7-26.	Borders	have	many	aspects

1

A	single	color	value	will	be	applied	to	all	four	sides,	as	with	the	paragraph	in	the	previous	example.
On	the	other	hand,	if	you	supply	four	color	values,	you	can	get	a	different	color	on	each	side.	Any	type	of
color	value	can	be	used,	from	named	colors	to	hexadecimal	and	RGBA	values:

p	{border-style:	solid;	border-width:	thick;

				border-color:	black	rgba(25%,25%,25%,0.5)	#808080	silver;}

If	you	don’t	declare	a	color,	the	default	color	used	is	currentColor,	which	is	always	the	foreground
color	of	the	element.	Thus,	the	following	declaration	will	be	displayed	as	shown	in	Figure	7-27:

p.shade1	{border-style:	solid;	border-width:	thick;	color:	gray;}

p.shade2	{border-style:	solid;	border-width:	thick;	color:	gray;

				border-color:	black;}

Figure	7-27.	Border	colors	based	on	the	element’s	foreground	and	the	value	of	the	border-color	property

The	result	is	that	the	first	paragraph	has	a	gray	border,	having	used	the	foreground	color	of	the	paragraph.
The	second	paragraph,	however,	has	a	black	border	because	that	color	was	explicitly	assigned	using
border-color.

There	are	physical	single-side	border	color	properties	as	well.	They	work	in	much	the	same	way	as	the
single-side	properties	for	border	style	and	width.	One	way	to	give	headings	a	solid	black	border	with	a
solid	gray	right	border	is	as	follows:

h1	{border-style:	solid;	border-color:	black;	border-right-color:	gray;}

BORDER-TOP-COLOR,	BORDER-RIGHT-COLOR,	BORDER-BOTTOM-COLOR,
BORDER-LEFT-COLOR

Values <color>

Initial	value The	element’s	currentColor

Applies	to All	elements

Computed	value If	no	value	is	declared,	use	the	computed	value	of	currentColor;	otherwise,	as	declared

Inherited No

Animatable Yes

Logical	border	colors
Just	as	with	border	styles	and	widths,	there	are	logical	properties	that	shadow	the	physical	properties:
two	shorthand,	four	longhand.

BORDER-BLOCK-COLOR,	BORDER-INLINE-COLOR

Values <color>{1,2}

Initial	value Not	defined	for	shorthand	properties

Applies	to All	elements

Computed	value See	individual	properties	(border-block-start-color,	etc.)

Inherited No

Animatable Yes

BORDER-BLOCK-START-COLOR,	BORDER-BLOCK-END-COLOR,	BORDER-
INLINE-START-COLOR,	BORDER-INLINE-END-COLOR

Values <color>

Initial	value The	element’s	currentColor

Applies	to All	elements

Computed	value If	no	value	is	declared,	use	the	computed	value	of	currentColor;	otherwise,	as	declared

Inherited No

Animatable Yes

Thus,	the	following	two	rules	would	have	the	exact	same	outcome:

p	{

					border-block-color:	black	green;

					border-inline-color:	orange	blue;

}

p	{

					border-inline-start-width:	orange;

					border-inline-end-width:	blue;

					border-block-start-width:	black;

					border-block-end-width:	green;

}

Transparent	borders
As	you	may	recall,	if	a	border	has	no	style,	then	it	has	no	width.	There	are,	however,	situations	where
you’ll	want	to	create	an	invisible	border	that	still	has	width.	This	is	where	the	border	color	value
transparent	(introduced	in	CSS2)	comes	in.

Let’s	say	we	want	a	set	of	three	links	to	have	borders	that	are	invisible	by	default,	but	look	inset	when	the
link	is	hovered.	We	can	accomplish	this	by	making	the	borders	transparent	in	the	nonhovered	case:

a:link,	a:visited	{border-style:	inset;	border-width:	5px;

				border-color:	transparent;}

a:hover	{border-color:	gray;}

This	will	have	the	effect	shown	in	Figure	7-28.

In	a	sense,	transparent	lets	you	use	borders	as	if	they	were	extra	padding,	with	the	additional	benefit
of	being	able	to	make	them	visible	should	you	so	choose.	They	act	as	padding	because	the	background	of
the	element	extends	into	the	border	area	by	default,	assuming	there	is	a	visible	background.

Figure	7-28.	Using	transparent	borders

Single-Side	Shorthand	Border	Properties
It	turns	out	that	shorthand	properties	such	as	border-color	and	border-style	aren’t	always	as
helpful	as	you’d	think.	For	example,	you	might	want	to	apply	a	thick,	gray,	solid	border	to	all	h1
elements,	but	only	along	the	bottom.	If	you	limit	yourself	to	the	properties	we’ve	discussed	so	far,	you’ll
have	a	hard	time	applying	such	a	border.	Here	are	two	examples:

h1	{border-bottom-width:	thick;		/*	option	#1	*/

				border-bottom-style:	solid;

				border-bottom-color:	gray;}

h1	{border-width:	0	0	thick;				/*	option	#2	*/

				border-style:	none	none	solid;

				border-color:	gray;}

Neither	is	really	convenient,	given	all	the	typing	involved.	Fortunately,	a	better	solution	is	available:

h1	{border-bottom:	thick	solid	rgb(50%,40%,75%);}

This	will	apply	the	values	to	the	bottom	border	alone,	as	shown	in	Figure	7-29,	leaving	the	others	to	their
defaults.	Since	the	default	border	style	is	none,	no	borders	appear	on	the	other	three	sides	of	the	element.

Figure	7-29.	Setting	a	bottom	border	with	a	shorthand	property

As	you	may	have	guessed,	there	are	four	physical	shorthand	properties,	and	four	logical	shorthand
properties.

BORDER-TOP,	BORDER-RIGHT,	BORDER-BOTTOM,	BORDER-LEFT,
BORDER-BLOCK-START,	BORDER-BLOCK-END,	BORDER-INLINE-START,

BORDER-INLINE-END

Values [<border-width>	ǁ	<border-style>	ǁ	<border-color>]

Initial	value Not	defined	for	shorthand	properties

Applies	to All	elements

Computed	value See	individual	properties	(border-width,	etc.)

Inherited No

Animatable See	individual	properties

It’s	possible	to	use	these	properties	to	create	some	complex	borders,	such	as	those	shown	in	Figure	7-30:

h1	{border-left:	3px	solid	gray;

				border-right:	green	0.25em	dotted;

				border-top:	thick	goldenrod	inset;

				border-bottom:	double	rgb(13%,33%,53%)	10px;}

Figure	7-30.	Very	complex	borders

As	you	can	see,	the	order	of	the	actual	values	doesn’t	really	matter.	The	following	three	rules	will	yield
exactly	the	same	border	effect:

h1	{border-bottom:	3px	solid	gray;}

h2	{border-bottom:	solid	gray	3px;}

h3	{border-bottom:	3px	gray	solid;}

You	can	also	leave	out	some	values	and	let	their	defaults	kick	in,	like	this:

h3	{color:	gray;	border-bottom:	3px	solid;}

Since	no	border	color	is	declared,	the	default	value	(the	element’s	foreground)	is	applied	instead.	Just
remember	that	if	you	leave	out	a	border	style,	the	default	value	of	none	will	prevent	your	border	from
existing.

By	contrast,	if	you	set	only	a	style,	you	will	still	get	a	border.	Let’s	say	you	want	a	top	border	style	of
dashed	and	you’re	willing	to	let	the	width	default	to	medium	and	the	color	be	the	same	as	the	text	of

the	element	itself.	All	you	need	in	such	a	case	is	the	following	markup	(shown	in	Figure	7-31):

p.roof	{border-top:	dashed;}

Figure	7-31.	Dashing	across	the	top	of	an	element

Also	note	that	since	each	of	these	border-side	properties	applies	only	to	a	specific	side,	there	isn’t	any
possibility	of	value	replication—it	wouldn’t	make	any	sense.	There	can	be	only	one	of	each	type	of	value:
that	is,	only	one	width	value,	only	one	color	value,	and	only	one	border	style.	So	don’t	try	to	declare	more
than	one	value	type:

h3	{border-top:	thin	thick	solid	purple;}	/*	two	width	values--WRONG	*/

In	such	a	case,	the	entire	statement	will	be	invalid	and	a	user	agent	will	ignore	it.

Global	Borders
Now,	we	come	to	the	shortest	shorthand	border	property	of	all:	border,	which	affects	all	four	sides	of
the	element	equally.

BORDER

Values [<border-width>	ǁ	<border-style>	ǁ	<border-color>]

Initial	value Refer	to	individual	properties

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable See	individual	properties

This	property	has	the	advantage	of	being	very	compact,	although	that	brevity	introduces	a	few	limitations.
Before	we	worry	about	that,	let’s	see	how	border	works.	If	you	want	all	h1	elements	to	have	a	thick
silver	border,	the	following	declaration	would	be	displayed	as	shown	in	Figure	7-32:

h1	{border:	thick	silver	solid;}

Figure	7-32.	A	really	short	border	declaration

The	drawback	with	border	is	that	you	can	define	only	global	styles,	widths,	and	colors.	In	other	words,
the	values	you	supply	for	border	will	apply	to	all	four	sides	equally.	If	you	want	the	borders	to	be
different	for	a	single	element,	you’ll	need	to	use	some	of	the	other	border	properties.	Then	again,	it’s
possible	to	turn	the	cascade	to	your	advantage:

h1	{border:	thick	goldenrod	solid;

				border-left-width:	20px;}

The	second	rule	overrides	the	width	value	for	the	left	border	assigned	by	the	first	rule,	thus	replacing
thick	with	20px,	as	you	can	see	in	Figure	7-33.

Figure	7-33.	Using	the	cascade	to	one’s	advantage

You	still	need	to	take	the	usual	precautions	with	shorthand	properties:	if	you	omit	a	value,	the	default	will
be	filled	in	automatically.	This	can	have	unintended	effects.	Consider	the	following:

h4	{border:	medium	green;}

Here,	we’ve	failed	to	assign	a	border-style,	which	means	that	the	default	value	of	none	will	be
used,	and	thus	no	h4	elements	will	have	any	border	at	all.

Borders	and	Inline	Elements
Dealing	with	borders	and	inline	elements	should	sound	pretty	familiar,	since	the	rules	are	largely	the	same
as	those	that	cover	padding	and	inline	elements,	as	we	discussed	earlier.	Still,	we’ll	briefly	touch	on	the
topic	again.

First,	no	matter	how	thick	you	make	your	borders	on	inline	elements,	the	line	height	of	the	element	won’t
change.	Let’s	set	block-start	and	block-end	borders	on	boldfaced	text:

strong	{border-block-start:	10px	solid	hsl(216,50%,50%);

								border-block-end:	5px	solid	#AEA010;}

Figure	7-34.	Borders	on	inline	nonreplaced	elements

As	seen	before,	adding	borders	to	the	block	start	and	end	will	have	absolutely	no	effect	on	the	line	height.
However,	since	borders	are	visible,	they’ll	be	drawn—as	illustrated	in	Figure	7-34.

The	borders	have	to	go	somewhere.	That’s	where	they	went.

Again,	all	of	this	is	true	only	for	the	block-start	and	-end	sides	of	inline	elements;	the	inline	sides	are	a
different	story.	If	you	apply	a	border	along	an	inline	side,	not	only	will	they	be	visible,	but	they’ll
displace	the	text	around	them,	as	you	can	see	in	Figure	7-35:

strong	{border-inline-start:	25px	double	hsl(216,50%,50%);	background:	silver;}

Figure	7-35.	Inline	nonreplaced	elements	with	inline-start	borders

With	borders,	just	as	with	padding,	the	browser’s	calculations	for	line	breaking	are	not	directly	affected
by	any	box	properties	set	for	inline	nonreplaced	elements.	The	only	effect	is	that	the	space	taken	up	by	the

borders	may	shift	portions	of	the	line	over	a	bit,	which	may	in	turn	change	which	word	is	at	the	end	of	the
line.

NOTE
The	way	borders	are	(or	aren’t)	drawn	at	the	ends	of	each	line	box	can	be	altered	with	the	property	box-decoration-break.	See
Chapter	6	for	more	details.

With	replaced	elements	such	as	images,	on	the	other	hand,	the	effects	are	very	much	like	those	we	saw
with	padding:	a	border	will	affect	the	height	of	the	lines	of	text,	in	addition	to	shifting	text	around	to	the
sides.	Thus,	assuming	the	following	styles,	we	get	a	result	like	that	seen	in	Figure	7-36.

img	{border:	1em	solid	rgb(216,108,54);}

Figure	7-36.	Borders	on	inline	replaced	elements

Rounding	Border	Corners
It’s	possible	to	soften	the	square	corners	of	element	borders—and	actually,	the	entire	background	area—
by	using	the	property	border-radius	to	define	a	rounding	distance	(or	two).	In	this	particular	case,
we’re	actually	going	to	start	with	the	shorthand	physical	property	and	then	mention	the	individual	physical
properties	at	the	end	of	the	section,	after	which	we’ll	check	out	the	logical	equivalents.

BORDER-RADIUS

Values [<length>	|	<percentage>]{1,4}	[/	[<length>	|	<percentage>]{1,4}]?

Initial	value 0

Applies	to All	elements,	except	internal	table	elements

Computed	value Two	absolute	<length>	or	<percentage>	values

Percentages Calculated	with	respect	to	the	relevant	dimension	of	the	border	box

Inherited No

Animatable Yes

The	radius	of	a	rounded	border	corner	is	the	radius	of	a	circle	or	ellipse,	one	quarter	of	which	is	used	to
define	the	path	of	the	border’s	rounding.	We’ll	start	with	circles,	because	they’re	a	little	easier	to
understand.

Suppose	we	want	to	round	the	corner	of	an	element	so	that	each	corner	is	pretty	obviously	rounded.
Here’s	one	way	to	do	that:

#example	{border-radius:	2em;}

That	will	have	the	result	shown	in	Figure	7-37,	where	circle	diagrams	have	been	added	to	two	of	the
corners.	(The	same	rounding	is	done	in	all	four	corners.)

Figure	7-37.	How	border	radii	are	calculated

Focus	on	the	top	left	corner.	There,	the	border	begins	to	curve	2	em	below	the	top	of	the	border,	and	2	em
to	the	right	of	the	left	side	of	the	border.	The	curve	follows	along	the	outside	of	the	2-em-radius	circle.

If	we	were	to	draw	a	box	that	just	contained	the	part	of	the	top	left	corner	that	was	curved,	that	box	would
be	2em	wide	and	2em	tall.	The	same	thing	would	happen	in	the	bottom	right	corner.

With	single	length	values,	we	get	circular	corner	rounding	shapes.	If	a	single	percentage	is	used,	the
results	are	far	more	oval.	For	example,	consider	the	following,	illustrated	in	Figure	7-38.

#example	{border-radius:	33%;}

Figure	7-38.	How	percentage	border	radii	are	calculated

Again,	let’s	focus	on	the	top	left	corner.	On	the	left	edge,	the	border	curve	begins	at	the	point	33%	of	the
element	box’s	height	down	from	the	top.	In	other	words,	if	the	element	box	is	100	pixels	tall	from	top
border	edge	to	bottom	border	edge,	the	curve	begins	33	pixels	from	the	top	of	the	element	box.

Similarly,	on	the	top	edge,	the	curve	begins	at	the	point	33%	of	the	element	box’s	width	from	the	left	edge.
So	if	the	box	is	(say)	600	pixels	wide,	the	curve	begins	198	pixels	from	the	left	edge,	because	600	*
0.33	=	198.

The	shape	of	the	curve	between	those	two	points	is	identical	to	the	top	left	edge	of	an	ellipse	whose
horizontal	radius	is	198	pixels	long,	and	whose	vertical	radius	is	33	pixels	long.	(This	is	the	same	as	an
ellipse	with	a	horizontal	axis	of	396	pixels	and	a	vertical	axis	of	66	pixels.)

The	same	thing	is	done	in	each	corner,	leading	to	a	set	of	corner	shapes	that	mirror	each	other,	rather	than
being	identical.

Supplying	a	single	length	or	percentage	value	for	border-radius	means	all	four	corners	will	have	the
same	rounding	shape.	As	you	may	have	spotted	in	the	syntax	definition,	you	can	supply	border-
radius	with	up	to	four	values.	Because	border-radius	is	a	physical	property,	the	values	go	in
clockwise	order	from	top	left	to	bottom	left,	like	so:

#example	{border-radius:

					1em		/*	Top	Left	*/

					2em		/*	Top	Right	*/

					3em		/*	Bottom	Right	*/

					4em;	/*	Bottom	Left	*/

}

This	TL-TR-BR-BL	can	be	remembered	with	the	mnemonic	“TiLTeR	BuRBLe,”	if	you’re	inclined	to	such
things.	The	important	thing	is	that	the	rounding	starts	in	the	top	left,	and	works	its	way	clockwise	from
there.

If	a	value	is	left	off,	then	the	missing	values	are	filled	in	using	a	pattern	like	that	used	for	padding	and
so	on.	If	there	are	three	values,	the	fourth	is	copied	from	the	second.	If	there	are	two,	the	third	is	copied
from	the	first	and	the	fourth	from	the	second.	If	there’s	just	one,	the	missing	three	are	copied	from	the	first.
Thus,	the	following	two	rules	are	identical,	and	will	have	the	result	shown	in	Figure	7-39.

#example	{border-radius:	1em	2em	3em	2em;}

#example	{border-radius:	1em	2em	3em;	/*	BL	copied	from	TR	*/}

Figure	7-39.	A	variety	of	rounded	corners

There’s	an	important	aspect	to	Figure	7-39:	the	rounding	of	the	content	area’s	background	along	with	the
rest	of	the	background.	See	how	the	silver	curves,	and	the	period	sits	outside	it?	That’s	the	expected
behavior	in	a	situation	where	the	content	area’s	background	is	different	than	the	padding	background

(we’ll	see	how	to	do	that	in	XREF	HERE)	and	the	curving	of	a	corner	is	large	enough	to	affect	the
boundary	between	content	and	padding.

This	is	because	while	border-radius	changes	how	the	border	and	background(s)	of	an	element	are
drawn,	it	does	not	change	the	shape	of	the	element	box.	Consider	the	situation	depicted	in	Figure	7-40.

Figure	7-40.	Elements	with	rounded	corners	are	still	boxes

There,	we	can	see	an	element	that’s	been	floated	to	the	left,	and	other	text	flowing	past	it.	The	border
corners	have	been	completely	rounded	off	using	border-radius:	50%,	and	some	of	its	text	is
sticking	out	past	the	rounded	corners.	Beyond	the	rounded	corners,	we	can	also	see	the	page	background
visible	where	the	corners	would	have	been,	were	they	not	rounded.

So	at	a	glance,	you	might	assume	that	the	element	has	been	reshaped	from	box	to	circle	(technically	to
ellipse),	and	the	text	just	happens	to	stick	out	of	it.	But	look	at	the	text	flowing	past	the	float.	It	doesn’t
flow	into	the	area	the	rounded	corners	“left	behind.”	That’s	because	the	corners	of	the	floated	element	are
still	there.	They’re	just	not	visibly	filled	by	border	and	background,	thanks	to	border-radius.

Rounded	corner	clamping
What	happens	if	a	radius	value	is	so	large	that	it	would	spill	into	other	corners?	For	example,	what
happens	with	border-radius:	100%?	Or	border-radius:	9999px	on	an	element	that’s

nowhere	near	ten	thousand	pixels	tall	or	wide?

In	any	such	case,	the	rounding	is	“clamped”	to	the	maximum	it	can	be	for	a	given	quadrant	of	the	element.
Making	sure	that	buttons	always	look	round-ended-pill	shapes	can	be	done	like	so:

.button	{border-radius:	9999em;}

That	will	just	cap	off	the	shortest	ends	of	the	element	(usually	the	left	and	right	sides,	but	no	guarantees)	to
be	smooth	semicircular	caps.

More	complex	corner	shaping
Now	that	we’ve	seen	how	assigning	a	single	radius	value	to	a	corner	shapes	it,	let’s	talk	about	what
happens	when	corners	get	two	values—and,	more	importantly,	how	they	get	those	values.

For	example,	suppose	we	want	corners	to	be	rounded	by	3	character	units	horizontally,	and	1	character
unit	vertically.	We	can’t	just	say	border-radius:	3ch	1ch	because	that	will	round	the	top	left	and
bottom	right	corners	by	3ch,	and	the	other	two	corners	by	1ch	each.	Inserting	a	forward	slash	will	get	us
what	we’re	after:

#example	{border-radius:	3ch	/	1ch;}

This	is	functionally	equivalent	to	saying:

#example	{border-radius:	3ch	3ch	3ch	3ch	/	1ch	1ch	1ch	1ch;}

The	way	this	syntax	works,	the	horizontal	radius	of	each	corner’s	rounding	ellipse	is	given,	and	then	after
the	slash,	the	vertical	radius	of	each	corner	is	given.	In	both	cases,	the	values	are	in	“TiLTeR	BuRBLe”
order.

Here’s	a	simpler	example,	illustrated	in	Figure	7-41:

#example	{border-radius:	1em	/	2em;}

Figure	7-41.	Elliptical	corner	rounding

Each	corner	is	rounded	by	1em	along	the	horizontal	axis,	and	2em	along	the	vertical	axis,	in	the	manner
we	saw	in	detail	in	the	previous	section.

Here’s	a	slightly	more	complex	version,	providing	two	lengths	to	either	side	of	the	slash,	as	depicted	in
Figure	7-42:

#example	{border-radius:	2.5em	2em	/	1.5em	3em;}

Figure	7-42.	Different	elliptical	rounding	calculations

In	this	case,	the	top	left	and	bottom	right	corners	are	curved	2.5	em	along	the	horizontal	axis,	and	1.5	em
along	the	vertical	axis.	The	top	right	and	bottom	left	corners,	on	the	other	hand,	are	curved	2	em	along	the
horizontal	and	3	along	the	vertical.

Remember,	it’s	horizontal	values	before	the	slash,	and	vertical	after.	If	we’d	wanted	to	make	the	top	left
and	bottom	right	corners	be	rounded	1em	horizontally	and	1em	vertically	(a	circular	rounding),	the	values
would	have	been	written	like	so:

#example	{border-radius:	1em	2em	/	1em	3em;}

Percentages	are	also	fair	game	here.	If	we	want	to	round	the	corners	of	an	element	so	that	the	sides	are
fully	rounded	but	only	extend	2	character	units	into	the	element	horizontally,	we’d	write	it	like	so:

#example	{border-radius:	2ch	/	50%;}

Corner	blending
So	far,	the	corners	we’ve	rounded	have	been	pretty	simple—always	the	same	width,	style	and	color.	That
won’t	always	be	the	case,	though.	What	happens	if	a	tick	red	solid	border	is	rounded	into	a	thin	dashed
green	border?

The	specification	directs	that	the	rounding	cause	as	smooth	a	blend	as	possible	when	it	comes	to	the
width.	In	other	words,	when	rounding	from	a	thicker	border	to	a	thinner	border,	the	width	of	the	border
should	gradually	shrink	throughout	the	curve	of	the	rounded	corner.

When	it	comes	to	differing	styles	and	colors,	the	specification	is	less	clear	about	how	this	should	be
accomplished.	Consider	the	various	samples	shown	in	Figure	7-43.

Figure	7-43.	Rounded	corners	up	close

The	first	is	a	simple	rounded	corner,	with	no	variation	in	color,	width,	or	style.	The	second	shows
rounding	from	one	thickness	to	another.	You	can	visualize	this	second	case	as	a	shape	defined	by	a
circular	shape	on	the	outer	edge	and	an	elliptical	shape	on	the	inner	edge.

In	the	third	case,	the	color	and	thickness	stay	the	same,	but	the	corner	curves	from	a	solid	style	on	the	left
to	a	double-line	style	on	top.	The	transition	between	styles	is	abrupt,	and	occurs	at	the	halfway	point	in
the	curve.

The	fourth	example	shows	a	transition	from	a	thick	solid	to	a	thinner	double	border.	Note	the	placement	of
the	transition,	which	is	not	at	the	halfway	point.	It	is	instead	determined	by	taking	the	ratio	of	the	two
borders’	thicknesses,	and	using	that	to	find	the	transition	point.	Let’s	assume	the	left	border	is	10px	thick
and	the	top	border	5px	thick.	By	summing	the	two	to	get	15px,	the	left	border	gets	2/3	(10/15)	and	the	top
border	1/3	(5/15).	Thus,	the	left	border’s	style	is	used	in	two-thirds	of	the	curve,	and	the	top	border‘s
style	in	one-third	the	curve.	The	width	is	still	smoothly	changed	over	the	length	of	the	curve.

The	fifth	and	sixth	examples	show	what	happens	with	color	added	to	the	mix.	Effectively,	the	color	stays
linked	to	the	style.	This	hard	transition	between	colors	is	common	behavior	amongst	browsers	as	of	late
2022,	but	it	may	not	always	be	so.	The	specification	explicitly	states	that	user	agents	may	blend	from	one
border	color	to	another	by	using	a	linear	gradient.	Perhaps	one	day	they	will,	but	for	now,	the	changeover
is	instantaneous.

The	seventh	example	in	Figure	7-43	shows	a	case	we	haven’t	really	discussed	which	is:	“What	happens	if
the	borders	are	equal	to	or	thicker	than	the	value	of	border-radius?”	In	the	case,	the	outside	of	the
corner	is	rounded,	but	the	inside	is	not,	as	shown.	This	would	occur	in	a	case	like	the	following:

#example	{border-style:	solid;

					border-color:	tan	red;

					border-width:	20px;

					border-radius:	20px;}

Individual	rounding	properties
After	that	tour	of	border-radius,	you	might	be	wondering	if	maybe	you	could	just	round	one	corner
at	a	time.	Yes,	you	can!	First,	let’s	consider	the	physical	corners,	which	are	what	border-radius
brings	together.

BORDER-TOP-LEFT-RADIUS,	BORDER-TOP-RIGHT-RADIUS,	BORDER-
BOTTOM-RIGHT-RADIUS,	BORDER-BOTTOM-LEFT-RADIUS

Values [<length>	|	<percentage>]{1,2}

Initial	value 0

Applies	to All	elements,	except	internal	table	elements

Computed	value Two	absolute	<length>	or	<percentage>	values

Percentages Calculated	with	respect	to	the	relevant	dimension	of	the	border	box

Inherited No

Animatable Yes

Each	property	sets	the	curve	shape	for	its	corner,	and	doesn’t	affect	the	others.	The	fun	part	is	that	if	you
supply	two	values,	one	for	the	horizontal	radius	and	one	for	the	vertical	radius,	there	is	not	a	slash
separating	them.	Really.	This	means	that	the	following	two	rules	are	functionally	equivalent:

#example	{border-radius:

					1.5em	2vw	20%	0.67ch	/	2rem	1.2vmin	1cm	10%;

					}

#example	{

					border-top-left-radius:	1.5em	2rem;

					border-top-right-radius:	2vw	1.2vmin;

					border-bottom-right-radius:	20%	1cm;

					border-bottom-left-radius:	0.67ch	10%;

}

The	individual	corner	border	radius	properties	are	mostly	useful	setting	a	common	corner	rounding,	and
then	overriding	just	one.	Thus,	a	comic-book-like	word	balloon	shape	could	be	done	as	follows,	with	the
result	shown	in	Figure	7-44:

.tabs	{border-radius:	2em;

					border-bottom-left-radius:	0;}

Figure	7-44.	Links	shaped	like	word	balloons

In	addition	to	the	physical	corners,	there	are	also	logical	corners.

BORDER-START-START-RADIUS,	BORDER-START-END-RADIUS,	BORDER-
END-START-RADIUS,	BORDER-END-END-RADIUS

Values [<length>	|	<percentage>]{1,2}

Initial	value 0

Applies	to All	elements,	except	internal	table	elements

Computed	value Two	absolute	<length>	or	<percentage>	values

Percentages Calculated	with	respect	to	the	relevant	dimension	of	the	border	box

Inherited No

Animatable Yes

You	might	be	thinking,	“Hold	on,	that’s	not	what	the	other	logical	properties	looked	like!”	And	that’s	true:
these	are	a	fair	bit	different.	That’s	because	if	we	had	a	property	like	border-block-start-
radius,	it	would	apply	to	both	corners	along	the	block	start	edge.	But	if	you	also	had	an	border-
inline-start-radius,	it	would	apply	to	both	corners	on	the	inline-start	edge,	one	of	which	is	also
on	the	block-start	edge.

So	the	way	the	logical	border	radius	properties	work	is	they’re	labeled	in	the	pattern	border-block-
inline-radius.	Thus,	border-start-end-radius	sets	the	radius	of	the	corner	that’s	at	the	junction
of	the	block-start	and	inline-end	edges.	Take	the	following	example,	which	is	illustrated	in	Figure	7-45.

p	{border-start-end-radius:	2em;}

Figure	7-45.	Rounding	the	block-start,	inline-end	corner

Remember	that	you	can	use	the	same	space-separated	value	pattern	for	defining	an	elliptical	corner	radius
as	shown	earlier	in	the	section	for	border-top-left-radius	and	friends.	However,	the	value	is
still	in	the	pattern	of	horizontal	radius,	then	vertical	radius,	instead	of	being	relative	to	the	block	and
inline	flow	directions.	This	seems	like	a	bit	of	an	oversight	in	CSS,	but	it	is	how	things	are	as	of	late
2022.

One	thing	to	keep	in	mind	is	that,	as	we’ve	seen,	corner	shaping	affects	the	background	and	(potentially)
the	padding	and	content	areas	of	the	element,	but	not	any	image	borders.	Wait	a	minute,	image	borders?
What	are	those?	Glad	you	asked!

Image	Borders
The	various	border	styles	are	nice	enough,	but	are	still	fairly	limited.	What	if	you	want	to	create	a	really
complicated,	visually	rich	border	around	some	of	your	elements?	Back	in	the	day,	we’d	create	complex
multirow	tables	to	achieve	that	sort	of	effect,	but	thanks	to	image	borders,	there’s	almost	no	limit	to	the
kinds	of	borders	you	can	create.

Loading	and	slicing	a	border	image
If	you’re	going	to	use	an	image	to	create	the	borders	of	an	image,	you’ll	need	to	fetch	it	from	somewhere.
border-image-source	is	how	you	tell	the	browser	where	to	look	for	it.

BORDER-IMAGE-SOURCE

Values none	|	<image>

Initial	value none

Applies	to All	elements,	except	internal	table	elements	when	border-collapse	is	collapse

Computed	value none,	or	the	image	with	its	URL	made	absolute

Inherited No

Animatable No

Let’s	load	an	image	of	a	single	circle	to	be	used	as	the	border	image,	using	the	following	styles,	whose
result	is	shown	in	Figure	7-46:

border:	25px	solid;

border-image-source:	url(i/circle.png);

Figure	7-46.	Defining	a	border	image’s	source

There	are	a	number	of	things	to	note	here.	First,	without	the	border:	25px	solid	declaration,	there
would	have	been	no	border	at	all.	Remember,	if	the	value	of	border-style	is	none,	then	the	width	of
the	border	is	zero.	So	in	order	to	make	a	border	image	appear,	you	need	to	declare	a	border-style
value	other	than	none.	It	doesn’t	have	to	be	solid.	Second,	the	value	of	border-width	determines
the	actual	width	of	the	border	images.	Without	a	declared	value,	it	will	default	to	medium,	which	is	in
the	vicinity	of	3	pixels.	(Actual	value	may	vary.)

OK,	so	we	set	up	a	border	area	25	pixels	wide,	and	then	applied	an	image	to	it.	That	gave	us	the	same
circle	in	each	of	the	four	corners.	But	why	did	it	only	appear	there,	and	not	along	the	sides?	The	answer	to
that	is	found	in	the	way	the	physical	property	border-image-slice	is	defined.

BORDER-IMAGE-SLICE

Values [<number>	|	<percentage>]{1,4}	&&	fill?

Initial	value 100%

Applies	to All	elements,	except	internal	table	elements	when	border-collapse	is	collapse

Percentages Refer	to	size	of	the	border	image

Computed	value As	four	values,	each	a	number	or	percentage,	and	optionally	the	fill	keyword

Inherited No

Animatable <number>,	<percentage>

What	border-image-slice	does	is	establish	a	set	of	four	slice-lines	that	are	laid	over	the	image,
and	where	they	fall	determines	how	the	image	will	be	sliced	up	for	use	in	an	image	border.	It	takes	up	to
four	values,	defining	(in	order)	offsets	from	the	top,	right,	bottom,	and	left	edges.	Yep,	there’s	that	TRBL
pattern	again,	which	pegs	border-image-slice	as	a	physical	property.	And	value	replication	is
also	in	effect	here,	so	a	single	value	will	be	used	for	all	four	offsets.	Figure	7-47	shows	a	small	sampling
of	offset	patterns,	all	based	on	percentages.

Figure	7-47.	Various	slicing	patterns

NOTE
As	of	late	2022,	there	is	no	logical-property	equivalent	for	border-image-slice.	If	the	proposed	logical	keyword,	or	something
equivalent,	is	ever	adopted	and	implemented,	then	it	will	be	possible	to	use	border-image-slice	in	a	writing-flow-relative	fashion.
There	are	also	no	single-side	properties;	that	is,	there	is	no	such	thing	as	border-left-image-slice.

Now	let’s	take	an	image	that	has	a	3	×	3	grid	of	circles,	each	a	different	color,	and	slice	it	up	for	use	in	an
image	border.	Figure	7-48	shows	a	single	copy	of	this	image	and	the	resulting	image	border:

border:	25px	solid;

border-image-source:	url(i/circles.png);

border-image-slice:	33.33%;

Figure	7-48.	An	all-around	image	border

Yikes!	That’s…interesting.	The	stretchiness	of	the	sides	is	actually	the	default	behavior,	and	it	makes	a
fair	amount	of	sense,	as	we’ll	see	(and	find	out	how	to	change)	in	the	upcoming	section,	“Altering	the

repeat	pattern”.	Beyond	that	effect,	you	can	see	in	Figure	7-48	that	the	slice-lines	fall	right	between	the
circles,	because	the	circles	are	all	the	same	size	and	so	one-third	offsets	place	the	slice-lines	right
between	them.	The	corner	circles	go	into	the	corners	of	the	border,	and	each	side’s	circle	is	stretched	out
to	fill	its	side.

(Wait,	what	happened	to	the	gray	circle	in	the	middle?	you	may	wonder.	It’s	an	interesting	question!	For
now,	just	accept	it	as	one	of	life’s	little	mysteries,	albeit	a	mystery	that	will	be	explained	later	in	this
section.)

All	right,	so	why	did	our	first	border	image	example,	back	at	the	beginning	of	the	section,	only	place
images	in	the	corners	of	the	border	area	instead	of	all	the	way	around	it?

Any	time	the	slice-lines	meet	or	go	past	each	other,	the	corner	images	are	created	but	the	side	images	are
made	empty.	This	is	easiest	to	visualize	with	border-image-slice:	50%.	In	that	case,	the	image	is
sliced	into	four	quadrants,	one	for	each	corner,	with	nothing	remaining	for	the	sides.	However,	any	value
above	50%	has	the	same	basic	result,	even	though	the	image	isn’t	sliced	into	neat	quadrants	anymore.
Thus,	for	border-image-slice:	100%—which	is	the	default	value—each	corner	gets	the	entire
image,	and	the	sides	are	left	empty.	A	few	examples	of	this	effect	are	shown	in	Figure	7-49.

Figure	7-49.	Various	patterns	that	prevent	side	slices

That’s	why	we	had	to	have	a	3	×	3	grid	of	circles	when	we	wanted	to	go	all	the	way	around	the	border
area,	corners,	and	sides.

In	addition	to	percentage	offsets,	it’s	also	possible	to	define	the	offsets	using	a	number.	Not	a	length,	as
you	might	assume,	but	a	bare	number.	In	raster	images	like	PNGs	or	JPEGs,	the	number	corresponds	to
pixels	in	the	image	on	a	1:1	basis.	If	you	have	a	raster	image	where	you	want	to	define	25-pixel	offsets
for	the	slice-lines,	this	is	how	to	do	that,	as	illustrated	in	Figure	7-50:

border:	25px	solid;

border-image-source:	url(i/circles.png);

border-image-slice:	25;

Yikes	again!	What	happened	there	is	that	the	raster	image	is	150	×	150	pixels,	so	each	circle	is	50	×	50
pixels.	Our	offsets,	though,	were	only	25,	as	in	25	pixels.	So	the	slice-lines	were	placed	on	the	image	as
shown	in	Figure	7-51.

This	begins	to	give	an	idea	of	why	the	default	behavior	for	the	side	images	is	to	stretch	them.	Note	how
the	corners	flow	into	the	sides,	visually	speaking.

If	you	change	the	image	to	one	that	has	a	different	size,	numeric	offsets	don’t	adapt	to	the	new	size,
whereas	percentages	do.	The	interesting	thing	about	number	offsets	is	that	they	work	just	as	well	on	non-
raster	images,	like	SVGs,	as	they	do	on	rasters.	So	do	percentages.	In	general,	it’s	probably	best	to	use
percentages	for	your	slicing	offsets	whenever	possible,	even	if	means	doing	a	little	math	to	get	exactly	the
right	percentages.

Figure	7-50.	Number	slicing

Figure	7-51.	Slice-lines	at	25	pixels

Now	let’s	address	the	curious	case	of	the	image’s	center.	In	the	previous	examples,	there’s	a	circle	at	the
center	of	the	3	×	3	grid	of	circles,	but	it	disappears	when	the	image	is	applied	to	the	border.	In	the	last
example,	in	fact,	it	wasn’t	just	the	middle	circle	that	was	missing,	but	the	entire	center	slice.	This
dropping	of	the	center	slice	is	the	default	behavior	for	image-slicing,	but	you	can	override	it	by	adding	a
fill	keyword	to	the	end	of	your	border-image-slice	value.	If	we	add	fill	to	the	previous
example,	as	shown	here,	we’ll	get	the	result	shown	in	Figure	7-52:

border:	25px	solid;

border-image-source:	url(i/circles.png);

border-image-slice:	25	fill;

Figure	7-52.	Using	the	fill	slice

There’s	the	center	slice,	filling	up	the	element’s	background	area.	In	fact,	it’s	drawn	over	top	of	whatever
background	the	element	might	have,	so	you	can	use	it	as	a	substitute	for	the	background,	or	as	an	addition
to	it.

You	may	have	noticed	that	all	our	border	areas	have	been	a	consistent	width	(usually	25px).	This	doesn’t
have	to	be	the	case,	regardless	of	how	the	border	image	is	actually	sliced	up.	Suppose	we	take	the	circles
border	image	we’ve	been	using,	slice	it	by	thirds	as	we	have,	but	make	the	border	widths	different.	That
would	have	a	result	like	that	shown	in	Figure	7-53:

border-style:	solid;

border-width:	20px	40px	60px	80px;

border-image-source:	url(i/circles.png);

border-image-slice:	50;

Even	though	the	slice-lines	are	intrinsically	set	to	50	pixels	(via	50),	the	resulting	slices	are	resized	to	fit
into	the	border	areas	they	occupy.

Figure	7-53.	Uneven	border	image	widths

Altering	the	image	widths
Thus	far,	all	our	image	borders	have	depended	on	a	border-width	value	to	set	the	sizes	of	the	border
areas,	which	the	border	images	have	filled	out	precisely.	That	is,	if	the	top	border	side	is	25	pixels	tall,
the	border	image	that	fills	it	will	be	25	pixels	tall.	In	cases	where	you	want	to	make	the	images	a	different
size	than	the	area	defined	by	border-width,	there’s	the	physical	property	border-image-width.

BORDER-IMAGE-WIDTH

Values [<length>	|	<percentage>	|	<number>	|	auto]{1,4}

Initial	value 1

Applies	to All	elements,	except	table	elements	when	border-collapse	is	collapse

Percentages Relative	to	width/height	of	the	entire	border	image	area;	that	is,	the	outer	edges	of	the	border	box

Computed	value Four	values:	each	a	percentage,	number,	auto	keyword,	or	<length>	made	absolute

Inherited No

Animatable Yes

Note Values	can	never	be	negative

The	basic	thing	to	understand	about	border-image-width	is	that	it’s	very	similar	to	border-

image-slice,	except	what	border-image-width	slices	up	is	the	border	box	itself.

To	understand	what	this	means,	let’s	start	with	length	values.	We’ll	set	up	1	em	border	widths	like	so:

border-image-width:	1em;

What	that	does	is	push	slice-lines	1	em	inward	from	each	of	the	border	area’s	sides,	as	shown	in
Figure	7-54.

Figure	7-54.	Placing	slice-lines	for	the	border	image’s	width

So	the	top	and	bottom	border	areas	are	1	em	tall,	the	right	and	left	border	areas	are	1	em	wide,	and	the
corners	are	each	1	em	tall	and	wide.	Given	that,	the	border	images	created	with	border-image-
slice	are	filled	into	those	border	areas	in	the	manner	prescribed	by	border-image-repeat
(which	we’ll	get	to	shortly).	Thus,	the	following	styles	give	the	result	shown	in	XREF	HERE:

border-image-width:	1em;

border-image-slice:	33.3333%;

Note	that	these	areas	are	sized	independently	from	the	value	of	border-width.	Thus,	in	Figure	7-55,
we	could	have	had	a	border-width	of	zero	and	still	made	the	border	images	show	up,	by	using
border-image-width.	This	is	useful	if	you	want	to	have	a	solid	border	as	a	fallback	in	case	the
border	image	doesn’t	load,	but	don’t	want	to	make	it	as	thick	as	the	image	border	would	be.	Something
like	this:

border:	2px	solid;

border-image-source:	url(stars.gif);

border-image-width:	12px;

border-image-slice:	33.3333%;

padding:	12px;

Figure	7-55.	A	border	with	and	without	its	border	image

This	allows	for	a	12-pixel	star	border	to	be	replaced	with	a	2-pixel	solid	border	if	border	images	aren’t
available.	Remember	that	if	the	image	border	does	load,	you’ll	need	to	leave	enough	space	for	it	to	show
up	without	overlapping	the	content!	(By	default,	that	is.	We’ll	see	how	to	mitigate	this	problem	in	the	next
section.)

Now	that	we’ve	established	how	the	width	slice-lines	are	placed,	the	way	percentage	values	are	handled
should	make	sense,	as	long	as	you	keep	in	mind	that	the	offsets	are	with	respect	to	the	overall	border	box,
not	each	border	side.	For	example,	consider	the	following	declaration,	illustrated	in	Figure	7-56:

border-image-width:	33%;

Figure	7-56.	Placement	of	percentage	slice-lines

As	with	length	units,	the	lines	are	offset	from	their	respective	sides	of	the	border	box.	The	distance	they
travel	is	with	respect	to	the	border	box.	A	common	mistake	is	to	assume	that	a	percentage	value	is	with
respect	to	the	border	area	defined	by	border-width;	that	is,	given	a	border-width	value	of
30px,	the	result	of	border-image-width:	33.333%;	will	be	10	pixels.	But	no!	It’s	one-third	the
overall	border	box	along	that	axis.

One	way	in	which	the	behavior	of	border-image-width	differs	from	border-image-slice	is
in	how	it	handles	situations	where	the	slices	pass	each	other,	such	as	in	this	situation:

border-image-width:	75%;

If	you	recall,	for	border-image-slice,	if	the	slices	pass	each	other,	then	the	side	areas	(top,	right,
bottom,	and/or	left)	are	made	empty.	With	border-image-width,	the	values	are	proportionally
reduced	until	they	don’t.	So,	given	the	preceding	value	of	75%,	the	browser	will	treat	that	as	if	it	were
50%.	Similarly,	the	following	two	declarations	will	have	equivalent	results:

border-image-width:	25%	80%	25%	40%;

border-image-width:	25%	66.6667%	25%	33.3333%;

Note	how	in	both	declarations,	the	right	offset	is	twice	the	left	value.	That’s	what’s	meant	by

proportionally	reducing	the	values	until	they	don’t	overlap:	in	other	words,	until	they	no	longer	add	up	to
more	than	100%.	The	same	would	be	done	with	top	and	bottom,	were	they	to	overlap.

When	it	comes	to	number	values	for	border-image-width,	things	get	even	more	interesting.	If	you
set	border-image-width:	1,	then	the	border	image	areas	will	be	determined	by	the	value	of
border-width.	That’s	the	default	behavior.	Thus,	the	following	two	declarations	will	have	the	same
result:

border-width:	1em	2em;	border-image-width:	1em	2em;

border-width:	1em	2em;	border-image-width:	1;

You	can	increase	or	reduce	the	number	values	in	order	to	get	some	multiple	of	the	border	area	that
border-width	defines.	A	few	examples	of	this	can	be	seen	in	Figure	7-57.

In	each	case,	the	number	has	been	multiplied	by	the	border	area’s	width	or	height,	and	the	resulting	value
is	how	far	in	the	offset	is	placed	from	the	relevant	side.	Thus,	for	an	element	where	border-top-
width	is	3	pixels,	border-image-width:	10	will	create	a	30-pixel	offset	from	the	top	of	the
element.	Change	border-image-width	to	0.333,	and	the	top	offset	will	be	a	lone	pixel.

Figure	7-57.	Various	numeric	border	image	widths

The	last	value,	auto,	is	interesting	in	that	its	resulting	values	depend	on	the	state	of	two	other	properties.
If	border-image-source	has	been	explicitly	defined	by	the	author,	then	border-image-
width:	auto	uses	the	values	that	result	from	border-image-slice.	Otherwise,	it	uses	the	values
that	result	from	border-width.	These	two	declarations	will	have	the	same	result:

border-width:	1em	2em;	border-image-width:	auto;

border-image-slice:	1em	2em;	border-image-width:	auto;

Note	that	you	can	mix	up	the	value	types	for	border-image-width.	The	following	are	all	valid,	and
would	be	quite	interesting	to	try	out	in	live	web	pages:

border-image-width:	auto	10px;

border-image-width:	5	15%	auto;

border-image-width:	0.42em	13%	3.14	auto;

NOTE
As	with	border-image-slice	there	is	no	logical-property	equivalent	for	border-image-width	as	of	late	2022.

Creating	a	border	overhang
Well,	now	that	we	can	define	these	great	big	image	slices	and	widths,	how	do	we	keep	them	from
overlapping	the	content?	We	could	add	lots	of	padding,	but	that	would	leave	huge	amounts	of	space	if	the
image	fails	to	load,	or	if	the	browser	doesn’t	support	border	images.	Handling	such	scenarios	is	what	the
physical	property	border-image-outset	is	built	to	manage.

BORDER-IMAGE-OUTSET

Values [<length>	|	<number>]{1,4}

Initial	value 0

Applies	to All	elements,	except	internal	table	elements	when	border-collapse	is	collapse

Percentages N/A

Computed	value Four	values,	each	a	number	or	<length>	made	absolute

Inherited No

Animatable Yes

Note Values	can	never	be	negative

Regardless	of	whether	you	use	a	length	or	a	number,	border-image-outset	pushes	the	border
image	area	outward,	beyond	the	border	box,	in	a	manner	similar	to	how	slice-lines	are	offset.	The
difference	is	that	here,	the	offsets	are	outward,	not	inward.	Just	as	with	border-image-width,
number	values	for	border-image-outset	are	a	multiple	of	the	width	defined	by	border-width
—not	border-image-width.

NOTE
As	with	border-image-slice	and	border-image-width,	there	is	no	logical-property	equivalent	for	border-image-
outset	as	of	late	2022.

To	see	how	this	could	be	helpful,	imagine	a	scenario	where	we	want	to	use	a	border	image,	but	have	a
fallback	of	a	thin	solid	border	if	the	image	isn’t	available.	We	might	start	out	like	this:

border:	2px	solid;

padding:	0.5em;

border-image-slice:	10;

border-image-width:	1;

In	this	case,	there’s	half	an	em	of	padding;	at	default	browser	settings,	that	will	be	about	eight	pixels.	That
plus	the	2-pixel	solid	border	make	a	distance	of	10	pixels	from	the	content	edge	to	the	outer	border	edge.
So	if	the	border	image	is	available	and	rendered,	it	will	fill	not	only	the	border	area,	but	also	the	padding,
bringing	it	right	up	against	the	content.

We	could	increase	the	padding	to	account	for	this,	but	then	if	the	image	doesn’t	appear,	we’ll	have	a	lot	of
excess	padding	between	the	content	and	the	thin	solid	border.	Instead,	let’s	push	the	border	image
outward,	like	so:

border:	2px	solid;

padding:	0.5em;

border-image-slice:	10;

border-image-width:	1;

border-image-outset:	8px;

This	is	illustrated	in	Figure	7-58,	and	compared	to	situations	where	there’s	no	outset	nor	border	image.

Figure	7-58.	Creating	an	image	border	overhang

In	the	first	case,	the	image	border	has	been	pushed	out	far	enough	that	rather	than	overlapping	the	padding
area,	the	images	actually	overlap	the	margin	area!	We	can	also	split	the	difference	so	that	the	image
border	is	roughly	centered	on	the	border	area,	like	this:

border:	2px	solid;

padding:	0.5em;

border-image-slice:	10;

border-image-width:	1;

border-image-outset:	2;		/*	twice	the	`border-width`	value	*/

What	you	have	to	watch	out	for	is	pulling	the	image	border	too	far	outward,	to	the	point	that	it	overlaps
other	content	or	gets	clipped	off	by	the	edges	of	the	browser	window	(or	both).

Altering	the	repeat	pattern
So	far,	we’ve	seen	a	lot	of	stretched-out	images	along	the	sides	of	our	examples.	The	stretching	can	be

very	handy	in	some	situations,	but	a	real	eyesore	in	others.	With	the	physical	property	border-image-
repeat,	you	can	change	how	those	sides	are	handled.

BORDER-IMAGE-REPEAT

Values [stretch	|	repeat	|	round	|	space]{1,2}

Initial	value stretch

Applies	to All	elements,	except	internal	table	elements	when	border-collapse	is	collapse

Computed	value Two	keywords,	one	for	each	axis

Inherited No

Animatable No

NOTE
As	with	the	previous	border	image	properties,	there	is	no	logical-property	equivalent	for	border-image-repeat	as	of	late	2022.

Let’s	see	these	values	in	action	and	then	discuss	each	in	turn.

We’ve	already	seen	stretch,	so	the	effect	is	familiar.	Each	side	gets	a	single	image,	stretched	to	match
the	height	and	width	of	the	border	side	area	the	image	is	filling.

repeat	has	the	image	tile	until	it	fills	up	all	the	space	in	its	border	side	area.	The	exact	arrangement	is
to	center	the	image	in	its	side	box,	and	then	tile	copies	of	the	image	outward	from	that	point,	until	the
border	side	area	is	filled.	This	can	lead	to	some	of	the	repeated	images	being	clipped	at	the	sides	of	the
border	area,	as	seen	in	Figure	7-59.

Figure	7-59.	Various	image-repeat	patterns

round	is	a	little	different.	With	this	value,	the	browser	divides	the	length	of	the	border	side	area	by	the
size	of	the	image	being	repeated	inside	it.	It	then	rounds	to	the	nearest	whole	number	and	repeats	that
number	of	images.	In	addition,	it	stretches	or	squashes	the	images	so	that	they	just	touch	each	other	as	they
repeat.

As	an	example,	suppose	the	top	border	side	area	is	420	pixels	wide,	and	the	image	being	tiled	is	50
pixels	wide.	420	divided	by	50	is	8.4,	so	that’s	rounded	to	8.	Thus,	8	images	are	tiled.	However,	each	is
stretched	to	be	52.5	pixels	wide	(420	÷	8	=	52.5).	Similarly,	if	the	right	border	side	area	is	280	pixels
tall,	a	50-pixel-tall	image	will	be	tiled	6	times	(280	÷	50	=	5.6,	rounded	to	6)	and	each	image	will	be
squashed	to	be	46.6667	pixels	tall	(280	÷	6	=	46.6667).	If	you	look	closely	at	Figure	7-59,	you	can	see
the	top	and	bottom	circles	are	stretched	a	bit,	whereas	the	right	and	left	circles	show	some	squashing.

The	last	value,	space,	starts	out	similar	to	round,	in	that	the	border	side	area’s	length	is	divided	by	the
size	of	the	tiled	image	and	then	rounded.	The	differences	are	that	the	resulting	number	is	always	rounded

down,	and	images	are	not	distorted,	but	instead	distributed	evenly	throughout	the	border	area.

Thus,	given	a	top	border	side	area	420	pixels	wide	and	a	50-pixel-wide	image	to	be	tiled,	there	will	still
be	8	images	to	repeat	(8.4	rounded	down	is	8).	The	images	will	take	up	400	pixels	of	space,	leaving	20
pixels.	That	20	pixels	is	divided	by	8,	which	is	2.5	pixels.	Half	of	that	is	put	to	each	side	of	each	image,
meaning	each	image	gets	1.25	pixels	of	space	to	either	side.	That	puts	2.5	pixels	of	space	between	each
image,	and	1.25	pixels	of	space	before	the	first	and	after	the	last	image.	Figure	7-60	shows	a	few
examples	of	space	repeating.

Figure	7-60.	A	variety	of	space	repetitions

Shorthand	border	image
There	is	a	single	shorthand	physical	property	for	border	images,	which	is	(unsurprisingly	enough)
border-image.	It’s	a	little	unusual	in	how	it’s	written,	but	it	offers	a	lot	of	power	without	a	lot	of
typing.

BORDER-IMAGE

Values <border-image-source>	ǁ	<border-image-slice>	[/
<border-image-width>	|	/	<border-image-width>?	/
<border-image-outset>]?	ǁ	<border-image-repeat>

Initial	value See	individual	properties

Applies	to See	individual	properties

Computed	value See	individual	properties

Inherited No

Animatable See	individual	properties

This	property	has,	it	must	be	admitted,	a	somewhat	unusual	value	syntax.	In	order	to	get	all	the	various
properties	for	slices	and	widths	and	offsets,	and	be	able	to	tell	which	was	which,	the	decision	was	made
to	separate	them	by	forward-slash	symbols	(/)	and	require	them	to	be	listed	in	a	specific	order:	slice,
then	width,	then	offset.	The	image	source	and	repeat	values	can	go	anywhere	outside	of	that	three-value
chain.	Therefore,	the	following	rules	are	equivalent:

.example	{

				border-image-source:	url(eagles.png);

				border-image-slice:	40%	30%	20%	fill;

				border-image-width:	10px	7px;

				border-image-outset:	5px;

				border-image-repeat:	space;

}

.example	{border-image:	url(eagles.png)	40%	30%	20%	fill	/	10px	7px	/	5px	space;}

.example	{border-image:	url(eagles.png)	space	40%	30%	20%	fill	/	10px	7px	/	5px;}

.example	{border-image:	space	40%	30%	20%	fill	/	10px	7px	/	5px	url(eagles.png);}

The	shorthand	clearly	means	less	typing,	but	also	less	clarity	at	a	glance.

As	is	usually	the	case	with	shorthand	properties,	leaving	out	any	of	the	individual	pieces	means	that	the
defaults	will	be	supplied.	For	example,	if	we	just	supply	an	image	source,	the	rest	of	the	properties	will
get	their	default	values.	Thus,	the	following	two	declarations	will	have	exactly	the	same	effect:

border-image:	url(orbit.svg);

border-image:	url(orbit.svg)	stretch	100%	/	1	/	0;

Some	examples
Border	images	can	be	tricky	to	internalize,	conceptually	speaking,	so	it’s	worth	looking	at	some	examples
of	ways	to	use	them.

First,	let’s	look	at	how	to	set	up	a	border	with	scooped-out	corners	and	a	raised	appearance,	like	a
plaque,	with	a	fallback	to	a	simple	outset	border	of	similar	colors.	We	might	use	something	like	these

styles	and	an	image,	which	is	shown	in	Figure	7-61,	along	with	both	the	final	result	and	the	fallback
result:

#plaque	{

				padding:	10px;

				border:	3px	outset	goldenrod;

				background:	goldenrod;

				border-image-source:	url(i/plaque.png);

				border-image-repeat:	stretch;

				border-image-slice:	20	fill;

				border-image-width:	12px;

				border-image-outset:	9px;

}

Figure	7-61.	A	simple	plaque	effect	and	its	older-browser	fallback

Notice	how	the	side	slices	are	perfectly	set	up	to	be	stretched—everything	about	them	is	just	repeated
strips	of	color	along	the	axis	of	stretching.	They	could	also	be	repeated	or	rounded,	of	course,	if	not
rounded,	but	stretching	works	just	fine.	And	since	that’s	the	default	value,	we	could	have	omitted	the
border-image-repeat	declaration	altogether.

Next,	let’s	try	to	create	something	oceanic:	an	image	border	that	has	waves	marching	all	the	way	around
the	border.	Since	we	don’t	know	how	wide	or	tall	the	element	will	be	ahead	of	time,	and	we	want	the
waves	to	flow	from	one	to	another,	we’ll	use	round	to	take	advantage	of	its	scaling	behavior	while
getting	in	as	many	waves	as	will	reasonably	fit.	You	can	see	the	result	in	Figure	7-62,	along	with	the
image	that’s	used	to	create	the	effect:

#oceanic	{

				border:	2px	solid	blue;

				border-image:

								url(waves.png)	50	fill	/	20px	/	10px	round;

}

Figure	7-62.	A	wavy	border

There	is	one	thing	to	be	wary	of	here,	which	is	what	happens	if	you	add	in	an	element	background.	Just	to
make	the	situation	clear,	we’ll	add	a	red	background	to	this	element,	with	the	result	shown	in	Figure	7-63:

#oceanic	{

				background:	red;

				border:	2px	solid	blue;

				border-image:

								url(waves.png)	50	fill	/	20px	/	10px	round;

}

See	how	the	red	is	visible	between	the	waves?	That’s	because	the	wave	image	is	a	PNG	with	transparent
bits,	and	because	of	the	combination	of	image-slice	widths	and	outset,	some	of	the	background	area	is
visible	through	the	transparent	parts	of	the	border.	This	can	be	a	problem,	because	there	will	be	cases
where	you	want	to	use	a	background	color	in	addition	to	an	image	border—for	the	fallback	case	where
the	image	fails	to	appear,	if	nothing	else.	Generally,	this	is	a	problem	best	addressed	by	either	not	needing
a	background	for	the	fallback	case,	using	border-image-outset	to	pull	the	image	out	far	enough
that	no	part	of	the	background	area	is	visible,	or	using	background-clip:	padding-box	(see
“Clipping	the	Background”).

As	you	can	see,	there	is	a	lot	of	power	in	border	images.	Be	sure	to	use	them	wisely.

Figure	7-63.	The	background	area,	visible	through	the	image	border

Outlines
CSS	defines	a	special	sort	of	element	decoration	called	an	outline.	In	practice,	outlines	are	often	drawn
just	beyond	the	borders,	though	(as	we’ll	see)	this	is	not	the	whole	story.	As	the	specification	puts	it,
outlines	differ	from	borders	in	three	basic	ways:

1.	 Outlines	are	visible,	but	do	not	take	up	layout	space.

2.	 User	agents	often	render	outlines	on	elements	in	the	:focus	state,	precisely	because	they	do	not
take	up	layout	soace	and	so	do	not	change	the	layout.

3.	 Outlines	may	be	nonrectangular.

To	which	we’ll	add	a	fourth:

4.	 Outlines	are	an	all-or-nothing	proposition:	you	can’t	style	one	side	of	a	border	independently	from
the	others.

Let’s	start	finding	out	exactly	what	all	that	means.	First,	we’ll	run	through	the	various	properties,
comparing	them	to	their	border-related	counterparts.

Outline	Styles
Much	as	with	border-style,	you	can	set	a	style	for	your	outlines.	In	fact,	the	values	will	seem	very
familiar	to	anyone	who’s	styled	a	border	before.

OUTLINE-STYLE

Values auto	|	none	|	solid	|	dotted	|	dashed	|	double
|	groove	|	ridge	|	inset	|	outset

Initial	value none

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

The	two	major	differences	are	that	outlines	cannot	have	a	hidden	style,	as	borders	can;	and	outlines	can
have	auto	style.	This	style	allows	the	user	agent	to	get	extra-fancy	with	the	appearance	of	the	outline,	as
explained	in	the	CSS	specification:

The	auto	value	permits	the	user	agent	to	render	a	custom	outline	style,	typically	a	style	which	is
either	a	user	interface	default	for	the	platform,	or	perhaps	a	style	that	is	richer	than	can	be
described	in	detail	in	CSS,	e.g.	a	rounded	edge	outline	with	semi-translucent	outer	pixels	that
appears	to	glow.

It’s	also	the	case	that	auto	allows	browsers	to	use	different	outlines	for	different	elements;	e.g.,	the
outline	for	a	hyperlink	may	not	be	the	same	as	the	outline	for	a	form	input.

Beyond	those	differences,	outlines	have	all	the	same	styles	that	borders	have,	as	illustrated	in	Figure	7-
64.

Figure	7-64.	Various	outline	styles

The	less	obvious	difference	is	that	unlike	border-style,	outline-style	is	not	a	shorthand
property.	You	can’t	use	it	to	set	a	different	outline	style	for	each	side	of	the	outline,	because	outlines	can’t
be	styled	that	way.	There	is	no	outline-top-style.	This	is	true	for	all	the	rest	of	the	outline
properties.	Because	of	this	aspect	of	outline-style,	the	one	property	serves	both	physical	and
logical	layout	needs.

Outline	Width
Once	you’ve	decided	on	a	style	for	the	outline,	assuming	the	style	isn’t	none,	you	can	define	a	width	for
the	outline.

OUTLINE-WIDTH

Values <length>	|	thin	|	medium	|	thick

Initial	value medium

Applies	to All	elements

Computed	value An	absolute	length,	or	0	if	the	style	of	the
outline	is	none

Inherited No

Animatable Yes

There’s	very	little	to	say	about	outline	width	that	we	didn’t	already	say	about	border	width.	If	the	outline
style	is	none,	then	the	outline’s	width	is	set	to	0.	thick	is	wider	than	medium,	which	is	wider	than
thin,	but	the	specification	doesn’t	define	exact	widths	for	these	keywords.	Figure	7-65	shows	a	few
different	outline	widths.

Figure	7-65.	Various	outline	widths

As	before,	the	real	difference	here	is	that	outline-width	is	not	a	shorthand	property,	and	serves	both
physical	and	logical	layout	needs.	You	can	only	set	one	width	for	the	whole	outline,	and	cannot	set
different	widths	for	different	sides.	(The	reasons	for	this	will	soon	become	clear.)

Outline	Color
Does	your	outline	have	a	style	and	a	width?	Great!	Let’s	give	it	some	color!

OUTLINE-COLOR

Values <color>	|	invert

Initial	value invert

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable Yes

This	is	pretty	much	the	same	as	border-color,	with	the	caveat	that	it’s	an	all-or-nothing	proposition
—for	example,	there’s	no	outline-left-color.

The	one	major	difference	is	the	default	value,	invert.	What	invert	is	supposed	to	do	is	perform	a
“color	conversion”	on	all	pixels	within	the	visible	parts	of	the	outline.	The	advantage	to	color	inversion
is	that	it	can	make	the	outline	stand	out	in	a	wide	variety	of	situations,	regardless	of	what’s	behind	it.

However,	as	of	late	2022,	literally	no	browser	engines	support	invert.	(Some	did	for	a	while,	but	that
support	was	removed.)	Given	this,	if	you	use	invert,	it	will	be	rejected	by	the	browser,	and	the	color
keyword	`currentColor` 	will	be	used	instead.

The	only	outline	shorthand
So	far,	we’ve	seen	three	outline	properties	that	look	like	shorthand	properties,	but	aren’t.	Time	for	the	one
outline	property	that	is	a	shorthand:	outline.

OUTLINE

Values [<outline-color>	ǁ	<outline-style>	ǁ	<outline-width>]

Initial	value none

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable See	individual	properties

It	probably	comes	as	little	surprise	that,	like	border,	this	is	a	convenient	way	to	set	the	overall	style,
width,	and	color	of	an	outline.	Figure	7-66	illustrates	a	variety	of	outlines.

2

Figure	7-66.	Various	outlines

Thus	far,	outlines	seem	very	much	like	borders.	So	how	are	they	different?

How	They	Are	Different
The	first	major	difference	between	borders	and	outlines	is	that	outlines	don’t	affect	layout	at	all.	In	any
way.	They’re	very	purely	presentational.

To	understand	what	this	means,	consider	the	following	styles,	illustrated	in	Figure	7-67:

h1	{padding:	10px;	border:	10px	solid	green;

				outline:	10px	dashed	#9AB;	margin:	10px;}

Figure	7-67.	Outline	over	margin

Looks	normal,	right?	What	you	can’t	see	is	that	the	outline	is	completely	covering	up	the	margin.	If	we	put
in	a	dotted	line	to	show	the	margin	edges,	they’d	run	right	along	the	outside	edge	of	the	outline.	(We’ll
deal	with	margins	in	the	next	section.)

This	is	what’s	meant	by	outlines	not	affecting	layout.	Let’s	consider	another	example,	this	time	with	two
span	elements	that	are	given	outlines.	You	can	see	the	results	in	Figure	7-68:

span	{outline:	1em	solid	rgba(0,128,0,0.5);}

span	+	span	{outline:	0.5em	double	purple;}

Figure	7-68.	Overlapping	outlines

The	outlines	don’t	affect	the	height	of	the	lines,	but	they	also	don’t	shove	the	spans	to	one	side	or
another.	The	text	is	laid	out	as	if	the	outlines	aren’t	even	there.

This	raises	an	even	more	interesting	feature	of	outlines:	they	are	not	always	rectangular,	nor	are	they
always	contiguous.	Consider	this	outline	applied	to	a	strong	element	that	breaks	across	two	lines,	as
illustrated	in	two	different	scenarios	in	Figure	7-69:

strong	{outline:	2px	dotted	gray;}

Figure	7-69.	Discontinuous	and	nonrectangular	outlines

In	the	first	case,	there	are	two	complete	outline	boxes,	one	for	each	fragment	of	the	strong	element.	In
the	second	case,	with	the	longer	strong	element	causing	the	two	fragments	to	be	stacked	together,	the
outline	is	“fused”	into	a	single	polygon	that	encloses	the	fragments.	You	won’t	find	a	border	doing	that.

This	is	why	there	are	no	side-specific	outline	properties	like	outline-right-style:	if	an	outline
becomes	nonrectangular,	which	sides	are	the	right	sides?

WARNING
As	of	late	2022,	not	every	browser	combined	the	inline	fragments	into	a	single	contiguous	polygon.	In	those	which	did	not	support	this
behavior,	each	fragment	was	still	a	self-contained	rectangle,	as	in	the	first	example	in	Figure	7-69.

Margins
The	separation	between	most	normal-flow	elements	occurs	because	of	element	margins.	Setting	a	margin
creates	extra	blank	space	around	an	element.	Blank	space	generally	refers	to	an	area	in	which	other
elements	cannot	also	exist	and	in	which	the	parent	element’s	background	is	visible.	Figure	7-70	shows	the
difference	between	two	paragraphs	without	any	margins	and	the	same	two	paragraphs	with	some	margins.

Figure	7-70.	Paragraphs	with,	and	without,	margins

The	simplest	way	to	set	a	margin	is	by	using	the	physical	property	margin.

MARGIN

Values [<length>	|	<percentage>	|	auto]{1,4}

Initial	value Not	defined

Applies	to All	elements

Percentages Refer	to	the	width	of	the	containing	block

Computed	value See	individual	properties

Inherited No

Animatable Yes

Note The	effects	of	auto	margins	are	not	discussed	here;	see	XREF	HERE	for	a	full	explanation

Suppose	you	want	to	set	a	quarter-inch	margin	on	h1	elements,	as	illustrated	in	Figure	7-71	(a
background	color	has	been	added	so	you	can	clearly	see	the	edges	of	the	content	area):

h1	{margin:	0.25in;	background-color:	silver;}

This	sets	a	quarter-inch	of	blank	space	on	each	side	of	an	h1	element.	In	Figure	7-71,	dashed	lines
represent	the	margin’s	outer	edge,	but	the	lines	are	purely	illustrative	and	would	not	actually	appear	in	a
web	browser.

Figure	7-71.	Setting	a	margin	for	h1	elements

margin	can	accept	any	length	of	measure,	whether	in	pixels,	inches,	millimeters,	or	ems.	However,	the
default	value	for	margin	is	effectively	0	(zero),	so	if	you	don’t	declare	a	value,	by	default,	no	margin
should	appear.

In	practice,	however,	browsers	come	with	preassigned	styles	for	many	elements,	and	margins	are	no
exception.	For	example,	in	CSS-enabled	browsers,	margins	generate	the	“blank	line”	above	and	below
each	paragraph	element.	Therefore,	if	you	don’t	declare	margins	for	the	p	element,	the	browser	may	apply
some	margins	on	its	own.	Whatever	you	declare	will	override	the	default	styles.

Finally,	it’s	possible	to	set	a	percentage	value	for	margin.	The	details	of	this	value	type	will	be

discussed	in	“Percentages	and	Margins”.

Length	Values	and	Margins
Any	length	value	can	be	used	in	setting	the	margins	of	an	element.	It’s	easy	enough,	for	example,	to	apply
a	10-pixel	whitespace	around	paragraph	elements.	The	following	rule	gives	paragraphs	a	silver
background,	10	pixels	of	padding,	and	a	10-pixel	margin:

p	{background-color:	silver;	padding:	10px;	margin:	10px;}

In	this	case,	10	pixels	of	space	have	been	added	to	each	side	of	every	paragraph,	just	beyond	the	outer
border	edge.	You	can	just	as	easily	use	margin	to	set	extra	space	around	an	image.	Let’s	say	you	want	1
em	of	space	surrounding	all	images:

img	{margin:	1em;}

That’s	all	it	takes.

At	times,	you	might	desire	a	different	amount	of	space	on	each	side	of	an	element.	That’s	easy	as	well,
thanks	to	the	value	replication	behavior	we’ve	used	before.	If	you	want	all	h1	elements	to	have	a	top
margin	of	10	pixels,	a	right	margin	of	20	pixels,	a	bottom	margin	of	15	pixels,	and	a	left	margin	of	5
pixels,	here’s	all	you	need:

h1	{margin:	10px	20px	15px	5px;}

It’s	also	possible	to	mix	up	the	types	of	length	value	you	use.	You	aren’t	restricted	to	using	a	single	length
type	in	a	given	rule,	as	shown	here:

h2	{margin:	14px	5em	0.1in	3ex;}	/*	value	variety!	*/

Figure	7-72	shows	you,	with	a	little	extra	annotation,	the	results	of	this	declaration.

Figure	7-72.	Mixed-value	margins

Percentages	and	Margins
It’s	possible	to	set	percentage	values	for	the	margins	of	an	element.	As	with	padding,	percentage	margin
values	are	computed	in	relation	to	the	width	of	the	parent	element’s	content	area,	so	they	can	change	if	the
parent	element’s	width	changes	in	some	way.	For	example,	assume	the	following,	which	is	illustrated	in
Figure	7-73:

p	{margin:	10%;}

<div	style="width:	200px;	border:	1px	dotted;">

				<p>

								This	paragraph	is	contained	within	a	DIV	that	has	a	width	of	200	pixels,

								so	its	margin	will	be	10%	of	the	width	of	the	paragraph's	parent	(the

								DIV).	Given	the	declared	width	of	200	pixels,	the	margin	will	be	20

								pixels	on	all	sides.

				</p>

</div>

<div	style="width:	100px;	border:	1px	dotted;">

				<p>

								This	paragraph	is	contained	within	a	DIV	with	a	width	of	100	pixels,

								so	its	margin	will	still	be	10%	of	the	width	of	the	paragraph's

								parent.	There	will,	therefore,	be	half	as	much	margin	on	this	paragraph

								as	that	on	the	first	paragraph.

				</p>

</div>

Note	that	the	top	and	bottom	margins	are	consistent	with	the	right	and	left	margins;	in	other	words,	the
percentage	of	top	and	bottom	margins	is	calculated	with	respect	to	the	element’s	width,	not	its	height.
We’ve	seen	this	before—in	“Padding”,	in	case	you	don’t	remember—but	it’s	worth	reviewing	again,	just
to	see	how	it	operates.

Figure	7-73.	Parent	widths	and	percentages

Single-Side	Margin	Properties
As	we’ve	seen	throughout	the	chapter,	there	are	properties	that	let	you	set	the	margin	on	a	single	side	of
the	box,	without	affecting	the	others.	There	are	four	physical	side	properties,	four	logical	side	properties,
and	two	logical	shorthand	properties.

MARGIN-TOP,	MARGIN-RIGHT,	MARGIN-BOTTOM,	MARGIN-LEFT,	MARGIN-
BLOCK-START,	MARGIN-BLOCK-END,	MARGIN-INLINE-START,	MARGIN-

INLINE-END

Values <length>	|	<percentage>	|	auto

Initial	value 0

Applies	to All	elements

Percentages Refer	to	the	width	of	the	containing	block

Computed	value For	percentages,	as	specified;	otherwise,	the
absolute	length

Inherited No

Animatable Yes

MARGIN-BLOCK,	MARGIN-INLINE

Values [<length>	|	<percentage>	|	auto]{1,2}

Initial	value 0

Applies	to All	elements

Percentages Refer	to	the	width	of	the	containing	block

Computed	value For	percentages,	as	specified;	otherwise,	the
absolute	length

Inherited No

Animatable Yes

These	properties	operate	as	you’d	expect.	For	example,	the	following	two	rules	will	give	the	same
amount	of	margin:

h2	{margin:	0	0	0	0.25in;}

h2	{margin:	0;	margin-left:	0.25in;}

Similarly,	the	following	two	rules	will	have	the	same	outcome:

h2	{

					margin-block-start:	0.25in;

					margin-block-end:	0.5em;

					margin-inline-start:	0;

					margin-inline-end:	0;

}

h2	{margin-block:	0.25in	0.5em;	margin-inline:	0;}

Margin	Collapsing
An	interesting	and	often	overlooked	aspect	of	the	block-start	and	block-end	margins	on	block	boxes	is	that
they	collapse	in	normal	flow	layout.	This	is	the	process	by	which	two	(or	more)	margins	that	interact
along	the	block	axis	will	collapse	to	the	largest	of	the	interacting	margins.

The	canonical	example	of	this	is	the	space	between	paragraphs.	Generally,	that	space	is	set	using	a	rule
like	this:

p	{margin:	1em	0;}

So	that	sets	every	paragraph	to	have	block-start	and	-end	margins	of	1em.	If	margins	didn’t	collapse,	then
whenever	one	paragraph	followed	another,	there	would	be	two	ems	of	space	between	them.	Instead,
there’s	only	one;	the	two	margins	collapse	together.

To	illustrate	this	a	little	more	clearly,	let’s	return	to	the	percentage-margin	example,	only	this	time,	we’ll
add	dashed	lines	to	indicate	where	the	margins	fall.	This	is	seen	in	Figure	7-74.

Figure	7-74.	Collapsing	margins

The	example	shows	the	separation	distance	between	the	contents	of	the	two	paragraphs.	It’s	60	pixels,
because	that’s	the	wider	of	the	two	margins	that	are	interacting.	The	30-pixel	block-start	margin	of	the
second	paragraph	is	collapsed,	leaving	the	first	paragraph’s	block-end	margin	in	charge.

So	in	a	sense,	Figure	7-74	is	lying:	if	you	take	the	CSS	specification	strictly	at	its	word,	the	block-start
(top)	margin	of	the	second	paragraph	is	actually	reset	to	zero.	It	doesn’t	stick	into	the	block-end	margin	of
the	first	paragraph	because	once	it	collapses,	it	isn’t	there	anymore.	The	end	result	is	the	same,	though.

Margin	collapsing	also	explains	some	oddities	that	arise	when	one	element	is	inside	another.	Consider	the
following	styles	and	markup:

header	{background:	goldenrod;}

h1	{margin:	1em;}

<header>

				<h1>Welcome	to	ConHugeCo</h1>

</header>

The	margin	on	the	h1	will	push	the	edges	of	the	header	away	from	the	content	of	the	h1,	right?	Well,
not	entirely.	See	Figure	7-75.

What	happened?	The	inline-side	margins	took	effect—we	can	see	that	from	the	way	the	text	is	moved
over—but	the	block-start	and	block-end	margins	are	gone!

Only	they	aren’t	gone.	They’re	just	sticking	out	of	the	header	element,	having	interacted	with	the	(zero-
width)	block-start	margin	of	the	header	element.	The	magic	of	dashed	lines	in	Figure	7-76	shows	us
what’s	happening.

Figure	7-75.	Margins	collapsing	with	parents

Figure	7-76.	Margins	collapsing	with	parents,	revealed

There	the	block-axis	margins	are—pushing	away	any	content	that	might	come	before	or	after	the	header
element,	but	not	pushing	away	the	edges	of	the	header	itself.	This	is	the	intended	result,	even	if	it’s	often
not	the	desired	result.	As	for	why	it’s	intended,	imagine	happens	if	you	put	a	paragraph	in	a	list	item.
Without	the	specified	margin-collapsing	behavior,	the	paragraph’s	block-start	(in	this	case,	the	top)
margin	would	shove	it	downward,	where	it	would	be	far	out	of	alignment	with	the	list	item’s	bullet	(or
number).

NOTE
Margin	collapsing	can	be	interrupted	by	factors	such	as	padding	and	borders	on	parent	elements.	For	more	details,	see	the	discussion	in	the
section	“Collapsing	Vertical	Margins”	in	Chapter	6.

Negative	Margins
It’s	possible	to	set	negative	margins	for	an	element.	This	can	cause	the	element’s	box	to	stick	out	of	its

parent	or	to	overlap	other	elements.	Consider	these	rules,	which	are	illustrated	in	Figure	7-77:

div	{border:	1px	solid	gray;	margin:	1em;}

p	{margin:	1em;	border:	1px	dashed	silver;}

p.one	{margin:	0	-1em;}

p.two	{margin:	-1em	0;}

Figure	7-77.	Negative	margins	in	action

In	the	first	case,	the	math	works	out	such	that	the	paragraph’s	computed	width	plus	its	inline-start	and
inline-end	margins	are	exactly	equal	to	the	width	of	the	parent	div.	So	the	paragraph	ends	up	two	ems
wider	than	the	parent	element.

In	the	second	case,	the	negative	block-start	and	block-end	margins	move	its	block-start	and	-end	outer
edges	inward,	which	is	how	it	ends	up	overlapping	the	paragraphs	before	and	after	it.

Combining	negative	and	positive	margins	is	actually	very	useful.	For	example,	you	can	make	a	paragraph
“punch	out”	of	a	parent	element	by	being	creative	with	positive	and	negative	margins,	or	you	can	create	a
Mondrian	effect	with	several	overlapping	or	randomly	placed	boxes,	as	shown	in	Figure	7-78:

div	{background:	hsl(42,80%,80%);	border:	1px	solid;}

p	{margin:	1em;}

p.punch	{background:	white;	margin:	1em	-1px	1em	25%;

		border:	1px	solid;	border-right:	none;	text-align:	center;}

p.mond	{background:	rgba(5,5,5,0.5);	color:	white;	margin:	1em	3em	-3em	-3em;}

Thanks	to	the	negative	bottom	margin	for	the	“mond”	paragraph,	the	bottom	of	its	parent	element	is	pulled
upward,	allowing	the	paragraph	to	stick	out	of	the	bottom	of	its	parent.

Figure	7-78.	Punching	out	of	a	parent

Margins	and	Inline	Elements
Margins	can	also	be	applied	to	inline	elements.	Let’s	say	you	want	to	set	block-start	and	block-end
margins	on	strongly	emphasized	text:

strong	{margin-block-start:	25px;	margin-block-end:	50px;}

This	is	allowed	in	the	specification,	but	inline	nonreplaced	element,	they	will	have	absolutely	no	effect	on
the	line	height	(the	same	as	for	padding	and	borders).	And	since	margins	are	always	transparent,	you
won’t	even	be	able	to	see	that	they’re	there.	In	effect,	they’ll	have	no	effect	at	all.

As	with	padding,	things	change	a	bit	when	you	apply	margins	to	the	inline-start	and	inline-end	sides	of	an
inline	nonreplaced	element,	as	illustrated	in	Figure	7-79:

strong	{margin-inline-start:	25px;	background:	silver;}

Figure	7-79.	An	inline	nonreplaced	element	with	an	inline-start	margin

Note	the	extra	space	between	the	end	of	the	word	just	before	the	inline	nonreplaced	element	and	the	edge
of	the	inline	element’s	background.	You	can	add	that	extra	space	to	both	ends	of	the	inline	element	if	you
want:

strong	{margin:	25px;	background:	silver;}

As	expected,	Figure	7-80	shows	a	little	extra	space	on	the	inline-start	and	-end	sides	of	the	inline
element,	and	no	extra	space	above	or	below	it.

Figure	7-80.	An	inline	nonreplaced	element	with	25-pixel	side	margins

Now,	when	an	inline	nonreplaced	element	stretches	across	multiple	lines,	the	situation	changes.	Figure	7-
81	shows	what	happens	when	an	inline	nonreplaced	element	with	a	margin	is	displayed	across	multiple
lines:

strong	{margin:	25px;	background:	silver;}

Figure	7-81.	An	inline	nonreplaced	element	with	25-pixel	side	margin	displayed	across	two	lines	of	text

The	inline-start	margin	is	applied	to	the	beginning	of	the	element	and	the	inline-end	margin	to	the	end	of	it.
Margins	are	not	applied	to	the	inline-start	and	-end	side	of	each	line	fragment.	Also,	you	can	see	that,	if
not	for	the	margins,	the	line	may	have	broken	a	word	or	two	sooner.	Margins	only	affect	line	breaking	by
changing	the	point	at	which	the	element’s	content	begins	within	a	line.

NOTE
The	way	margins	are	(or	aren’t)	applied	to	the	ends	of	each	line	box	can	be	altered	with	the	property	box-decoration-break.	See
Chapter	6	for	more	details.

The	situation	gets	even	more	interesting	when	we	apply	negative	margins	to	inline	nonreplaced	elements.
The	block-start	and	block-end	of	the	element	aren’t	affected,	and	neither	are	the	heights	of	lines,	but	the
inline-start	and	inline-end	sides	of	the	element	can	overlap	other	content,	as	depicted	in	Figure	7-82:

strong	{margin:	-25px;	background:	silver;}

Figure	7-82.	An	inline	nonreplaced	element	with	a	negative	margin

Replaced	inline	elements	represent	yet	another	story:	margins	set	for	them	do	affect	the	height	of	a	line,
either	increasing	or	reducing	it,	depending	on	the	value	for	the	block-start	and	block-end	margin.	The
inline-side	margins	of	an	inline	replaced	element	act	the	same	as	for	a	nonreplaced	element.	Figure	7-83
shows	a	series	of	different	effects	on	layout	from	margins	set	on	inline	replaced	elements.

Figure	7-83.	Inline	replaced	elements	with	differing	margin	values

Summary
The	ability	to	apply	margins,	borders,	and	padding	to	any	element	allows	authors	to	manage	the
separation	and	appearance	of	elements	in	a	very	detailed	way.	Understanding	how	they	interact	with	each
other	is	the	foundation	of	design	for	the	web.

1 	See	“Color”	for	the	various	valid	value	formats	of	colors.

2 	See	“Color	Keywords”	for	details.

Chapter	8.	Backgrounds	and	Gradients

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	8th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

By	default,	the	background	area	of	an	element	consists	of	the	content	box,	padding	box,	and	border	box,
with	the	borders	drawn	on	top	of	the	background.	(You	can	change	that	to	a	degree	with	CSS,	as	we’ll	see
in	this	chapter.)

CSS	lets	you	apply	one	solid	opaque	or	semi-transparent	color	to	the	background	of	an	element,	as	well
as	apply	one	or	more	images	to	the	background	of	a	single	element,	or	even	describe	your	own	color
gradients	of	various	shapes	to	fill	the	background	area.

Background	Colors
To	declare	a	color	for	the	background	of	an	element,	you	use	the	property	background-color,	which
accepts	any	valid	color	value.

BACKGROUND-COLOR

Values <color>

Initial	value transparent

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable Yes

If	you	want	the	color	to	extend	out	a	little	bit	from	the	content	area	of	the	element,	add	some	padding	to	the
mix,	as	illustrated	in	Figure	8-1,	which	is	the	result	of	the	following	code:

mailto:rfernando@oreilly.com

p	{background-color:	#AEA;}

p.padded	{padding:	1em;}

<p>A	paragraph.</p>

<p	class="padded">A	padded	paragraph.</p>

Figure	8-1.	Background	color	and	padding

You	can	set	a	background	color	for	any	element,	from	body	all	the	way	down	to	inline	elements	such	as
em	and	a.	The	value	of	background-color	is	not	inherited.	Its	default	value	is	the	keyword
transparent,	which	should	make	sense:	if	an	element	doesn’t	have	a	defined	color,	then	its
background	should	be	transparent	so	that	the	background	and	content	of	its	ancestor	elements	will	be
visible.

One	way	to	picture	what	that	means	is	to	imagine	a	clear	(i.e.,	transparent)	plastic	sign	mounted	to	a
textured	wall.	The	wall	is	still	visible	through	the	sign,	but	this	is	not	the	background	of	the	sign;	it’s	the
background	of	the	wall	(in	CSS	terms,	anyway).	Similarly,	if	you	set	the	page	canvas	to	have	a
background,	it	can	be	seen	through	all	of	the	elements	in	the	document	that	don’t	have	their	own
backgrounds.	They	don’t	inherit	the	background;	it	is	visible	through	the	elements.	This	may	seem	like	an
irrelevant	distinction,	but	as	you’ll	see	when	we	discuss	background	images,	it’s	a	critical	difference.

Most	of	the	time,	you’ll	have	no	reason	to	use	the	keyword	transparent,	since	that’s	the	default	value.
On	occasion,	though,	it	can	be	useful.	Imagine	that	a	third	party	script	you	have	to	include	has	set	all
images	to	have	a	white	background,	but	your	design	includes	a	few	transparent	PNG	images,	and	you
don’t	want	the	background	on	those	images	to	be	white.	In	order	to	make	sure	your	design	choice	prevails,
you	would	declare:

img.myDesign	{background-color:	transparent;}

Without	this	(and	adding	classes	to	your	images),	your	semi	transparent	images	would	not	appear	semi-
transparent;	rather,	they	would	look	like	they	had	a	solid	white	background.

While	the	right	color	background	on	a	semi-transparent	image	is	a	nice	to	have,	good	contrast	between

text	and	the	text’s	background	color	is	a	must	have.	If	the	contrast	between	text	and	any	part	of	the
background	isn’t	great	enough,	the	text	will	be	illegible.	Always	ensure	the	contrast	between	the	text	and
background	is	greater	than	or	equal	to	4.5:1	for	small	text	and	3:1	for	large	text.

Declaring	both	a	color	and	a	background-color,	with	a	good	contrast,	on	your	root	element	is	generally
considered	a	good	practice.	Not	declaring	a	background	color	when	declaring	a	color	will	lead	the	CSS
validator	to	generate	warnings	such	as,	“You	have	no	background-color	with	your	color”	to
remind	you	that	author-user	color	interaction	can	occur,	and	your	rule	has	not	taken	this	possibility	into
account.	Warnings	do	not	mean	your	styles	are	invalid:	only	errors	prevent	validation.

Background	and	color	combinations
By	combining	color	and	background-color,	you	can	create	some	interesting	effects:

h1	{color:	white;	background-color:	rgb(20%,20%,20%);

				font-family:	Arial,	sans-serif;}

This	example	is	shown	in	Figure	8-2.

Figure	8-2.	A	reverse-text	effect	for	H1	elements

There	are	as	many	color	combinations	as	there	are	colors,	and	we	can’t	show	all	of	them	here.	Still,	we’ll
try	to	give	you	some	idea	of	what	you	can	do.

This	stylesheet	is	a	little	more	complicated,	as	illustrated	by	Figure	8-3,	which	is	the	result	of	the
following	code:

body	{color:	black;	background-color:	white;}

h1,	h2	{color:	yellow;	background-color:	rgb(0	51	0);}

p	{color:	#555;}

a:link	{color:	black;	background-color:	silver;}

a:visited	{color:	gray;	background-color:	white;}

Figure	8-3.	The	results	of	a	more	complicated	stylesheet

And	then	there’s	the	question	of	what	happens	when	you	apply	a	background	to	a	replaced	element.	We
already	discussed	images	with	transparent	portions,	like	a	PNG	or	WEBP.	Suppose,	though,	you	want	to
create	a	two-tone	border	around	a	JPEG.	You	can	pull	that	off	by	adding	a	background	color	and	a	little
bit	of	padding	to	your	image,	as	illustrated	in	Figure	8-4,	which	is	the	result	of	the	following	code:

img.twotone	{background-color:	red;	padding:	5px;	border:	5px	solid	gold;}

Figure	8-4.	Using	background	and	border	to	two-tone	an	image

Technically,	the	background	goes	to	the	outer	border	edge,	but	since	the	border	is	solid	and	continuous,
we	can’t	see	the	background	behind	it.	The	five	pixels	of	padding	allows	a	thin	ring	of	background	to	be
seen	between	the	image	and	its	border,	creating	the	visual	effect	of	an	“inner	border.”	This	technique
could	be	extended	to	create	more	complicated	effects	with	box	shadows	and	background	images	like
gradients,	both	of	which	we’ll	discuss	later	in	the	chapter.

Clipping	the	Background
When	you	apply	a	background	to	a	replaced	element,	such	as	an	image,	the	background	will	show	through
any	transparent	portions.	Background	colors,	by	default,	go	to	the	outer	edge	of	the	element’s	border,
showing	behind	the	border	if	the	border	is	itself	transparent,	or	if	it	has	transparent	areas	such	as	the
spaces	between	dots,	dashes,	or	lines	when	border-style	dotted`,	dashed`,	or	double	is	applied.

To	prevent	the	background	from	showing	behind	semi-	or	fully-transparent	borders,	we	can	use	the
background-clip	property.	background-clip	defines	how	far	out	an	element’s	background	will
go.

BACKGROUND-CLIP

Values [border-box	|	padding-box	|	content-box	|	text]#

Initial	value border-box

Applies	to All	elements

Computed	value As	declared

Inherited No

Animatable No

The	default	value	border-box	means	the	background	painting	area	(which	is	what	background-
clip	defines)	extends	out	to	the	outer	edge	of	the	border.	Given	this	value,	the	background	will	always
be	drawn	behind	the	visible	parts	of	the	border,	if	any.

If	you	choose	the	value	padding-box,	then	the	background	will	only	extend	to	the	outer	edge	of	the
padding	area	(which	is	also	the	inner	edge	of	the	border).	Thus,	it	won’t	be	drawn	behind	the	border.	The
value	content-box,	on	the	other	hand,	restricts	the	background	to	just	the	content	area	of	the	element.

The	effects	of	these	three	values	are	illustrated	in	Figure	8-5,	which	is	the	result	of	the	following	code:

div[id]	{color:	navy;	background:	silver;

									padding:	1em;	border:	0.5em	dashed;}

#ex01	{background-clip:	border-box;}		/*	default	value	*/

#ex02	{background-clip:	padding-box;}

#ex03	{background-clip:	content-box;}

Figure	8-5.	The	three	box-oriented	types	of	background	clipping

That	might	seem	pretty	simple,	but	there	are	some	caveats.	The	first	is	that	background-clip	has	no
effect	on	the	root	element	(in	HTML,	that’s	either	the	html	element,	or	the	body	element	if	you	haven’t
defined	any	background	styles	for	the	html	element).	This	has	to	do	with	how	the	background	painting	of
the	root	element	has	to	be	handled.

The	second	is	that	the	exact	clipping	of	the	background	area	can	be	reduced	if	the	element	has	rounded
corners,	thanks	to	the	property	border-radius	(see	Chapter	7).	This	is	basically	common	sense,
since	if	you	give	your	element	significantly	rounded	corners,	you	want	the	background	to	be	clipped	by
those	corners	instead	of	stick	out	past	them.	The	way	to	think	of	this	is	that	the	background	painting	area	is
determined	by	background-clip,	and	then	any	corners	that	have	to	be	further	clipped	by	rounded
corners	are	appropriately	clipped.

The	third	caveat	is	that	the	value	of	background-clip	can	interact	poorly	with	some	of	the	more
interesting	values	of	background-repeat,	which	we’ll	get	to	later	on.

The	fourth	is	that	background-clip	defines	the	clipping	area	of	the	background.	It	doesn’t	affect
other	background	properties.	When	it	comes	to	flat	background	colors,	that’s	a	distinction	without
meaning;	but	when	it	comes	to	background	images,	which	we’ll	talk	about	in	the	next	section,	it	can	make
a	great	deal	of	difference.

There	is	one	more	value,	text,	which	clips	the	background	to	the	text	of	the	element.	In	other	words,	the
text	is	“filled	in”	with	the	background,	and	the	rest	of	the	element’s	background	area	remains	transparent.
This	is	a	simple	way	to	add	textures	to	text,	by	“filling	in”	the	text	of	an	element	with	its	background.

The	kicker	is	that	in	order	to	see	this	effect,	you	have	to	remove	the	foreground	color	of	the	element.
Otherwise,	the	foreground	color	obscures	the	background.	Consider	the	following,	which	has	the	result
shown	in	Figure	8-6:

div	{color:	rgb(255,0,0);	background:	rgb(0,0,255);

					padding:	0	1em;	margin:	1.5em	1em;	border:	0.5em	dashed;

					font-weight:	bold;}

#ex01	{background-clip:	text;	color:	transparent;}

#ex02	{background-clip:	text;	color:	rgba(255	0	0	/	0.5);}

#ex03	{background-clip:	text;}

Figure	8-6.	Clipping	the	background	to	the	text

For	the	first	example,	the	foreground	color	is	made	completely	transparent,	and	the	blue	background	is
only	visible	where	it	intersects	with	the	text	shapes	in	the	element’s	content.	It	is	not	visible	through	the
image	inside	the	paragraph,	since	an	image’s	foreground	can’t	be	set	to	transparent.

In	the	second	example	shown	in	Figure	8-6,	the	foreground	color	has	been	set	to
rgba(255,0,0,0.5),	which	is	a	half-opaque	red.	The	text	there	is	rendered	purple,	because	the	half-
opaque	red	combines	with	the	blue	underneath.	The	borders,	on	the	other	hand,	blend	their	half-opaque
red	with	the	white	background	behind	them,	yielding	a	light	red.

In	the	third	example,	the	foreground	color	is	a	solid,	opaque	red.	The	text	and	borders	are	both	fully	red,
with	no	hint	of	the	blue	background.	It	can’t	be	seen	in	this	instance,	because	it’s	been	clipped	to	the	text.
The	foreground	just	completely	obscures	the	background.

This	technique	works	for	any	background,	including	gradient	and	image	backgrounds,	topics	which	we’ll
cover	in	a	bit.	Remember,	however:	if	the	background	for	some	reason	fails	to	be	drawn	behind	the	text,
the	transparent	text	meant	to	be	“filled”	with	the	background	will	instead	be	completely	unreadable.

WARNING
As	of	late	2022,	not	all	browsers	support	background-clip:	text	correctly.	Notably,	Blink	browsers	(Chrome	and	Edge)	require	a
-webkit-	prefix,	supporting	-webkit-background-clip:	text,	and	Firefox	had	trouble	lining	up	the	border	dashes	at	some
combinations	of	font	and	border	sizes.	Also,	since	browsers	may	not	support	the	text	value	in	the	future	(it’s	under	discussion	for	removal
from	CSS	as	we	write	this),	include	the	prefixed	and	non-prefixed	versions	of	background-clip	and	set	the	transparent	color	inside	a
@supports	feature	query	(see	XREF	HERE).

Background	Images
Having	covered	the	basics	of	background	colors,	we	turn	now	to	the	subject	of	background	images.	By
default,	images	are	tiled,	repeating	in	both	horizontal	and	vertical	directions	to	fill	up	the	entire

background	of	the	document.	This	default	CSS	behavior	created	horrific	websites	often	referred	to	as
“Geocities	1996,”	but	CSS	can	do	a	great	deal	more	than	simple	tiling	of	background	images.	It	can	be
used	to	create	subtle	beauty.	We’ll	start	with	the	basics	and	then	work	our	way	up.

Using	an	image
In	order	to	get	an	image	into	the	background	in	the	first	place,	use	the	property	background-image.

BACKGROUND-IMAGE

Values [<image>#	|	none

Initial	value none

Applies	to All	elements

Computed	value As	specified,	but	with	all	URLs	made	absolute

Inherited No

Animatable No

<image>	=	[<uri>	|	<linear-gradient>	|	<repeating-linear-gradient>	|	<radial-gradient>	|
<repeating-radial-gradient>	|	<conic-gradient>	|	<repeating-conic-gradient>]

The	default	value	of	none	means	about	what	you’d	expect:	no	image	is	placed	in	the	background.	If	you
want	a	background	image,	you	must	give	this	property	at	least	one	image	reference,	such	as	in	the
following:

body	{background-image:	url(bg23.gif);}

Due	to	the	default	values	of	other	background	properties,	this	will	cause	the	image	bg23.gif	to	be	tiled	in
the	document’s	background,	as	shown	in	Figure	8-7.	We’ll	learn	how	to	change	that	shortly.

Figure	8-7.	Applying	a	background	image	in	CSS

It’s	usually	a	good	idea	to	specify	a	background	color	to	go	along	with	your	background	image;	we’ll
come	back	to	that	concept	a	little	later	on.	(We’ll	also	talk	about	how	to	have	more	than	one	image	at	the
same	time,	but	for	now	we’re	going	to	stick	to	just	one	background	image	per	element.)

You	can	apply	background	images	to	any	element,	block-level	or	inline.	If	you	have	more	than	one
background	image,	comma	separate	them:

body	{background-image:	url(bg23.gif),	url(another_img.png);}

If	you	combine	simple	icons	with	creative	attribute	selectors,	you	can	(with	use	of	some	properties	we’ll
get	to	in	just	a	bit)	mark	when	a	link	points	to	a	PDF,	word-processor	document,	email	address,	or	other
unusual	resource,	as	shown	in	Figure	8-8,	which	is	the	result	of	the	following	code:

a[href]	{padding-left:	1em;	background-repeat:	no-repeat;}

a[href$=".pdf"]	{background-image:	url(/i/pdf-icon.png);}

a[href$=".doc"]	{background-image:	url(/i/msword-icon.png);}

a[href^="mailto:"]	{background-image:	url(/i/email-icon.png);}

Figure	8-8.	Adding	link	icons	as	background	images

It’s	true	that	you	can	add	multiple	background	images	to	an	element,	but	until	we	learn	how	to	position
each	image	and	prevent	it	from	repeating,	you	most	likely	won’t	want	to.	We’ll	cover	repeating
background	images	after	we	cover	these	necessary	properties.

Just	like	background-color,	background-image	is	not	inherited—in	fact,	not	a	single	one	of
the	background	properties	is	inherited.	Remember	also	that	when	specifying	the	URL	of	a	background
image,	it	falls	under	the	usual	restrictions	and	caveats	for	url()	values:	a	relative	URL	should	be

interpreted	with	respect	to	the	stylesheet.

Why	backgrounds	aren’t	inherited
Earlier,	we	specifically	noted	that	backgrounds	are	not	inherited.	Background	images	demonstrate	why
inherited	backgrounds	would	be	a	bad	thing.	Imagine	a	situation	where	backgrounds	were	inherited,	and
you	applied	a	background	image	to	the	body.	That	image	would	be	used	for	the	background	of	every
element	in	the	document,	with	each	element	doing	its	own	tiling,	as	shown	in	Figure	8-9.

Figure	8-9.	What	inherited	backgrounds	would	do	to	layout

Note	how	the	pattern	restarts	at	the	top	left	of	every	element,	including	the	links.	This	isn’t	what	most
authors	would	want,	and	this	is	why	background	properties	are	not	inherited.	If	you	do	want	this
particular	effect	for	some	reason,	you	can	make	it	happen	with	a	rule	like	this:

*	{background-image:	url(yinyang.png);}

Alternatively,	you	could	use	the	value	inherit	like	this:

body	{background-image:	url(yinyang.png);}

*	{background-image:	inherit;}

Good	background	practices
Images	are	laid	on	top	of	whatever	background	color	you	specify.	If	your	images	aren’t	tiled	or	have	some
non-opaque	areas,	the	background	color	will	show,	blending	the	background	color	with	the	semi-
transparent	images.	If	the	image	fails	to	load,	the	background	color	specified	will	show	instead	of	the
image.	For	this	reason,	it’s	always	a	good	idea	to	specify	a	background	color	when	using	a	background
image,	so	that	you’ll	at	least	get	a	legible	result	if	the	image	doesn’t	appear.

Background	images	can	cause	accessibility	issues.	For	example,	if	you	have	an	image	of	a	clear	blue	sky

as	a	background	image	with	dark	text,	that	is	likely	very	legible.	But	what	if	there	is	a	bird	in	the	sky?	If
dark	text	lands	on	a	dark	part	of	the	background,	that	text	will	not	be	legible.	Adding	a	drop	shadow	to	the
text	(see	Chapter	11)	or	a	list	semi-transparent	background	color	behind	all	the	text	can	reduce	the	risk	of
illegibility.

Background	Positioning
Okay,	so	we	can	put	images	in	the	background	of	an	element.	How	about	positioning	the	image	exactly
where	you	want?	No	problem!	background-position	is	here	to	help.

BACKGROUND-POSITION

Values <position>#

Initial	value 0%	0%

Applies	to Block-level	and	replaced	elements

Percentages Refer	to	the	corresponding	point	on	both	the	element	and	the	origin	image	(see	explanation	in	“Percentage	
values”)

Computed	value The	absolute	length	offsets,	if	<length>	is	specified;	otherwise,	percentage	values

Inherited No

Animatable Yes

<position>	=	[[left	|	center	|	right	|	top	|	bottom	|	<percentage>	|	<length>]	|	[left	|
center	|	right	|	<percentage>	|	<length>]	[top	|	center	|	bottom	|	<percentage>	|
<length>]	|	[center	|	[left	|	right]	[<percentage>	|	<length>]?]	&&	[center	|	[top	|
bottom]	[<percentage>	|	<length>]?]]

That	value	syntax	looks	pretty	horrific,	but	it	isn’t;	it’s	just	what	happens	when	you	try	to	formalize	the
fast-and-loose	implementations	of	a	new	technology	into	a	regular	syntax	and	then	layer	even	more
features	on	top	of	that	while	trying	to	reuse	parts	of	the	old	syntax.	(So,	okay,	kind	of	horrific.)	In	practice,
the	syntax	for	background-position	is	pretty	simple,	but	the	percent	values	can	be	a	little	difficult	to	wrap
your	head	around

NOTE
Throughout	this	section,	we’ll	be	using	the	rule	background-repeat:	no-repeat	to	prevent	tiling	of	the	background	image.
You’re	not	imagining	things:	we	haven’t	talked	about	background-repeat	yet!	We	will	soon	enough,	but	for	now,	just	accept	that	the
rule	restricts	the	background	to	a	single	image,	and	don’t	worry	about	it	until	we	move	on	to	discussing	background-repeat.

For	example,	we	can	center	a	background	image	in	the	body	element,	with	the	result	depicted	in
Figure	8-10,	which	is	the	result	of	the	following	code:

body	{background-image:	url(hazard-rad.png);

				background-repeat:	no-repeat;

				background-position:	center;}

Figure	8-10.	Centering	a	single	background	image

We	actually	placed	a	single	image	in	the	background	and	then	prevented	it	from	being	repeated	with
background-repeat	(which	is	discussed	in	an	upcoming	section).	Every	background	that	includes
an	image	starts	with	a	single	image.	This	starting	image	is	called	the	origin	image.

The	placement	of	the	origin	image	is	accomplished	with	background-position,	and	there	are
several	ways	to	supply	values	for	this	property.	First	off,	there	are	the	keywords	top,	bottom,	left,
right,	and	center.	Usually,	these	appear	in	pairs,	but	(as	the	previous	example	shows)	this	is	not
always	true.	Then	there	are	length	values,	such	as	50px	or	2cm;	the	combinations	of	keywords	and	length
values,	such	as	right	50px	bottom	2cm;	and	finally,	percentage	values,	such	as	43%.	Each	type	of
value	has	a	slightly	different	effect	on	the	placement	of	the	background	image.

Keywords
The	image	placement	keywords	are	easiest	to	understand.	They	have	the	effects	you’d	expect	from	their
names;	for	example,	top	right	would	cause	the	origin	image	to	be	placed	in	the	top-right	corner	of	the
element’s	background.	Let’s	go	back	to	the	small	yin-yang	symbol:

p	{background-image:	url(yinyang-sm.png);

				background-repeat:	no-repeat;

				background-position:	top	right;}

This	will	place	a	nonrepeated	origin	image	in	the	top-right	corner	of	each	paragraph’s	background,	and
the	result	would	be	exactly	the	same	if	the	position	were	declared	as	right	top.

This	is	because	position	keywords	can	appear	in	any	order,	as	long	as	there	are	no	more	than	two	of	them

—one	for	the	horizontal	and	one	for	the	vertical.	If	you	use	two	horizontal	(right	right)	or	two
vertical	(top	top)	keywords,	the	whole	value	is	ignored.

If	only	one	keyword	appears,	then	the	other	is	assumed	to	be	center.	So	if	you	want	an	image	to	appear
in	the	top	center	of	every	paragraph,	you	need	only	declare:

p	{background-image:	url(yinyang-sm.png);

				background-repeat:	no-repeat;

				background-position:	top;}	/*	same	as	'top	center'	*/

Percentage	values
Percentage	values	are	closely	related	to	the	keywords,	although	they	behave	in	a	more	sophisticated	way.
Let’s	say	that	you	want	to	center	an	origin	image	within	its	element	by	using	percentage	values.	That’s
straightforward	enough:

p	{background-image:	url(chrome.jpg);

			background-repeat:	no-repeat;

			background-position:	50%	50%;}

This	causes	the	origin	image	to	be	placed	such	that	the	center	of	the	image	is	aligned	with	the	center	of	its
element’s	background.	In	other	words,	the	percentage	values	apply	to	both	the	element	and	the	origin
image.	The	pixel	of	the	image	that	is	50%	from	the	top	and	50%	from	the	left	in	the	image	is	placed	50%
from	the	top	and	50%	from	the	left	of	the	element	on	which	it	was	set.

In	order	to	understand	what	that	means,	let’s	examine	the	process	in	closer	detail.	When	you	center	an
origin	image	in	an	element’s	background,	the	point	in	the	image	that	can	be	described	as	50%	50%	(the
center)	is	lined	up	with	the	point	in	the	background	that	can	be	described	the	same	way.	If	the	image	is
placed	at	0%	0%,	its	top-left	corner	is	placed	in	the	top-left	corner	of	the	element’s	background.	100%
100%	causes	the	bottom-right	corner	of	the	origin	image	to	go	into	the	bottom-right	corner	of	the
background.	Figure	8-11	contains	examples	of	those	values,	as	well	as	a	few	others,	with	the	points	of
alignment	for	each	located	at	the	center	of	the	concentric	rings.

Figure	8-11.	Various	percentage	positions

Thus,	if	you	want	to	place	a	single	origin	image	a	third	of	the	way	across	the	background	and	two-thirds
of	the	way	down,	your	declaration	would	be:

p	{background-image:	url(yinyang-sm.png);

			background-repeat:	no-repeat;

			background-position:	33%	66%;}

With	these	rules,	the	point	in	the	origin	image	that	is	one-third	across	and	two-thirds	down	from	the	top-
left	corner	of	the	image	will	be	aligned	with	the	point	that	is	farthest	from	the	top-left	corner	of	the
background.	Note	that	the	horizontal	value	always	comes	first	with	percentage	values.	If	you	were	to
switch	the	percentages	in	the	preceding	example,	the	image	would	be	placed	two-thirds	of	the	way	across
the	background	and	one-third	of	the	way	down.

If	you	supply	only	one	percentage	value,	the	single	value	supplied	is	taken	to	be	the	horizontal	value,	and
the	vertical	is	assumed	to	be	50%.	For	example:

p	{background-image:	url(yinyang-sm.png);

				background-repeat:	no-repeat;

				background-position:	25%;}

The	origin	image	is	placed	one-quarter	of	the	way	across	the	paragraph’s	background	and	halfway	down
it,	as	if	background-position:	25%	50%;	had	been	set.

Table	8-1	gives	a	breakdown	of	keyword	and	percentage	equivalencies.

Table	8-1.	Positional	equivalents

Keyword(s) Equivalent	keywords Equivalent	percentages

center center	center 50%	50%

50%

right center	right

right	center

100%	50%

100%

left center	left

left	center

0%	50%

0%

top top	center

center	top

50%	0%

bottom bottom	center

center	bottom

50%	100%

top	left left	top 0%	0%

top	right right	top 100%	0%

bottom	right right	bottom 100%	100%

bottom	left left	bottom 0%	100%

As	the	property	table	at	the	beginning	of	the	section	showed,	the	default	values	for	background-
position	are	0%	0%,	which	is	functionally	the	same	as	top	left.	This	is	why,	unless	you	set

different	values	for	the	position,	background	images	always	start	tiling	from	the	top-left	corner	of	the
element’s	background.

Length	values
Finally,	we	turn	to	length	values	for	positioning.	When	you	supply	lengths	for	the	position	of	the	origin
image,	they	are	interpreted	as	offsets	from	the	top-left	corner	of	the	element’s	background.	The	offset
point	is	the	top-left	corner	of	the	origin	image;	thus,	if	you	set	the	values	20px	30px,	the	top-left	corner
of	the	origin	image	will	be	20	pixels	to	the	right	of,	and	30	pixels	below,	the	top-left	corner	of	the
element’s	background,	as	shown	(along	with	a	few	other	length	examples)	in	Figure	8-12.	As	with
percentages,	the	horizontal	value	comes	first	with	length	values.

Figure	8-12.	Offsetting	the	background	image	using	length	measures

This	is	quite	different	than	percentage	values	because	the	offset	is	from	one	top-left	corner	to	another.	In
other	words,	the	top-left	corner	of	the	origin	image	lines	up	with	the	point	specified	in	the
background-position	declaration.

You	can	combine	length	and	percentage	values	to	get	a	“best	of	both	worlds”	effect.	Let’s	say	you	need	to
have	a	background	image	that	is	all	the	way	to	the	right	side	of	the	background	and	10	pixels	down	from
the	top.	As	always,	the	horizontal	value	comes	first:

p	{background-image:	url(yinyang.png);

				background-repeat:	no-repeat;

				background-position:	100%	10px;

				border:	1px	dotted	gray;}

For	that	matter,	you	can	get	the	same	result	by	using	right	10px,	since	you’re	allowed	to	mix
keywords	with	lengths	and	percentages.	The	syntax	enforces	axis	order	when	using	non-keyword	values;
in	other	words,	if	you	use	a	length	or	percentage	value,	then	the	horizontal	value	must	always	come	first,
and	the	vertical	must	always	come	second.	That	means	right	10px	is	fine,	whereas	10px	right	is
invalid	and	will	be	ignored	(because	right	is	not	a	valid	vertical	keyword).

Negative	values
If	you’re	using	lengths	or	percentages,	you	can	use	negative	values	to	pull	the	origin	image	outside	of	the
element’s	background.	Consider	a	document	with	a	very	large	yin-yang	symbol	for	a	background.	What	if
we	only	want	part	of	it	visible	in	the	top-left	corner	of	the	element’s	background?	No	problem,	at	least	in

theory.

Assuming	that	the	origin	image	is	300	pixels	tall	by	300	pixels	wide	and	assuming	only	the	bottom-right
third	of	the	image	should	be	visible,	we	get	the	desired	effect	(shown	in	Figure	8-13)	like	this:

body	{background-image:	url(yinyang.png);

				background-repeat:	no-repeat;

				background-position:	-200px	-200px;}

Figure	8-13.	Using	negative	length	values	to	position	the	origin	image

Or,	say	you	want	just	the	right	half	of	it	to	be	visible	and	vertically	centered	within	the	element’s
background	area:

body	{background-image:	url(yinyang.png);

				background-repeat:	no-repeat;

				background-position:	-150px	50%;}

Negative	values	will	come	into	play	later	on	as	they	are	very	useful	in	creating	gorgeous	backgrounds
with	“Conic	Gradients”.

Negative	percentages	are	also	possible,	although	they	are	somewhat	interesting	to	calculate.	The	origin
image	and	the	element	are	likely	to	be	very	different	sizes,	for	one	thing,	and	that	can	lead	to	unexpected
effects.	Consider,	for	example,	the	situation	created	by	the	following	rule	and	illustrated	in	Figure	8-14:

p	{background-image:	url(pix/yinyang.png);

				background-repeat:	no-repeat;

				background-position:	-10%	-10%;

				width:	500px;}

Figure	8-14.	Varying	effects	of	negative	percentage	values

The	rule	calls	for	the	point	outside	the	origin	image	defined	by	-10%	-10%	to	be	aligned	with	a	similar
point	for	each	paragraph.	The	image	is	300	×	300	pixels,	so	we	know	its	alignment	point	can	be
described	as	30	pixels	above	the	top	of	the	image,	and	30	pixels	to	the	left	of	its	left	edge	(effectively
-30px	and	-30px).	The	paragraph	elements	are	all	the	same	width	(500px),	so	the	horizontal
alignment	point	is	50	pixels	to	the	left	of	the	left	edge	of	their	backgrounds.	This	means	that	each	origin
image’s	left	edge	will	be	20	pixels	to	the	left	of	the	left	padding	edge	of	the	paragraphs.	This	is	because
the	-30px	alignment	point	of	the	images	lines	up	with	the	-50px	point	for	the	paragraphs.	The
difference	between	the	two	is	20	pixels.

The	paragraphs	are	of	differing	heights,	however,	so	the	vertical	alignment	point	changes	for	each
paragraph.	If	a	paragraph’s	background	area	is	300	pixels	high,	to	pick	a	semi-random	example,	then	the
top	of	the	origin	image	will	line	up	exactly	with	the	top	of	the	element’s	background,	because	both	will
have	vertical	alignment	points	of	-30px.	If	a	paragraph	is	50	pixels	tall,	then	its	alignment	point	would

be	-5px	and	the	top	of	the	origin	image	will	actually	be	25	pixels	below	the	top	of	the	background.	This
is	why	you	can	see	all	the	tops	of	the	background	images	in	Figure	8-14—the	paragraphs	are	shorter	than
the	background	image.

Changing	the	offset	edges
It’s	time	for	a	confession:	throughout	this	whole	discussion	of	background	positioning,	we’ve	been
keeping	two	things	from	you.	We	acted	as	though	the	value	of	background-position	could	have	no
more	than	two	keywords,	and	that	all	offsets	were	always	made	from	the	top-left	corner	of	the	background
area.

That	was	originally	the	case	with	CSS,	but	hasn’t	been	true	for	a	while.	When	we	include	four	keywords,
or	two	keywords	and	two	length	or	percentage	values	in	a	very	specific	pattern,	we	can	set	the	edge	from
which	the	background	image	should	be	offset.

Let’s	start	with	a	simple	example:	placing	the	origin	image	a	third	of	the	way	across	and	30	pixels	down
from	the	top-left	corner.	Using	what	we	saw	in	previous	sections,	that	would	be:

background-position:	33%	30px;

Now	let’s	do	the	same	thing	with	this	four-part	syntax:

background-position:	left	33%	top	30px;

What	this	four-part	value	says	is	“from	the	left	edge,	have	a	horizontal	offset	of	33%;	from	the	top
edge,	have	an	offset	of	30px.”

Great,	so	that’s	a	more	verbose	way	of	getting	the	default	behavior.	Now	let’s	change	things	so	the	origin
image	is	placed	a	third	of	the	way	across	and	30	pixels	up	from	the	bottom-right	corner,	as	shown	in
Figure	8-15	(which	assumes	no	repeating	of	the	background	image,	for	clarity’s	sake):

background-position:	right	33%	bottom	30px;

Figure	8-15.	Changing	the	offset	edges	for	the	origin	image

Here,	we	have	a	value	that	means	“from	the	right	edge,	have	a	horizontal	offset	of	33%;	from	the
bottom	edge,	have	an	offset	of	30px.”

Thus,	the	general	pattern	is	edge	keyword,	offset	distance,	edge	keyword,	offset	distance.	You	can	mix
the	order	of	horizontal	and	vertical	information;	that	is,	bottom	30px	right	25%	works	just	as
well	as	right	25%	bottom	30px.	However,	you	cannot	omit	either	of	the	edge	keywords;	30px
right	25%	is	invalid	and	will	be	ignored.

That	said,	you	can	omit	an	offset	distance	in	cases	where	you	want	it	to	be	zero.	So	right	bottom
30px	would	put	the	origin	image	against	the	right	edge	and	30	pixels	up	from	the	bottom	of	the
background	area,	whereas	right	25%	bottom	would	place	the	origin	image	a	quarter	of	the	way
across	from	the	right	edge	and	up	against	the	bottom.	These	are	both	illustrated	in	Figure	8-16.

Figure	8-16.	Inferred	zero-length	offsets

You	can	only	define	the	edges	of	an	element	as	offset	bases,	not	the	center.	A	value	like	center	25%
center	25px	will	be	ignored.

If	you	have	multiple	background	images	and	only	one	background	position,	all	the	images	will	be	placed
in	the	same	location.	If	you	want	to	place	them	in	different	spots,	provide	a	comma	separated	list	of
background	positions.	They	will	be	applied	to	the	images	in	order.	If	you	have	more	images	that	position
values,	the	positions	get	repeated	(as	we’ll	explore	further	later	on	in	the	chapter).

Changing	the	Positioning	Box
Now	we	know	how	to	add	an	image	to	the	background,	and	we	can	even	change	where	the	origin	image	is
placed.	But	what	if	we	want	to	place	it	with	respect	to	the	border	edge,	or	to	the	outer	content	edge,
instead	of	to	the	default	outer	padding	edge?	We	can	affect	that	using	the	property	background-
origin.

BACKGROUND-ORIGIN

Values [border-box	|	padding-box	|	content-box]#

Initial	value padding-box

Applies	to All	elements

Computed	value As	declared

Inherited No

Animatable No

This	property	probably	looks	very	similar	to	background-clip,	and	with	good	reason,	but	its	effect	is
pretty	distinct.	background-clip	defines	the	background	painting	area.background-origin
defines	the	edge	that’s	used	to	determine	placement	of	the	origin	image.	This	is	also	known	as	defining	the
background	positioning	area.

The	default,	padding-box,	means	that	the	top-left	corner	of	the	origin	image	will	be	placed	in	the	top-
left	corner	of	the	outer	edge	of	the	element’s	padding	box	(if	the	background-position	hasn’t	been
changed	from	its	default	of	top	left	or	0	0),	which	is	just	inside	the	border	area.

If	you	use	the	value	border-box,	then	the	top-left	corner	of	a	background-position:	0	0
origin	image	will	go	into	the	top-left	corner	of	the	padding	area.	That	means	the	border,	if	any,	will	be
drawn	over	the	origin	image	(assuming	the	background	painting	area	wasn’t	restricted	to	be	padding-
box	or	content-box,	that	is).

With	content-box,	you	shift	the	origin	image	to	be	placed	in	the	top-left	corner	of	the	content	area.
The	three	different	results	are	illustrated	in	Figure	8-17:

div[id]	{color:	navy;	background:	silver;

									background-image:	url(yinyang.png);

									background-repeat:	no-repeat;

									padding:	1em;	border:	0.5em	dashed;}

#ex01	{background-origin:	border-box;}

#ex02	{background-origin:	padding-box;}		/*	default	value	*/

#ex03	{background-origin:	content-box;}

Figure	8-17.	The	three	types	of	background	origins

Remember	that	this	“placed	in	the	top	left”	behavior	is	the	default	behavior,	one	you	can	change	with
background-position.	The	position	of	the	origin	image	is	calculated	with	respect	to	the	box
defined	by	background-origin:	the	border	edge,	the	padding	edge,	or	the	content	edge.	Consider,
for	example,	this	variant	on	our	previous	example,	which	is	illustrated	in	Figure	8-18:

div[id]	{color:	navy;	background:	silver;

									background-image:	url(yinyang);

									background-repeat:	no-repeat;

									background-position:	bottom	right;

									padding:	1em;	border:	0.5em	dashed;}

#ex01	{background-origin:	border-box;}

#ex02	{background-origin:	padding-box;}		/*	default	value	*/

#ex03	{background-origin:	content-box;}

Figure	8-18.	The	three	types	of	background	origins,	redux

Where	things	can	get	really	interesting	is	if	you’ve	explicitly	defined	your	background	origin	and	clipping
to	be	different	boxes.	Imagine	you	have	the	origin	placed	with	respect	to	the	padding	edge	but	the
background	clipped	to	the	content	area,	or	vice	versa.	This	would	have	the	results	shown	in	Figure	8-19,
as	resulting	from	the	following:

	#ex01	{background-origin:	padding-box;

								background-clip:	content-box;}

	#ex02	{background-origin:	content-box;

								background-clip:	padding-box;}

Figure	8-19.	When	origin	and	clipping	diverge

In	the	first	example	shown	in	Figure	8-18,	the	edges	of	the	origin	image	are	clipped	because	it	is
positioned	with	respect	to	the	padding	box,	but	the	background	painting	area	has	been	clipped	at	the	edge
of	the	content	box.	In	the	second	example,	the	origin	image	is	placed	with	respect	to	the	content	box,	but
the	painting	area	extends	into	the	padding	box.	Thus,	the	origin	image	is	visible	all	the	way	down	to	the
bottom	padding	edge,	even	though	its	top	is	not	placed	against	the	top	padding	edge.

Background	Repeating	(or	Lack	Thereof)
There	are	an	infinite	number	of	viewport	sizes.	Fortunately	we	can	tile	background	images,	meaning	we
don’t	need	to	create	backgrounds	of	multiple	sizes	or	serve	large-format	(and	file	size)	wallpaper	to
small-screen	low-bandwidth	devices.	For	the	times	you	want	to	repeat	an	image	in	a	specific	way,	or	for
when	you	don’t	want	to	repeat	it	at	all,	we	have	background-repeat.

BACKGROUND-REPEAT

Values <repeat-style>#

Expansion <repeat-style>	=	repeat-x	|	repeat-y	|	[repeat	|	space	|	round	|	no-repeat]{1,2}

Initial	value repeat

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

The	value	syntax	for	background-repeat	looks	a	bit	complicated	at	first	glance,	but	it’s	really	fairly
straightforward.	In	fact,	at	its	base,	it’s	just	four	values:	repeat,	no-repeat,	space,	and	round.
The	other	two,	repeat-x	and	repeat-y,	are	considered	to	be	shorthand	for	combinations	of	the
others.	Table	8-2	shows	how	they	break	down.

If	two	values	are	given,	the	first	applies	in	the	horizontal	direction,	and	the	second	in	the	vertical.	If	there
is	just	one	value,	it	applies	in	both	the	horizontal	and	vertical	directions,	with	the	exception,	as	shown	in
Table	8-2,	of	repeat-x	and	repeat-y.

Table	8-2.	Repeat	keyword	
equivalents

Single	keyword Equivalent	keywords

repeat-x repeat	no-repeat

repeat-y no-repeat	repeat

repeat repeat	repeat

no-repeat no-repeat	no-repeat

space space	space

round round	round

As	you	might	guess,	repeat	by	itself	causes	the	image	to	tile	infinitely	in	all	directions.	repeat-x	and
repeat-y	cause	the	image	to	be	repeated	in	the	horizontal	or	vertical	directions,	respectively,	and	no-

repeat	prevents	the	image	from	tiling	along	a	given	axis.	If	you	have	more	than	one	image,	each	with
different	repeat	patterns,	provide	a	comma	separated	list	of	values.

We	said	“all	directions”	rather	than	“both	directions”	because	a	background-position	may	have
put	the	initial	repeating	image	somewhere	other	than	the	top	left	corner	of	the	clip	box.	With	repeat,	the
image	repeats	in	all	directions.

By	default,	the	background	image	will	start	from	the	top-left	corner	of	an	element.	Therefore,	the
following	rules	will	have	the	effect	shown	in	Figure	8-20:

body	{background-image:	url(yinyang-sm.png);

						background-repeat:	repeat-y;}

Figure	8-20.	Tiling	the	background	image	vertically

Let’s	assume,	though,	that	you	want	the	image	to	only	repeat	across	the	top	of	the	document.	Rather	than
creating	a	special	image	with	a	whole	lot	of	blank	space	underneath,	you	can	just	make	a	small	change	to
that	last	rule:

body	{background-image:	url(yinyang-sm.png);

						background-repeat:	repeat-x;}

As	Figure	8-21	shows,	the	image	is	repeated	along	the	x	axis	(that	is,	horizontally)	from	its	starting
position—in	this	case,	the	top-left	corner	of	the	body	element’s	background	area.

Figure	8-21.	Tiling	the	background	image	horizontally

Finally,	you	may	not	want	to	repeat	the	background	image	at	all.	In	this	case,	you	use	the	value	no-
repeat:

body	{background-image:	url(yinyang-sm.png);

						background-repeat:	no-repeat;}

With	this	tiny	image,	the	no-repeat	value	may	not	seem	terribly	useful,	but	it	is	the	most	common
value,	and	unfortunately	not	the	default.

Let’s	try	it	again	with	a	much	bigger	symbol,	as	shown	in	Figure	8-22,	which	is	the	result	of	the	following
code:

body	{background-image:	url(yinyang.png);

						background-repeat:	no-repeat;}

Figure	8-22.	Placing	a	single	large	background	image

The	ability	to	control	the	repeat	direction	dramatically	expands	the	range	of	possible	effects.	For
example,	let’s	say	you	want	a	triple	border	on	the	left	side	of	each	h1	element	in	your	document.	You	can

take	that	concept	further	and	decide	to	set	a	wavy	border	along	the	top	of	each	h2	element.	The	image	is
colored	in	such	a	way	that	it	blends	with	the	background	color	and	produces	the	wavy	effect	shown	in
Figure	8-23,	which	is	the	result	of	the	following	code:

h1	{background-image:	url(triplebor.gif);	background-repeat:	repeat-y;}

h2	{background-image:	url(wavybord.gif);	background-repeat:	repeat-x;

				background-color:	#CCC;}

Figure	8-23.	Bordering	elements	with	background	images

TIP
There	are	better	ways	to	create	a	wavy-border	effect—notably,	the	border	image	properties	explored	in	the	section	“Image	Borders”	found
in	Chapter	7,	“Padding,	Borders,	Outlines,	and	Margins.”

Repeating	and	positioning
In	the	previous	section,	we	explored	the	values	repeat-x,	repeat-y,	and	repeat,	and	how	they
affect	the	tiling	of	background	images.	In	each	case,	the	tiling	pattern	always	started	from	the	top-left
corner	of	the	element’s	background.	That’s	because,	as	we’ve	seen,	the	default	values	for
background-position	are	0%	0%.	Given	that	you	know	how	to	change	the	position	of	the	origin
image,	you	need	to	know	out	how	user	agents	will	handle	it.

It	will	be	easier	to	show	an	example	and	then	explain	it.	Consider	the	following	markup,	which	is
illustrated	in	Figure	8-24:

p	{background-image:	url(yinyang-sm.png);

				background-position:	center;

				border:	1px	dotted	gray;}

p.c1	{background-repeat:	repeat-y;}

p.c2	{background-repeat:	repeat-x;}

Figure	8-24.	Centering	the	origin	image	and	repeating	it

So	there	you	have	it:	stripes	running	through	the	center	of	the	elements.	It	may	look	wrong,	but	it	isn’t.

The	examples	shown	in	Figure	8-24	are	correct	because	the	origin	image	has	been	placed	in	the	center	of
the	first	p	element.	TIn	the	first	example,	they’re	tiled	along	the	y	axis	in	both	directions—in	other
words,	both	up	and	down,	starting	from	the	origin	image	at	the	center.	For	the	second	paragraph,	the
images	are	tiled	along	the	x-axis,	starting	from	the	origin	image,	and	repeated	in	both	the	right	and	left.
You	may	notice	the	first	and	last	repetitions	are	slightly	cut	off,	whereas	when	we	started	with
background-position:	0	0	only	the	last	image,	or	rightmost	and	bottom-most	images,	risked
being	clipped.

Setting	an	image	in	the	center	of	the	p	and	then	letting	it	fully	repeat	will	cause	it	to	tile	in	all	four
directions:	up,	down,	left,	and	right.	The	only	difference	background-position	makes	is	in	where
the	tiling	starts.	When	the	background	image	repeats	from	the	center,	the	grid	of	yin-yang	symbols	is

centered	within	the	element,	resulting	in	consistent	clipping	along	the	edges.	When	the	tiling	begins	at	the
top-left	corner	of	the	padding	area,	the	clipping	is	not	consistent	around	the	edges.	The	spacing	and
rounding	values,	on	the	other	hand,	prevent	image	clipping,	but	have	their	own	drawbacks.

NOTE
In	case	you’re	wondering,	there	are	no	single-direction	values	such	as	repeat-left	or	repeat-up.

Spacing	and	rounding
Beyond	the	basic	tiling	patterns	we’ve	seen	thus	far,	background-repeat	has	the	ability	to	exactly
fill	out	the	background	area.	Consider,	for	example,	what	happens	if	we	use	the	value	space	to	define
the	tiling	pattern,	as	shown	in	Figure	8-25:

div#example	{background-image:	url(yinyang.png);

												background-repeat:	space;}

Figure	8-25.	Tiling	the	background	image	with	filler	space

If	you	look	closely,	you’ll	notice	that	there	are	background	images	in	each	of	the	four	corners	of	the
element.	Furthermore,	the	images	are	spaced	out	so	that	they	occur	at	regular	intervals	in	both	the
horizontal	and	vertical	directions.

This	is	what	space	does:	it	determines	how	many	repetitions	will	fully	fit	along	a	given	axis,	and	then
spaces	them	out	at	regular	intervals	so	that	the	repetitions	go	from	one	edge	of	the	background	to	another.
This	doesn’t	guarantee	a	regular	square	grid,	where	the	intervals	are	all	the	same	both	horizontally	and
vertically.	It	just	means	that	you’ll	have	what	look	like	columns	and	rows	of	background	images.	While	no
image	will	be	clipped,	unless	there	isn’t	engouh	room	for	even	one	iteration	(as	can	happen	with	very
large	background	images),	this	value	often	results	in	different	horizontal	and	vertical	separations.	You	can
see	some	examples	of	this	in	Figure	8-26.

Figure	8-26.	Spaced-out	tiling	with	different	intervals

NOTE
Keep	in	mind	that	any	background	color,	or	the	“backdrop”	of	the	element	(that	is,	the	combined	background	of	the	element’s	ancestors)
will	show	through	the	gaps	between	space-separated	background	images.

What	happens	if	you	have	a	really	big	image	that	won’t	fit	more	than	once,	or	even	once,	along	the	given
axis?	Then	it’s	drawn	once,	and	placed	as	determined	by	the	value	of	background-position,	and	clipped	as
necessary.	The	flip	side	of	that	is	that	if	more	than	one	repetition	of	the	image	will	fit	along	an	axis,	then
the	value	of	background-position	is	ignored	along	that	axis.	An	example	of	this	is	shown	in
Figure	8-27,	and	created	using	the	following	code:

div#example	{background-image:	url(yinyang.png);

												background-position:	center;

												background-repeat:	space;}

Figure	8-27.	Spacing	along	one	axis	but	not	the	other

Notice	that	the	images	are	spaced	horizontally,	and	thus	override	the	center	position	along	that	axis,	but
are	centered	vertically	and	not	spaced	(because	there	isn’t	enough	room	to	do	so).	That’s	the	effect	of
space	overriding	center	along	one	axis,	but	not	the	other.

By	contrast,	the	value	round	will	most	likely	result	in	some	scaling	of	the	background	image	as	it	is
repeated,	and	(strangely	enough)	it	will	not	override	background-position.	If	an	image	won’t
quite	repeat	so	that	it	goes	from	edge	to	edge	of	the	background,	then	it	will	be	scaled	up	or	down	in
order	to	make	it	fit	a	whole	number	of	times.

Furthermore,	the	images	can	be	scaled	differently	along	each	axis.	It	is	the	only	background	property	that
will	alter	an	image’s	intrinsic	aspect	ratio	automatically	if	needed.	While	background-size	can	also
lead	to	a	change	in	the	aspect	ratio,	distorting	the	image,	this	only	happens	by	explicit	direction	from	the
author.)	You	can	see	an	example	of	this	in	Figure	8-28,	which	is	the	result	of	the	following	code:

body	{background-image:	url(yinyang.png);

						background-position:	top	left;

						background-repeat:	round;}

Figure	8-28.	Tiling	the	background	image	with	scaling

Note	that	if	you	have	a	background	850	pixels	wide	and	a	horizontally	rounded	image	that’s	300	pixels
wide,	then	a	browser	can	decide	to	use	three	images	and	scale	them	down	to	fit	three-across	into	the	850
pixel	area.	(Thus	making	each	instance	of	the	image	283.333	pixels	wide.)	With	space,	it	would	have	to
use	two	images	and	put	250	pixels	of	space	between	them,	but	round	is	not	so	constrained.

Here’s	the	interesting	wrinkle:	while	round	will	resize	the	background	images	so	that	you	can	fit	a
whole	number	of	them	into	the	background,	it	will	not	move	them	to	make	sure	that	they	actually	touch	the
edges	of	the	background.	In	other	words,	the	only	way	to	make	sure	your	repeating	pattern	fits	and	no
background	images	are	clipped	is	to	put	the	origin	image	in	a	corner.	If	the	origin	image	is	anywhere	else,
clipping	will	occur,	as	illustrated	in	Figure	8-29,	which	is	the	result	of	the	following	code:

body	{background-image:	url(yinyang.png);

						background-position:	center;

						background-repeat:	round;}

Figure	8-29.	Rounded	background	images	that	are	clipped

The	images	are	still	scaled	so	that	they	would	fit	into	the	background	positioning	area	a	whole	number	of
times.	They	just	aren’t	repositioned	to	actually	do	so.	Thus,	if	you’re	going	to	use	round	and	you	don’t
want	to	have	any	clipped	background	tiles,	make	sure	you’re	starting	from	one	of	the	four	corners	(and
make	sure	the	background	positioning	and	painting	areas	are	the	same;	see	the	section	“Tiling	and
clipping”	for	more).

Tiling	and	clipping
If	you	recall,	background-clip	can	alter	the	area	in	which	the	background	is	drawn,	and
background-origin	determines	the	placement	of	the	origin	image.	So	what	happens	when	you’ve
made	the	clipping	area	and	the	origin	area	different,	and	you’re	using	either	space	or	round	for	the
tiling	pattern?

The	basic	answer	is	that	if	your	values	for	background-origin	and	background-clip	aren’t
the	same,	clipping	will	happen.	This	is	because	space	and	round	are	calculated	with	respect	to	the
background	positioning	area,	not	the	painting	area.	Some	examples	of	what	can	happen	are	shown	in
Figure	8-30.

Figure	8-30.	Clipping	due	to	mismatched	clip	and	origin	values

As	for	the	best	combination	of	values	to	use,	that’s	a	matter	of	opinion	and	circumstance.	It’s	likely	that	in
most	cases,	setting	both	background-origin	and	background-clip	to	padding-box	will	get
you	the	results	you	desire.	If	you	plan	to	have	borders	with	see-through	bits,	though,	then	border-box
might	be	a	better	choice.

Getting	Attached
Now	you	know	how	to	place	the	origin	image	for	the	background	anywhere	in	the	background	of	an
element,	and	you	know	how	to	control	(to	a	large	degree)	how	it	tiles.	As	you	may	have	realized	already,
placing	an	image	in	the	center	of	the	body	element	could	mean,	given	a	sufficiently	long	document,	that	the
background	image	won’t	be	initially	visible	to	the	reader.	After	all,	a	browser	is	a	viewport	providing	a
window	onto	the	document.	If	the	document	is	too	long	to	be	completely	shown	in	the	viewport,	then	the
user	can	scroll	back	and	forth	through	the	document.	The	center	of	the	body	could	be	two	or	three
“screens”	below	the	beginning	of	the	document,	or	just	far	enough	down	to	push	most	of	the	origin	image
beyond	the	bottom	of	the	browser	window.

Furthermore,	if	the	origin	image	is	initially	visible,	by	default	it	scrolls	with	the	document—	vanishing
when	the	user	scrolls	beyond	the	location	of	the	image.	Never	fear:	there	is	a	way	to	prevent	the
background	image	from	scrolling	out	of	view.

BACKGROUND-ATTACHMENT

Values [scroll	|	fixed	|	local]#

Initial	value scroll

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

Using	the	property	background-attachment,	you	can	declare	the	origin	image	to	be	fixed	with
respect	to	the	viewing	area	and	therefore	immune	to	the	effects	of	scrolling:

body	{background-image:	url(yinyang.png);

				background-repeat:	no-repeat;

				background-position:	center;

				background-attachment:	fixed;}

Doing	this	has	two	immediate	effects.	The	first	is	that	the	origin	image	does	not	scroll	along	with	the
document.	The	second	is	that	the	placement	of	the	origin	image	is	determined	by	the	size	of	the	viewport,

not	the	size	(or	placement	within	the	viewport)	of	the	element	that	contains	it.	Figure	8-31	shows	the
image	still	sitting	in	the	center	of	the	viewport,	even	though	the	document	has	been	scrolled	partway
through	the	text.

Figure	8-31.	The	centering	continues	to	hold

The	element-specific	version	of	fixed	is	local.	In	this	case,	though,	the	effect	is	only	seen	when	an
element’s	content	(rather	than	the	whole	document)	has	to	be	scrolled.	This	is	tricky	to	grasp	at	first.
Consider	the	following,	where	background-attachment	is	deafulting	to	scroll:

aside	{background-image:	url(yinyang.png);

				background-position:	top	right;

				max-height:	20em;

				overflow:	scroll;}

In	this	situation,	if	the	content	of	an	aside	is	taller	than	20	em,	the	overflowed	content	is	not	visible,	but
can	accessed	using	a	scrollbar.	The	background	image,	however,	will	not	scroll	with	the	content.	It	will
instead	stay	in	the	top-right	corner	of	the	element	box.

By	adding	background-attachment:	local,	the	image	is	attached	to	the	local	context.	The
visual	effect	is	rather	like	an	iframe,	if	you	have	any	experience	with	those.	Figure	8-32	shows	the

results	of	the	previous	code	sample	and	the	following	code	side	by	side:

aside	{background-image:	url(yinyang.png);

				background-position:	top	right;

				background-attachment:	local;	/*	attaches	to	content	*/

				max-height:	20em;

				overflow:	scroll;}

Figure	8-32.	Default-attach	versus	local-attach

There	is	one	other	value	for	background-attachment:	the	default	value	scroll.	As	you	might
expect,	this	causes	the	background	image	to	scroll	along	with	the	rest	of	the	document	when	viewed	in	a
web	browser,	and	it	doesn’t	necessarily	change	the	position	of	the	origin	image	as	the	window	is	resized.
If	the	document	width	is	fixed	(perhaps	by	assigning	an	explicit	width	to	the	body	element),	then
resizing	the	viewing	area	won’t	affect	the	placement	of	a	scroll-attachment	origin	image	at	all.

Useful	side	effects
In	technical	terms,	when	a	background	image	has	been	fixed,	it	is	positioned	with	respect	to	the	viewing
area,	not	the	element	that	contains	it.	However,	the	background	will	be	visible	only	within	its	containing
element.	Aligning	images	to	the	viewport,	rather	than	the	element,	can	be	used	to	our	advantage.

Let’s	say	you	have	a	document	with	a	tiled	background	that	actually	looks	like	it’s	tiled,	and	both	h1	and
h2	elements	with	the	same	pattern,	only	in	a	different	color.	Both	the	body	and	heading	elements	are	set
to	have	fixed	backgrounds,	resulting	in	something	like	Figure	8-33,	which	is	the	result	of	the	following
code:

body	{background-image:	url(grid1.gif);	background-repeat:	repeat;

				background-attachment:	fixed;}

h1,	h2	{background-image:	url(grid2.gif);	background-repeat:	repeat;

				background-attachment:	fixed;}

This	neat	trick	is	made	possible	because	when	a	background’s	attachment	is	fixed,	the	origin	element	is
positioned	with	respect	to	the	viewport.	Thus,	both	background	patterns	begin	tiling	from	the	top-left
corner	of	the	viewport,	not	from	the	individual	elements.	For	the	body,	you	can	see	the	entire	repeat
pattern.	For	the	h1,	however,	the	only	place	you	can	see	its	background	is	in	the	padding	and	content	of
the	h1	itself.	Since	both	background	images	are	the	same	size,	and	they	have	precisely	the	same	origin,
they	appear	to	line	up,	as	shown	in	Figure	8-33.

Figure	8-33.	Perfect	alignment	of	backgrounds

This	capability	can	be	used	to	create	some	very	sophisticated	effects.	One	of	the	most	famous	examples	is
the	“complexspiral	distorted”	demonstration	(http://bit.ly/meyer-complexspiral),	shown	in	Figure	8-34.

http://bit.ly/meyer-complexspiral

Figure	8-34.	The	complexspiral	distorted

The	visual	effects	are	caused	by	assigning	different	fixed-attachment	background	images	to	non-body
elements.	The	entire	demo	is	driven	by	one	HTML	document,	four	JPEG	images,	and	a	stylesheet.
Because	all	four	images	are	positioned	in	the	top-left	corner	of	the	browser	window	but	are	visible	only
where	they	intersect	with	their	elements,	the	images	line	up	to	create	the	illusion	of	translucent	rippled
glass.	(Now	we	can	use	SVG	filters	for	these	sorts	of	special	effects,	but	fixed-attachment	backgrounds
made	creating	faux	filters	possible	back	in	2002.)

It	is	also	the	case	that	in	paged	media,	such	as	printouts,	every	page	generates	its	own	viewport.
Therefore,	a	fixed-attachment	background	should	appear	on	every	page	of	the	printout.	This	could	be	used
for	effects	such	as	watermarking	all	the	pages	in	a	document.

Sizing	Background	Images
Thus	far,	we’ve	taken	images	of	varying	sizes	and	dropped	them	into	element	backgrounds	to	be	repeated
(or	not),	positioned,	clipped,	and	attached.	In	every	case,	we	just	took	the	image	at	whatever	intrinsic	size
it	was	(with	the	automated	exception	of	round	repeating).	Ready	to	actually	change	the	size	of	the	origin
image	and	all	the	tiled	images	that	spawn	from	it?

BACKGROUND-SIZE

Values [[<length>	|	<percentage>	|	auto]{1,2}	|	cover	|	contain]#

Initial	value auto

Applies	to All	elements

Computed	value As	declared,	except	all	lengths	made	absolute	and	any	missing	auto	“keywords”	added

Inherited No

Animatable Yes

Let’s	start	by	explicitly	resizing	a	background	image.	We’ll	drop	in	an	image	that’s	200	×	200	pixels	and
then	resize	it	to	be	twice	as	big,	as	shown	in	Figure	8-35,	which	is	the	result	of	the	following	code:

main	{background-image:	url(yinyang.png);

				background-repeat:	no-repeat;

				background-position:	center;

				background-size:	400px	400px;}

Figure	8-35.	Resizing	the	origin	image

With	background-size,	we	can	resize	the	origin	image	to	be	smaller.	We	can	size	it	using	em,	pixels,
viewport	widths,	or	any	length	unit,	or	a	combination	thereof.	We	can	even	distort	it	by	changing	its	size.
The	following	illustrates	the	results	when	changing	the	previous	code	sample	to	use	background-
size:	400px	4em,	with	both	repeated	and	non-repeated	backgrounds.

Figure	8-36.	Distorting	the	origin	image	by	resizing	it

As	Figure	8-36	illustrates,	when	there	are	two	values	for	background-size,	the	first	is	the	horizontal
size	and	the	second	is	the	vertical,	and	also	that	if	you	allow	the	image	to	repeat,	then	all	the	repeated
images	will	be	the	same	size	as	the	origin	image.

Percentages	are	a	little	more	interesting.	If	you	declare	a	percentage	value,	then	it’s	calculated	with

respect	to	the	background	positioning	area;	that	is,	the	area	defined	by	background-origin,	and	not
by	background-clip.	Suppose	you	want	an	image	that’s	half	as	wide	and	half	as	tall	as	its
background	positioning	area,	as	shown	in	Figure	8-37:

background-size:	50%	50%;

Figure	8-37.	Resizing	the	origin	image	with	percentages

And	yes,	you	can	mix	lengths	and	percentages:

background-size:	25px	100%;

NOTE
Negative	length	and	percentage	values	are	not	permitted	for	background-size.

Now,	what	about	the	default	value	of	auto?	First	off,	in	a	case	where	the	there’s	only	one	value,	it’s
taken	for	the	horizontal	size,	and	the	vertical	size	is	set	to	auto.	(Thus	background-size:	auto	is
equivalent	to	background-size:	auto	auto.)	If	you	want	to	size	the	origin	image	vertically	and
leave	the	horizontal	size	to	be	automatic,	thus	preserving	the	intrinsic	aspect	ratio	of	the	image,	you	have
to	write	it	explicitly,	like	this:

background-size:	auto	333px;

In	many	ways,	auto	in	background-size	acts	a	lot	like	the	auto	values	of	height	and	width
(also	block-size	and	inline-size)	act	when	applied	to	replaced	elements	such	as	images.	That	is
to	say,	you’d	expect	roughly	similar	results	from	the	following	two	rules,	if	they	were	applied	to	the	same

image	in	different	contexts:

img.yinyang	{width:	300px;	height:	auto;}

main	{background-image:	url(yinyang.png);

				background-repeat:	no-repeat;

				background-size:	300px	auto;}

Covering	and	containing
Now	for	some	real	fun!	Suppose	you	have	an	image	that	you	want	to	cover	the	entire	background	of	an
element,	and	you	don’t	care	if	parts	of	it	stick	outside	the	background	painting	area.	In	this	case,	you	can
use	cover:

main	{background-image:	url(yinyang.png);

				background-position:	center;

				background-size:	cover;}

This	scales	the	origin	image	so	that	it	completely	covers	the	background	positioning	area	while	still
preserving	its	intrinsic	aspect	ratio,	assuming	it	has	one.	You	can	see	an	example	of	this	in	Figure	8-38,
where	a	200	×	200	pixel	image	is	scaled	up	to	cover	the	background	of	an	800	×	400	pixel	element,
which	is	the	result	of	the	following	code:

main	{width:	800px;	height:	400px;

				background-image:	url(yinyang.png);

				background-position:	center;

				background-size:	cover;}

Note	that	there	was	no	background-repeat	in	that	example.	That’s	because	we	expect	the	image	to
fill	out	the	entire	background,	so	whether	it’s	repeated	or	not	doesn’t	really	matter.

You	can	also	see	that	cover	is	very	much	different	than	100%	100%.	If	we’d	used	100%	100%,	then
the	origin	image	would	have	been	stretched	to	be	800	pixels	wide	by	400	pixels	tall.	Instead,	cover
made	it	800	pixels	wide	and	tall,	then	centered	the	image	inside	the	background	positioning	area.	This	is
the	same	as	if	we’d	said	100%	auto	in	this	particular	case,	but	the	beauty	of	cover	is	that	it	works
regardless	of	whether	your	element	is	wider	than	it	is	tall,	or	taller	than	it	is	wide.

Figure	8-38.	Covering	the	background	with	the	origin	image

By	contrast,	contain	will	scale	the	image	so	that	it	fits	exactly	inside	the	background	positioning	area,
even	if	that	leaves	some	of	the	rest	of	the	background	showing	around	it.	This	is	illustrated	in	Figure	8-39,
which	is	the	result	of	the	following	code:

main	{width:	800px;	height:	400px;

				background-image:	url(yinyang.png);

				background-repeat:	no-repeat;

				background-position:	center;

				background-size:	contain;}

Figure	8-39.	Containing	the	origin	image	within	the	background

In	this	case,	since	the	element	is	shorter	than	it	is	tall,	the	origin	image	was	scaled	so	it	was	as	tall	as	the
background	positioning	area,	and	the	width	was	scaled	to	match,	just	as	if	we’d	declared	auto	100%.	If
an	element	is	taller	than	it	is	wide,	then	contain	acts	like	100%	auto.

You’ll	note	that	we	brought	no-repeat	back	to	the	example	so	that	things	wouldn’t	become	too	visually
confusing.	Removing	that	declaration	would	cause	the	background	to	repeat,	which	is	no	big	deal	if	that’s
what	you	want.	The	result	is	shown	in	Figure	8-40.

Figure	8-40.	Repeating	a	contained	origin	image

Always	remember:	the	sizing	of	cover	and	contain	images	is	always	with	respect	to	the	background
positioning	area,	which	is	defined	by	background-origin.	This	is	true	even	if	the	background
painting	area	defined	by	background-clip	is	different!	Consider	the	following	rules,	which	are
depicted	in	Figure	8-41:

div	{border:	1px	solid	red;

					background:	url(yinyang-sm.png)	center	no-repeat	green;}

					/*	that’s	shorthand	'background',	explained	in	the	next	section	*/

.cover	{background-size:	cover;}

.contain	{background-size:	contain;}

.clip-content	{background-clip:	content-box;}

.clip-padding	{background-clip:	padding-box;}

.origin-content	{background-origin:	content-box;}

.origin-padding	{background-origin:	padding-box;}

Figure	8-41.	Covering,	containing,	positioning,	and	clipping

Yes,	you	can	see	background	color	around	the	edges	of	some	of	those,	and	others	get	clipped.	That’s	the
difference	between	the	painting	area	and	the	positioning	area.	You’d	think	that	cover	and	contain
would	be	sized	with	respect	to	the	painting	area,	but	they	aren’t.	Keep	that	firmly	in	mind	whenever	you
use	these	values.

If	you	have	more	than	one	background	image,	with	different	values	for	position,	repeat,	or	size,	include	a
comma	separated	list	of	values.	Each	value	in	a	list	will	be	associated	with	the	image	in	that	position	in
the	list.	If	there	are	more	values	than	images,	the	extra	values	are	ignored.	If	there	are	fewer,	the	list	is
repeated.	You	can	only	set	one	background	color,	though.

NOTE
In	this	section,	we	used	raster	images	(GIFs,	to	be	precise)	even	though	they	tend	to	look	horrible	when	scaled	up	and	represent	a	waste	of
network	resources	when	scaled	down.	(We	did	this	so	that	it	would	be	extra	obvious	when	lots	of	up-scaling	was	happening.)	This	is	an
inherent	risk	in	scaling	background	raster	images.	On	the	other	hand,	you	can	just	as	easily	use	SVGs	as	background	images,	and	they	scale
up	or	down	with	no	loss	of	quality	or	waste	of	bandwidth.	If	you’re	going	to	be	scaling	a	background	image	and	it	doesn’t	have	to	be	a
photograph,	strongly	consider	using	SVG.

Bringing	It	All	Together
As	is	often	the	case	with	thematic	areas	of	CSS,	the	background	properties	can	all	be	brought	together	in	a
single	shorthand	property:	background.	Whether	you	might	want	to	do	that	is	another	question	entirely.

BACKGROUND

Values [<bg-layer>	,]*	<final-bg-layer>

Initial	value Refer	to	individual	properties

Applies	to All	elements

Percentages Refer	to	individual	properties

Computed	value Refer	to	individual	properties

Inherited No

Animatable See	individual	properties

<bg-layer>	=	<bg-image>	ǁ	<position>	[/	<bg-size>]?	ǁ	<repeat-style>	ǁ	<attachment>	ǁ
<box>	ǁ	<box>	
<final-bg-layer>	=	<bg-image>	ǁ	<position>	[/	<bg-size>]?	ǁ	<repeat-style>	ǁ	<attachment>	ǁ
<box>	ǁ	<box>	ǁ	<background-color>

The	syntax	here	can	get	a	little	confusing.	Let’s	start	simple	and	work	our	way	up	from	there.

First	off,	the	following	statements	are	all	equivalent	to	each	other	and	will	have	the	effect	shown	in
Figure	8-42:

body	{background-color:	white;

						background-image:	url(yinyang.png);

						background-position:	top	left;

						background-repeat:	repeat-y;

						background-attachment:	fixed;

						background-origin:	padding-box;

						background-clip:	border-box;

						background-size:	50%	50%;}

body	{background:

				white	url(yinyang.png)	repeat-y	top	left/50%	50%	fixed

					padding-box	border-box;}

body	{background:

				fixed	url(yinyang.png)	padding-box	border-box	white	repeat-y

					top	left/50%	50%;}

body	{background:

				url(yinyang.png)	top	left/50%	50%	padding-box	white	repeat-y

				fixed	border-box;}

Figure	8-42.	Using	shorthand

You	can	mostly	mix	up	the	order	of	the	values	however	you	like,	but	there	are	three	restrictions.	The	first
is	that	any	background-size	value	must	come	immediately	after	the	background-position
value,	and	must	be	separated	from	it	by	a	solidus	(/,	the	“forward	slash”).	Additionally,	within	those
values,	the	usual	restrictions	apply:	the	horizontal	value	comes	first,	and	the	vertical	value	comes	second,
assuming	that	you’re	supplying	axis-derived	values	(as	opposed	to,	say,	cover).

The	last	restriction	is	that	if	you	supply	values	for	both	background-origin	and	background-
clip,	the	first	of	the	two	you	list	will	be	assigned	to	background-origin,	and	the	second	to
background-clip.	That	means	that	the	following	two	rules	are	functionally	identical:

body	{background:

				url(yinyang.png)	top	left/50%	50%	padding-box	border-box	white

					repeat-y	fixed;}

body	{background:

				url(yinyang.png)	top	left/50%	50%	padding-box	white	repeat-y

					fixed	border-box;}

Related	to	that,	if	you	only	supply	one	such	value,	it	sets	both	background-origin	and
background-clip.	Thus,	the	following	shorthand	sets	both	the	background	positioning	area	and	the
background	painting	area	to	the	padding	box:

body	{background:

				url(yinyang.png)	padding-box	top	left/50%	50%	border-box;}

As	is	the	case	for	shorthand	properties,	if	you	leave	out	any	values,	the	defaults	for	the	relevant	properties
are	filled	in	automatically.	Thus,	the	following	two	are	equivalent:

body	{background:	white	url(yinyang.png;}

body	{background:	white	url(yinyang.png)	transparent	0%	0%/auto	repeat

						scroll	padding-box	border-box;}

Even	better,	there	are	no	required	values	for	background—as	long	as	you	have	at	least	one	value
present,	you	can	omit	the	rest.	It’s	possible	to	set	just	the	background	color	using	the	shorthand	property,
which	is	a	very	common	practice:

body	{background:	white;}

On	that	note,	remember	that	background	is	a	shorthand	property,	and,	as	such,	its	default	values	can
obliterate	previously	assigned	values	for	a	given	element.	For	example:

h1,	h2	{background:	gray	url(thetrees.jpg)	center/contain	repeat-x;}

h2	{background:	silver;}

Given	these	rules,	h1	elements	will	be	styled	according	to	the	first	rule.	h2	elements	will	be	styled
according	to	the	second,	which	means	they’ll	just	have	a	flat	silver	background.	No	image	will	be	applied
to	h2	backgrounds,	let	alone	centered	and	repeated	horizontally.	It	is	more	likely	that	the	author	meant	to

do	this:

h1,	h2	{background:	gray	url(thetrees.jpg)	center/contain	repeat-x;}

h2	{background-color:	silver;}

This	lets	the	background	color	be	changed	without	wiping	out	all	the	other	values.

There’s	one	more	restriction	that	will	lead	us	very	neatly	into	the	next	section:	you	can	only	supply	a
background	color	on	the	final	background	layer.	No	other	background	layer	can	have	a	solid	color
declared.	What	the	heck	does	that	mean?	So	glad	you	asked.

Multiple	Backgrounds
Throughout	most	of	this	chapter,	we’ve	only	briefly	mentioned	the	fact	that	almost	all	the	background
properties	accept	a	comma-separated	list	of	values.	For	example,	if	you	wanted	to	have	three	different
background	images,	you	could	do	it	like	this:

section	{background-image:	url(bg01.png),	url(bg02.gif),	url(bg03.jpg);

									background-repeat:	no-repeat;}

Seriously.	It	will	look	like	what	we	see	in	Figure	8-43.

Figure	8-43.	Multiple	background	images

This	creates	three	background	layers,	one	for	each	image,	with	the	last	being	the	final,	bottom	background
layer.

As	we	saw	in	Figure	8-43,	the	three	images	were	piled	into	the	top-left	corner	of	the	element	and	didn’t
repeat.	The	lack	of	repetition	is	because	we	declared	background-repeat:	no-repeat.	We
declared	it	only	once,	and	there	are	three	background	images.

When	there	is	a	mismatch	between	the	number	of	values	in	a	background-related	property	and	the
background-image	property,	the	missing	values	are	derived	by	repeating	the	sequence	in	the
property	with	a	value	undercount.	Thus,	in	the	previous	example,	it	was	as	though	we	had	said:

background-repeat:	no-repeat,	no-repeat,	no-repeat;

Now,	suppose	we	want	to	put	the	first	image	in	the	top	right,	put	the	second	in	the	center	left,	and	put	the
last	layer	in	the	center	bottom?	We	can	layer	background-position,	as	shown	in	Figure	8-44,
which	is	the	result	of	the	following	code:

section	{background-image:	url(bg01.png),	url(bg02.gif),	url(bg03.jpg);

									background-position:	top	right,	left	center,	50%	100%;

									background-repeat:	no-repeat;}

Figure	8-44.	Individually	positioning	background	images

Similarly,	if	we	want	to	keep	the	first	two	layers	from	repeating,	but	horizontally	repeat	the	third:

section	{background-image:	url(bg01.png),	url(bg02.gif),	url(bg03.jpg);

									background-position:	top	right,	left	center,	50%	100%;

									background-repeat:	no-repeat,	no-repeat,	repeat-x;}

Nearly	every	background	property	can	be	comma-listed	this	way.	You	can	have	different	origins,	clipping
boxes,	sizes,	and	just	about	everything	else	for	each	background	layer	you	create.	Technically,	there	is	no
limit	to	the	number	of	layers	you	can	have,	though	at	a	certain	point	it’s	just	going	to	get	silly.

Even	the	shorthand	background	can	be	comma-separated.	The	following	example	is	exactly	equivalent
to	the	previous	one,	and	the	result	is	shown	in	Figure	8-45:

section	{

				background:	url(bg01.png)	right	top	no-repeat,

																url(bg02.gif)	center	left	no-repeat,

																url(bg03.jpg)	50%	100%	repeat-x;}

Figure	8-45.	Multiple	background	layers	via	shorthand

The	only	real	restriction	on	multiple	backgrounds	is	that	background-color	does	not	repeat	in	this
manner,	and	if	you	provide	a	comma-separated	list	for	the	background	shorthand,	then	the	color	can
only	appear	on	the	last	background	layer.	If	you	add	a	color	to	any	other	layer,	the	entire	background
declaration	is	made	invalid.	Thus,	if	we	wanted	to	have	a	green	background	fill	for	the	previous	example,
we’d	do	it	in	one	of	the	following	two	ways:

section	{

				background:	url(bg01.png)	right	top	no-repeat,

																url(bg02.gif)	center	left	no-repeat,

																url(bg03.jpg)	50%	100%	repeat-x	green;}

section	{

				background:	url(bg01.png)	right	top	no-repeat,

																url(bg02.gif)	center	left	no-repeat,

																url(bg03.jpg)	50%	100%	repeat-x;

				background-color:	green;}

The	reason	for	this	restriction	is	pretty	straightforward.	Imagine	if	you	were	able	to	add	a	full	background
color	to	the	first	background	layer.	It	would	fill	in	the	whole	background	and	obscure	all	the	background
layers	behind	it!	So	if	you	do	supply	a	color,	it	can	only	be	on	the	last	layer,	which	is	“bottom-most.”

This	ordering	is	important	to	internalize	as	soon	as	possible,	because	it	runs	counter	to	the	instincts
you’ve	likely	built	up	in	the	course	of	using	CSS.	After	all,	you	know	what	will	happen	here:	the	h1
background	will	be	green:

h1	{background-color:	red;}

h1	{background-color:	green;}

Contrast	that	with	this	multiple-background	rule,	which	will	make	the	h1	background	red:

h1	{background:

				url(box-red.gif),

				url(box-green.gif),

				green;}

Yes,	red.	The	red	GIF	is	tiled	to	cover	the	entire	background	area,	as	is	the	green	GIF,	but	the	red	GIF	is

“on	top	of”	the	green	GIF.	It’s	closer	to	you.	And	the	effect	is	exactly	backward	from	the	“last	one	wins”
rules	built	into	the	cascade.

You	can	visualize	it	like	this:	when	there	are	multiple	backgrounds,	they’re	listed	like	the	layers	in	a
drawing	program	such	as	Photoshop	or	Illustrator.	In	the	layer	palette	of	a	drawing	program,	layers	at	the
top	of	the	palette	are	drawn	over	the	layers	at	the	bottom.	It’s	the	same	thing	here:	the	layers	listed	at	the
top	of	the	list	are	drawn	over	the	layers	at	the	bottom	of	the	list.

The	odds	are	pretty	good	that	you	will,	at	some	point,	set	up	a	bunch	of	background	layers	in	the	wrong
order,	because	your	cascade-order	reflexes	will	kick	in.	(This	error	still	occasionally	trips	the	authors	up
even	to	this	day,	so	don’t	get	down	on	yourself	if	it	gets	you	too.)

Another	fairly	common	mistake	when	you’re	getting	started	with	multiple	backgrounds	is	to	use	the
background	shorthand	and	forget	to	explicitly	turn	off	background	tiling	for	your	background	layers	by
letting	the	background-repeat	value	default	to	repeat,	thus	obscuring	all	but	the	top	layer.	See
Figure	8-46,	for	example,	which	is	the	result	of	the	following	code:

section	{background-image:	url(bg02.gif),	url(bg03.jpg);}

Figure	8-46.	Obscuring	layers	with	repeated	images

We	can	only	see	the	top	layer	because	it’s	tiling	infinitely,	thanks	to	the	default	value	of	background-
repeat.	That’s	why	the	example	at	the	beginning	of	this	section	had	a	background-repeat:	no-
repeat.

Using	the	background	shorthand
One	way	to	avoid	these	sorts	of	situations	is	to	use	the	background	shorthand,	like	so:

body	{background:

									url(bg01.png)	top	left	border-box	no-repeat,

									url(bg02.gif)	bottom	center	padding-box	no-repeat,

									url(bg04.svg)	bottom	center	padding-box	no-repeat	gray;}

That	way,	when	you	add	or	subtract	background	layers,	the	values	you	meant	to	apply	specifically	to	them

will	come	in	or	go	out	with	them.

This	can	mean	some	annoying	repetition	if	all	the	backgrounds	should	have	the	same	value	of	a	given
property,	like	background-origin.	If	that’s	the	situation,	you	can	blend	the	two	approaches,	like	so:

body	{background:

									url(bg01.png)	top	left	no-repeat,

									url(bg02.gif)	bottom	center	no-repeat,

									url(bg04.svg)	bottom	center	no-repeat	gray;

					background-origin:	padding-box;}

This	works	just	as	long	as	you	don’t	need	to	make	any	exceptions.	The	minute	you	decide	to	change	the
origin	of	one	of	those	background	layers,	then	you’ll	need	to	explicitly	list	them,	whether	you	do	it	in
background	or	with	the	separate	background-origin	declaration.

Remember	that	the	number	of	layers	is	determined	by	the	number	of	background	images,	and	so,	by
definition,	background-image	values	are	not	repeated	to	equal	the	number	of	comma-separated
values	given	for	other	properties.	You	might	want	to	put	the	same	image	in	all	four	corners	of	an	element
and	think	you	could	do	it	like	this:

background-image:	url(i/box-red.gif);

background-position:	top	left,	top	right,	bottom	right,	bottom	left;

background-repeat:	no-repeat;

The	result,	however,	would	be	to	place	a	single	red	box	in	the	top-left	corner	of	the	element.	In	order	to
get	images	in	all	four	corners,	as	shown	in	Figure	8-47,	you’ll	have	to	list	the	same	image	four	times:

background-image:	url(i/box-red.gif),	url(i/box-red.gif),

																		url(i/box-red.gif),	url(i/box-red.gif);

background-position:	top	left,	top	right,	bottom	right,	bottom	left;

background-repeat:	no-repeat;

Figure	8-47.	Placing	the	same	image	in	all	four	corners

Gradients
There	are	three	image	types	defined	by	CSS	that	are	described	entirely	with	CSS:	linear	gradients,	radial
gradients,	and	conic	gradients.	Of	each	type,	there	are	two	sub-types:	repeating	and	non-repeating.

Gradients	are	most	often	used	in	backgrounds,	which	is	why	they’re	being	covered	here,	though	they	can
be	used	in	any	context	where	an	image	is	permitted—as	in	list-style-image	and	border-
image,	for	example.

A	gradient	is	a	visual	transition	from	one	color	to	another.	A	gradient	from	yellow	to	red	will	start
yellow,	run	through	successively	less	yellow,	redder	shades	of	orange,	and	eventually	arrive	at	a	full	red.
How	gradual	or	abrupt	a	transition	that	is	depends	on	how	much	space	the	gradient	has	to	operate	and
how	you	define	color	stops	and	progression	color	hints.	If	you	run	from	white	to	black	over	100	pixels,
then	each	pixel	along	the	gradient’s	progression	will	be	another	1%	darker	gray.	This	is	diagrammed	in
Figure	8-48.

Figure	8-48.	The	progression	of	a	simple	gradient

As	we	go	through	the	process	of	exploring	gradients,	always	keep	this	in	mind:	gradients	are	images.	It
doesn’t	matter	that	you	describe	them	by	typing	CSS—they	are	every	bit	as	much	images	as	SVGs,	PNGs,
JPEGs,	and	so	on—	but	gradients	have	excellent	rendering	performance	and	don’t	require	an	extra	HTTP
request	to	load.

What’s	interesting	about	gradients	is	that	they	have	no	intrinsic	dimensions,	which	means	that	if	the
background-size	property’s	value	auto	is	used,	it	is	treated	as	if	it	were	100%.	Thus,	if	you	don’t
define	a	background-size	for	a	background	gradient,	it	will	be	set	to	the	default	value	of	auto,
which	is	the	same	as	declaring	100%	100%.	So,	by	default,	background	gradients	fill	in	the	entire
background	positioning	area.	Just	note	that	if	you	offset	the	gradient’s	background	position	with	a	length
(not	percentage)	value,	by	default	it	will	tile.

Linear	Gradients
Linear	gradients	are	gradient	fills	that	proceed	along	a	linear	vector,	referred	to	as	the	gradient	line.	Here
are	a	few	relatively	simple	gradients,	with	the	results	shown	in	Figure	8-49:

#ex01	{background-image:	linear-gradient(purple,	gold);}

#ex02	{background-image:	linear-gradient(90deg,	purple,	gold);}

#ex03	{background-image:	linear-gradient(to	left,	purple,	gold);}

#ex04	{background-image:	linear-gradient(-135deg,	purple,	gold,	navy);}

#ex05	{background-image:	linear-gradient(to	bottom	left,	purple,	gold,	navy);}

Figure	8-49.	Simple	linear	gradients

The	first	of	these	is	the	most	basic	that	a	gradient	can	be:	two	colors.	This	causes	a	gradient	from	the	first
color	at	the	top	of	the	background	painting	area	to	the	second	color	at	the	bottom	of	the	background
painting	area.

By	default,	a	gradient	runs	from	top	to	bottom	because	the	default	direction	for	gradients	is	to	bottom,
which	is	the	same	as	180deg	and	its	various	equivalents	(for	example,	0.5turn).	If	you’d	like	to	go	a
different	direction,	then	you	can	start	the	gradient	value	with	a	direction.	That’s	what	was	done	for	all	the
other	gradients	shown	in	Figure	8-49.

A	gradient	must	have,	at	minimum,	two	color	stops.	They	can	be	the	same	color,	though.	If	you	want	to
have	a	solid	color	behind	only	part	of	your	content,	a	gradient	with	the	same	color	declared	twice,	along
with	a	background	size	and	a	no-repeat,	enables	that.

blockquote	{

	 padding:	0.5em	1em	2em;

	 background-image:

	 	 linear-gradient(palegoldenrod,	palegoldenrod),

	 	 linear-gradient(salmon,	salmon);

	 background-size:	75%	90%;

	 background-position:	0px	0px,	15px	30px;

	 background-repeat:	no-repeat;

					columns:	3;

}

Figure	8-50.	Solid-color	gradients

The	basic	syntax	of	a	linear	gradient	is:

linear-gradient(

				[[<angle>	|	to	<side-or-quadrant>],]?	[<color-stop-list>	[,	<color-hint>]?]#	,

				<color-stop-list>

)

We’ll	explore	both	color	stop	lists	and	color	hints	very	soon.	For	now,	the	basic	pattern	to	keep	in	mind
is:	an	optional	direction	at	the	start,	a	list	of	color	stops	and/or	color	hints,	and	a	color	stop	at	the	end.
This	means	that,	as	shown	earlier,	there	must	be	a	minimum	of	two	color	stops	in	a	linear-
gradient()	value.

While	you	only	use	the	to	keyword	if	you’re	describing	a	side	or	quadrant	with	keywords	like	top	and
right,	the	direction	you	give	always	describes	the	direction	in	which	the	gradient	line	points.	In	other
words,	linear-gradient(0deg,red,green)	will	have	red	at	the	bottom	and	green	at	the	top
because	the	gradient	line	points	toward	zero	degrees	(the	top	of	the	element)	and	thus	ends	with	green.
While	it	is	indeed	“going	toward	0	degrees,”	remember	to	omit	the	to	if	you’re	using	an	angle	value,
because	something	like	to	45deg	is	invalid	and	will	be	ignored.	As	explained	in	Chapter	5,	degrees
increase	clockwise	from	0	at	the	top.

The	very	important	thing	is	that	while	0deg	is	the	same	as`	to	top`,	45%	is	not	the	same	as	to	top
right.	This	is	explained	in	“Gradient	lines:	the	gory	details”.	Equally	important	to	remember	is	that
when	using	angles,	whether	it’s	degrees,	radians,	or	turns,	the	unit	type	is	required.	0	is	not	valid	and	will
prevent	any	gradient	from	being	created,	while	0deg	is	valid.

Gradient	colors
You’re	able	to	use	any	color	value	you	like	in	gradients,	including	alpha-channel	values	such	as	rgba()
and	keywords	like	transparent.	Thus	it’s	entirely	possible	to	fade	out	pieces	of	your	gradient	by
blending	to	(or	from)	a	color	with	zero	opacity.	Consider	the	following	rules,	which	are	depicted	in
Figure	8-51:

#ex01	{background-image:

				linear-gradient(to	right,	rgb(200,200,200),	rgb(255,255,255));}

#ex02	{background-image:

				linear-gradient(to	right,	rgba(200,200,200,1),	rgba(200,200,200,0));}

Figure	8-51.	Fading	to	white	versus	fading	to	transparent

As	shown,	the	first	example	fades	from	light	gray	to	white,	whereas	the	second	example	fades	the	same
light	gray	from	opaque	to	transparent,	thus	allowing	the	parent	element’s	yellow	background	to	show
through.

You’re	not	restricted	to	two	colors,	either.	While	that	is	the	minimum	number	of	color	allowed,	you’re
free	to	add	as	many	colors	as	you	can	stand.	Consider	the	following	gradient:

#wdim	{background-image:	linear-gradient(90deg,

				red,	orange,	yellow,	green,	blue,	indigo,	violet,

				red,	orange,	yellow,	green,	blue,	indigo,	violet

);

The	gradient	line	points	toward	90	degrees,	which	is	the	right	side.	There	are	14	color	stops	in	all,	one
for	each	of	the	comma-separated	color	names,	and	they	are	distributed	evenly	along	the	gradient	line,	with
the	first	at	the	beginning	of	the	line	and	the	last	at	the	end.	Between	the	color	stops,	the	colors	are	blended
as	smoothly	as	possible	from	one	color	to	the	other.	This	is	shown	in	Figure	8-52,	with	extra	labels	to
show	how	far	along	the	gradient	line	the	color	stops	are	placed.

Figure	8-52.	The	distribution	of	color	stops	along	the	gradient	line

So,	without	any	indication	of	where	the	color	stops	should	be	positioned,	they’re	evenly	distributed.
Fortunately,	we	can	give	each	color	up	to	two	positions,	and	can	even	use	color	hints	for	more	control
over	gradient	progression,	hopefully	improving	the	visual	effect.

Positioning	color	stops
The	full	syntax	of	a	<color-stop>	is:

[<color>]	[<length>	|	<percentage>]{1,2}?

After	every	color	value,	you	can	(but	don’t	have	to)	supply	a	position	value	or	two.	This	gives	you	the
ability	to	distort	the	default	evenly-distributed	progression	of	color	stops	into	something	else.

We’ll	start	with	lengths,	since	they’re	pretty	simple.	Let’s	take	a	rainbow	progression	(only	a	single
rainbow	this	time)	and	have	each	color	of	the	rainbow	occur	every	25	pixels,	as	shown	in	Figure	8-53:

#spectrum	{background-image:	linear-gradient(90deg,

															red,	orange	25px,	yellow	50px,	green	75px,

															blue	100px,	indigo	125px,	violet	150px)};

Figure	8-53.	Placing	color	stops	every	25	pixels

This	worked	out	just	fine,	but	notice	what	happened	after	150	pixels—the	violet	just	continued	on	to	the
end	of	the	gradient	line.	That’s	what	happens	if	you	set	up	the	color	stops	so	they	don’t	make	it	to	the	end
of	a	basic	gradient	line:	the	last	color	is	just	carried	onward.

Conversely,	if	your	color	stops	go	beyond	the	end	of	a	basic	gradient	line,	the	gradient	will	appear	to	stop
at	whatever	point	it	manages	to	reach	when	it	gets	to	the	end	of	the	visible	part	of	the	gradient	line.	This	is
illustrated	in	Figure	8-54:

#spectrum	{background-image:	linear-gradient(90deg,

															red,	orange	200px,	yellow	400px,	green	600px,

															blue	800px,	indigo	1000px,	violet	1200px)};

Figure	8-54.	Gradient	clipping	when	colors	stops	go	too	far

Since	the	last	color	stop	is	at	1,200	pixels	but	the	background	size	isn’t	nearly	that	wide,	the	visible	part
of	the	gradient	stops	right	around	the	color	blue.

Note	that	in	the	preceding	two	examples	and	figures,	the	first	color	(red)	didn’t	have	a	length	value.	If
the	first	color	has	no	position,	it’s	assumed	to	be	the	beginning	of	the	gradient	line,	as	if	0%	(or	other	zero
value,	like	0px)	had	been	declared.	Similarly,	if	you	leave	a	position	off	the	last	color	stop,	it’s	assumed
to	be	the	end	of	the	gradient	line.	(But	note	that	this	is	not	true	for	repeating	gradients,	which	we’ll	cover
in	an	upcoming	section.)

You	can	use	any	length	value	you	like,	not	just	pixels.	Ems,	viewport	units,	you	name	it.	You	can	even	mix
different	units	into	the	same	gradient,	although	this	is	not	generally	recommended	for	reasons	we’ll	get	to
in	a	little	bit.	You	can	also	have	negative	length	values	if	you	want;	doing	so	will	place	a	color	stop
before	the	beginning	of	the	gradient	line,	all	the	color	transitions	will	happen	as	expected,	and	clipping
will	occur	in	the	same	manner	as	it	happens	at	the	end	of	the	line,	as	shown	in	Figure	8-55:

#spectrum	{background-image:	linear-gradient(90deg,

															red	-200px,	orange	200px,	yellow	400px,	green	600px,

															blue	800px,	indigo	1000px,	violet	1200px)};

Figure	8-55.	Gradient	clipping	when	color	stops	have	negative	positions

As	for	percentages,	they’re	calculated	with	respect	to	the	total	length	of	the	gradient	line.	A	color	stop	at
50%	will	be	at	the	midpoint	of	the	gradient	line.	Let’s	return	to	our	rainbow	example,	and	instead	of
having	a	color	stop	every	25	pixels,	we’ll	have	one	every	10%	of	the	gradient	line’s	length.	This	would
look	like	the	following,	which	has	the	result	shown	in	Figure	8-56:

#spectrum	{background-image:	linear-gradient(90deg,

				red,	orange	10%,	yellow	20%,	green	30%,	blue	40%,	indigo	50%,	violet	60%)};

Figure	8-56.	Placing	color	stops	every	10	percent

As	we	saw	previously,	since	the	last	color	stop	comes	before	the	end	of	the	gradient	line,	its	color
(violet)	is	carried	through	to	the	end	of	the	gradient.	These	stops	are	more	spread	out	than	in	the	25-
pixel	example	we	saw	earlier,	but	otherwise	things	happen	in	more	or	less	the	same	way.

In	cases	where	some	color	stops	have	position	values	and	others	don’t,	the	stops	without	positions	are
evenly	distributed	between	the	ones	that	do.	The	following	are	equivalent:

#spectrum	{background-image:	linear-gradient(90deg,

				red,	orange,	yellow	50%,	green,	blue,	indigo	95%,	violet)};

#spectrum	{background-image:	linear-gradient(90deg,

				red	0%,	orange	25%,	yellow	50%,	green	65%,	blue	80%,	indigo	95%,	violet	100%)};

Because	red	and	violet	don’t	have	specified	position	values,	they’re	taken	to	be	0%	and	100%,
respectively.	This	means	that	orange,	green,	and	blue	will	be	evenly	distributed	between	the
explicitly	defined	positions	to	either	side	of	them.

For	orange,	that	means	the	point	midway	between	red	0%	and	yellow	50%,	which	is	25%.	For
green	and	blue,	these	need	to	be	arranged	between	yellow	50%	and	indigo	95%.	That’s	a	45%
difference,	which	is	divided	in	three,	because	there	are	three	intervals	between	the	four	values.	That
means	65%	and	80%.

You	might	wonder	what	happens	if	you	put	two	color	stops	at	exactly	the	same	point,	like	this:

#spectrum	{background-image:	linear-gradient(90deg,

				red	0%,	orange,	yellow	50%,	green	50%,	blue	,	indigo,	violet)};

All	that	happens	is	that	the	two	color	stops	are	put	on	top	of	each	other.	The	result	is	shown	in	Figure	8-
57.

Figure	8-57.	The	effect	of	coincident,	or	“hard,”	color	stops

The	gradient	blended	as	usual	all	along	the	gradient	line,	but	at	the	50%	point,	it	instantly	blended	from
yellow	to	green	over	zero	length,	creating	what’s	often	called	a	“hard”	color	stop.	So	the	gradient	blended
from	orange	at	the	25%	point	(halfway	between	0%	to	50%)	to	yellow	at	the	50%	point,	then	blended
from	yellow	to	green	over	zero	length,	then	blended	from	green	at	50%	over	to	blue	at	66.67%	(one-third
of	the	way	between	50%	and	100%).

This	hard-stop	effect	can	be	useful	if	you	want	to	create	a	striped	effect,	like	that	shown	in	Figure	8-58,
which	is	the	result	of	the	following	code:

.stripes	{background-image:	linear-gradient(90deg,

				gray	0%,	gray	25%,

				transparent	25%,	transparent	50%,

				gray	50%,	gray	75%,

				transparent	75%,	transparent	100%);}

Figure	8-58.	Hard-stop	stripes

That	said,	there’s	an	easier	and	more	readable	way	to	do	that	kind	of	thing,	which	is	to	give	each	color	a
starting	and	ending	stop	position.	Here’s	how	to	do	that,	with	exactly	the	same	result	as	shown	in
Figure	8-58:

.stripes	{background-image:

	 linear-gradient(90deg,

	 	 gray	0%	25%,

	 	 transparent	25%	50%,

	 	 gray	50%	75%,

	 	 transparent	75%	100%);}

Note	that	the	0%	and	100%	could	have	been	left	out,	and	they’d	be	inferred	by	the	browser.	So	you	can
leave	them	in	for	clarity’s	sake	or	take	them	out	for	efficiency’s	sake,	as	suits	you.

It’s	also	fine	to	mix	two-stop	stripes	and	one-stop	color	points	in	a	single	gradient.	If	you	want	to	have	the
first	and	last	quarter	of	the	gradient	be	solid	gray	stripes	and	transition	through	transparency	between
them,	it	could	look	like	this:

.stripes	{background-image:

	 linear-gradient(90deg,

	 	 gray	0%	25%,

	 	 transparent	50%,

	 	 gray	75%	100%);}

Okay,	so	that’s	what	happens	if	you	put	color	stops	right	on	top	of	each	other,	but	what	happens	if	you	put
one	before	another?	Something	like	this,	say:

#spectrum	{background-image:	linear-gradient(90deg,

				red	0%,	orange,	yellow,	green	50%,	blue	40%,	indigo,	violet)};

In	that	case,	the	offending	color	stop	(blue	in	this	case)	is	set	to	the	largest	specified	value	of	a	preceding
color	stop.	Here,	it	would	be	set	to	50%,	since	the	stop	before	it	had	that	position.	This	creates	a	hard
stop,	and	we	get	the	same	effect	we	saw	earlier,	when	the	green	and	blue	color	stops	were	placed	on	top
of	each	other.

The	key	point	here	is	that	the	color	stop	is	set	to	the	largest	specified	position	of	the	stop	that	precedes	it.
Thus,	the	following	two	gradients	are	visually	the	same,	as	the	indigo	color	stop	in	the	first	gets	set	to
50%:

#spectrum	{background-image:	linear-gradient(90deg,

				red	0%,	orange,	yellow	50%,	green,	blue,	indigo	33%,	violet)};

#spectrum	{background-image:	linear-gradient(90deg,

				red	0%,	orange,	yellow	50%,	indigo	50%,	violet)};

In	this	case,	the	largest	specified	position	before	the	indigo	stop	is	the	50%	specified	at	the	yellow	stop.
Thus,	the	gradient	fades	from	red	to	orange	to	yellow,	then	has	a	hard	switch	to	indigo	before	fading	from
indigo	to	violet.	The	green	and	blue	aren’t	skipped;	rather,	the	gradients	transition	from	yellow	to	green	to
blue	to	indigo	over	zero	distance.	See	Figure	8-59	for	the	results.

Figure	8-59.	Handling	color	stops	that	are	out	of	place

This	behavior	is	the	reason	why	mixing	units	within	a	single	gradient	is	generally	discouraged.	If	you	mix
rem	units	and	percentages,	for	example,	you	could	end	up	with	a	situation	where	a	color	stop	positioned
with	percentages	might	end	up	before	an	earlier	color	stop	positioned	with	rems.

Setting	color	hints
Thus	far,	we’ve	worked	with	color	stops,	but	you	may	remember	that	the	syntax	for	linear	gradients
permits	“color	hints”	after	each	color	stop:

linear-gradient(

				[[<angle>	|	to	<side-or-quadrant>],]?	[<color-stop-list>	[,	<color-hint>]?]#	,

				<color-stop-list>

)

A	<color-hint>	is	a	way	of	modifying	the	blend	between	the	two	color	stops	to	either	side.	By	default,
the	blend	from	one	color	stop	to	the	next	is	linear,	with	the	midpoint	of	the	blend	being	at	the	halfway
mark	between	two	color	stops,	of	50%.	It	doesn’t	have	to	be	that	simple.	The	following	to	gradients	are
the	same,	and	have	the	result	shown	in	Figure	8-60:

linear-gradient(

				to	right,	rgb(0%	0%	0%)	25%,	rgb(90%	90%	90%)	75%

)

linear-gradient(

				to	right,	rgb(0%	0%	0%)	25%,	50%,	rgb(90%	,90%	,90%)	75%

)

Figure	8-60.	Linear	blending	from	one	color	stop	to	the	next

With	color	hints,	we	can	change	the	midpoint	of	the	progression.	Instead	of	reaching	rgb(45%	45%
45%)	at	the	halfway	point,	it	can	be	set	for	any	point	in	between	the	two	stops.	Thus,	the	following	CSS
leads	to	the	result	seen	in	Figure	8-61:

#ex01	{background:

					linear-gradient(to	right,	rgb(0%	0%	0%)	25%,	rgb(90%	90%	90%)	75%);}

#ex02	{background:

					linear-gradient(to	right,	rgb(0%	0%	0%)	25%,	33%,	rgb(90	90%	90%)	75%);}

#ex03	{background:

					linear-gradient(to	right,	rgb(0%	0%	0%)	25%,	67%,	rgb(90%	90%	90%)	75%);}

#ex04	{background:

					linear-gradient(to	right,	rgb(0%	0%	0%)	25%,	25%,	rgb(90%	90%	90%)	75%);}

#ex05	{background:

					linear-gradient(to	right,	rgb(0%	90%	90%)	25%,	75%,	rgb(90%	90%	90%)	75%);}

Figure	8-61.	Black-to-gray	with	differing	midpoint	hints

In	all	five	examples,	the	first	color	stop	is	at	the	25%	mark	and	the	last	at	the	75%	mark,	but	each	has	a
different	midpoint	for	the	gradient.	In	the	first	case	(#ex01),	the	default	linear	progression	is	used,	with
the	middle	color	(45%	black)	occurring	at	the	midpoint	between	the	two	color	stops.

In	the	second	case	(#ex02),	the	middle	color	happens	at	the	33%	point	of	the	gradient	line.	So	the	first
color	stop	is	at	the	25%	point	on	the	line,	the	middle	color	happens	at	33%,	and	the	second	color	stop
happens	at	75%.

In	the	third	example	(#ex03),	the	midpoint	is	at	the	67%	point	of	the	gradient	line;	thus,	the	color	fades
from	black	at	25%	to	the	middle	color	at	67%,	and	then	from	that	middle	color	at	67%	to	light	gray	at
75%.

The	fourth	and	fifth	examples	show	what	happens	when	you	put	a	color	hint’s	distance	right	on	top	of	one
of	the	color	stops:	you	get	a	“hard	stop.”

The	interesting	thing	about	color	hinting	is	that	the	progression	from	color	stop	to	color	hint	to	color	stop
is	not	just	a	set	of	two	linear	progressions.	Instead,	there	is	some	“curving”	to	the	progression,	in	order	to
ease	from	one	side	of	the	color	hint	to	the	other. 	This	is	easiest	to	see	by	comparing	what	would	seem	to
be,	but	actually	are	not,	two	gradients	that	do	the	same	thing.	As	you	can	see	in	Figure	8-62,	the	result	is
rather	different:

#ex01	{background:

				linear-gradient(to	right,

								rgb(0%	0%	0%)	25%,

								rgb(45%	45%	45%)	67%,			/*	this	is	a	color	stop	*/

								rgb(90%	90%	90%)	75%);}

#ex02	{background:

				linear-gradient(to	right,

								rgb(0%	0%	0%)	25%,

								67%,																				/*	this	is	a	color	hint	*/

								rgb(90%	90%	90%)	75%);}

Figure	8-62.	Comparing	two	linear	gradients	to	one	hinted	transition

Notice	how	the	gray	progression	is	different	between	the	two	examples.	The	first	shows	a	linear
progression	from	black	to	rgb(45%,45%,45%),	and	then	another	linear	progression	from	there	to
rgb(90%,90%,90%).	The	second	progresses	from	black	to	the	light	gray	over	the	same	distance,	and
the	color-hint	point	is	at	the	67%	mark,	but	the	gradient	is	altered	to	attempt	a	smoother	overall
progression.	The	colors	at	25%,	67%,	and	75%	are	the	same	in	both	examples,	but	all	the	other	shades
along	the	way	are	different	because	of	the	(somewhat	complicated)	easing	algorithm	defined	in	the	CSS
specifications.

WARNING
If	you’re	familiar	with	animations,	you	might	think	to	put	easing	functions	(such	as	ease-in)	into	a	color	hint,	in	order	to	exert	more
control	over	how	the	colors	are	blended.	While	the	browser	does	this	to	some	extent,	as	illustrated	in	Figure	8-62,	this	isn’t	something
developers	can	control	as	of	late	2022	(though	that	capability	was	under	serious	discussion	by	the	CSS	Working	Group	at	the	time).

Gradient	lines:	the	gory	details

1

Now	that	you	have	a	grasp	of	the	basics	of	placing	color	stops,	let’s	look	closely	at	how	gradient	lines	are
actually	constructed,	and	thus	how	they	create	the	effects	that	they	do.

First,	let’s	set	up	a	simple	gradient	so	we	can	then	dissect	how	it	works:

linear-gradient(

				55deg,	#4097FF,	#FFBE00,	#4097FF

)

Now,	how	does	this	one-dimensional	construct—a	line	at	55	degrees	on	the	compass—create	a	two-
dimensional	gradient	fill?	First,	the	gradient	line	is	placed	and	its	start	and	ending	points	determined.	This
is	diagrammed	in	Figure	8-63,	with	the	final	gradient	shown	next	to	it.

Figure	8-63.	The	placement	and	sizing	of	the	gradient	line

The	first	thing	to	make	very	clear	is	that	the	box	seen	here	is	not	an	element—it’s	the	linear-gradient
image	itself.	(Remember,	we’re	creating	images	here.)	The	size	and	shape	of	that	image	can	depend	on	a
lot	of	things,	whether	it’s	the	size	of	the	element’s	background	or	the	application	of	properties	like
background-size,	which	is	a	topic	we’ll	cover	in	a	bit.	For	now,	we’re	just	concentrating	on	the
image	itself.

So,	in	Figure	8-63,	you	can	see	that	the	gradient	line	goes	straight	through	the	center	of	the	image.	The
gradient	line	always	goes	through	the	center	of	the	gradient	image,	and	in	this	case,	the	gradient	image	is
centered	in	the	background	area.	(Using	background-position	to	shift	placement	of	a	gradient
image	can,	in	some	cases,	make	it	appear	that	the	center	of	the	gradient	is	not	centered	in	the	image,	but	it
is.)	This	gradient	is	set	to	a	55-degree	angle,	so	it’s	pointing	at	55	degrees	on	the	compass.	What’s
interesting	are	the	start	and	ending	points	of	the	gradient	line,	which	are	actually	outside	the	image.

Let’s	talk	about	the	starting	point	first.	It’s	the	point	on	the	gradient	line	where	a	line	perpendicular	to	the
gradient	line	intersects	with	the	corner	of	the	image	furthest	away	from	the	gradient	line’s	direction
(55deg).	Conversely,	the	gradient	line’s	ending	point	is	the	point	on	the	gradient	line	where	a
perpendicular	line	intersects	the	corner	of	the	image	nearest	to	the	gradient	line’s	direction.

Bear	in	mind	that	the	terms	“starting	point”	and	“ending	point”	are	a	little	bit	misleading—the	gradient
line	doesn’t	actually	stop	at	either	point.	The	gradient	line	is,	in	fact,	infinite.	However,	the	starting	point
is	where	the	first	color	stop	will	be	placed	by	default,	as	it	corresponds	to	position	value	0%.	Similarly,
the	ending	point	corresponds	to	the	position	value	100%.

Therefore,	given	the	gradient	we	defined	before:

linear-gradient(

				55deg,	#4097FF,	#FFBE00,	#4097FF

)

The	color	at	the	starting	point	will	be	#4097FF,	the	color	at	the	midpoint	(which	is	also	the	center	of	the
gradient	image)	will	be	#FFBE00,	and	the	color	at	the	ending	point	will	be	#4097FF,	with	smooth
blending	in	between.	This	is	illustrated	in	Figure	8-64.

Figure	8-64.	The	calculation	of	color	along	the	gradient	line

All	right,	fine	so	far.	But,	you	may	wonder,	how	do	the	bottom-left	and	top-right	corners	of	the	image	get
set	to	the	same	blue	that’s	calculated	for	the	starting	and	ending	points,	if	those	points	are	outside	the
image?	Because	the	color	at	each	point	along	the	gradient	line	is	extended	out	perpendicularly	from	the
gradient	line.	This	is	partially	shown	in	Figure	8-65	by	extending	perpendicular	lines	at	the	starting	and
ending	points,	as	well	as	every	5%	of	the	gradient	line	between	them.	Note	that	each	of	the	lines
perpendicular	to	the	gradient	line	are	a	solid	color.

Figure	8-65.	The	extension	of	selected	colors	along	the	gradient	line

Hopefully	that	should	be	enough	to	let	you	fill	in	the	rest	mentally,	so	let’s	consider	what	happens	to	the
gradient	image	in	various	other	settings.	We’ll	use	the	same	gradient	definition	as	before,	but	this	time
apply	it	to	wide,	square,	and	tall	images.	These	are	shown	in	Figure	8-66.	Note	how	the	starting-point	and
ending-point	colors	always	make	their	way	into	the	corners	of	the	gradient	image.

Figure	8-66.	How	gradients	are	constructed	for	various	images

Note	how	we	very	carefully	said	“the	starting-point	and	ending-point	colors,”	and	did	not	say	“the
starting	and	ending	colors.”	That’s	because,	as	we	saw	earlier,	color	stops	can	be	placed	before	the
starting	point	and	after	the	ending	point,	like	so:

linear-gradient(

				55deg,	#4097FF	-25%,	#FFBE00,	#4097FF	125%

)

The	placement	of	these	color	stops,	as	well	as	the	starting	and	ending	point,	the	way	the	colors	are
calculated	along	the	gradient	line,	and	the	final	gradient,	are	all	shown	in	Figure	8-67.

Figure	8-67.	A	gradient	with	stops	beyond	the	starting	and	ending	points

Once	again,	we	see	that	the	colors	in	the	bottom-left	and	top-right	corners	match	the	starting-point	and
ending-point	colors.	It’s	just	that	in	this	case,	since	the	first	color	stop	came	before	the	starting	point,	the
actual	color	at	the	starting	point	is	a	blend	of	the	first	and	second	color	stops.	Likewise	for	the	ending
point,	which	is	a	blend	of	the	second	and	third	color	stops.

Now	here’s	where	things	get	a	little	bit	wacky.	Remember	how	you	can	use	directional	keywords,	like
top	and	right,	to	indicate	the	direction	of	the	gradient	line?	Suppose	you	wanted	the	gradient	line	to	go
toward	the	top	right,	so	you	create	a	gradient	image	like	this:

linear-gradient(

				to	top	right,	#4097FF	-25%,	#FFBE00,	#4097FF	125%

)

This	does	not	cause	the	gradient	line	to	intersect	with	the	top-right	corner.	If	only	that	were	so!	Instead,
what	happens	is	a	good	deal	stranger.	First,	let’s	diagram	it	in	Figure	8-68	so	that	we	have	something	to
refer	to.

Your	eyes	do	not	deceive	you:	the	gradient	line	is	way	off	from	the	top-right	corner.	It	is	headed	into	the

top-right	quadrant	of	the	image,	though.	That’s	what	to	top	right	really	means:	head	into	the	top-
right	quadrant	of	the	image,	not	into	the	top-right	corner.

As	Figure	8-68	shows,	the	way	to	find	out	exactly	what	that	means	is	to	do	the	following:

1.	 Draw	a	line	from	the	midpoint	of	the	image	into	the	corners	adjacent	to	the	corner	in	the	quadrant
that’s	been	declared.	Thus,	for	the	top-right	quadrant,	the	adjacent	corners	are	the	top	left	and	bottom
right.

2.	 Find	the	center	point	of	that	line,	which	is	the	center	point	of	the	image,	and	draw	the	gradient	line
perpendicular	to	that	line,	through	the	center	point,	pointing	into	the	declared	quadrant.

3.	 Construct	the	gradient—that	is,	determine	the	starting	and	ending	points,	place	or	distribute	the	color
stops	along	the	gradient	line,	and	then	calculate	the	entire	gradient	image,	as	per	usual.

Figure	8-68.	A	gradient	headed	toward	the	top	right

This	process	has	a	few	interesting	side	effects.	First,	it	means	that	the	color	at	the	midpoint	will	always
stretch	from	one	quadrant-adjacent	corner	to	the	other.	SSecond,	it	means	that	if	the	image’s	shape	changes
—that	is,	if	its	aspect	ratio	changes—then	the	gradient	line	will	also	reset	its	direction,	reorienting
slightly	to	fit	the	new	aspect	ratio.	So	watch	out	for	that	if	you	have	flexible	elements.	Third,	a	perfectly
square	gradient	image	will	have	a	gradient	line	that	intersects	with	a	corner.	Examples	of	these	three	side
effects	are	depicted	in	Figure	8-69,	using	the	following	gradient	definition	in	all	three	cases:

linear-gradient(

				to	top	right,	purple,	green	49.5%,	black	50%,	green	50.5%,	gold

)

Figure	8-69.	Examples	of	the	side	effects	of	a	quadrant-directed	gradient

Sadly,	there	is	no	way	to	say	“point	the	gradient	line	into	the	corner	of	a	nonsquare	image”	short	of
calculating	the	necessary	degree	heading	yourself	and	declaring	it	explicitly,	a	process	that	will	most
likely	require	JavaScript	unless	you	know	the	image	will	always	be	an	exact	size	in	all	cases,	forever.
(Or	use	the	aspect-ratio	property;	see	Chapter	6	for	details.)

While	linear	gradients	follow	a	gradient	line	in	the	direction	set	forth	by	the	angle,	it	is	possible	to	create
a	mirrored	gradient;	for	that,	oddly	enough,	see	“Radial	Gradients”.

Repeating	linear	gradients
Regular	gradients	are	auto-sized	by	default,	matching	the	size	of	the	background	area	to	which	they	are
applied.	In	other	words,	by	default	a	gradient	image	takes	up	all	the	available	background	space,	and	does
not	repeat.

Intentionally	tiling	images,	especially	with	hard	color	stops,	can	create	interesting	effects.	By	declaring
two	linear-gradient	background	images	using	hard	color	stops,	with	perpendicular	gradient	lines,	and
different	background	colors,	you	can	create	picnic	tablecloth	effects	for	any	place	setting	by	setting	up
some	gradient	images,	tiling	them,	and	then	putting	a	color	underneath,	as	illustrated	in	Figure	8-70:

div	{

	 background-image:

	 	 linear-gradient(to	top,	transparent	1vw,	rgba(0	0	0	/	0.2)	1vw),

	 	 linear-gradient(to	right,	transparent	1vw,	rgba(0	0	0	/	0.2)	1vw);

	 background-size:	2vw	2vw;

	 background-repeat:	repeat;

}

div.fruit	{background-color:	papayawhip;}

div.grain	{background-color:	palegoldenrod;}

div.fishy	{background-color:	salmon;}

Figure	8-70.	Papayawhip,	palegoldenrod,	and	salmon	colored	table	cloths

Instead	of	defining	a	gradient	size	with	background-size	and	tiling	it	with	background-
repeat,	we	can	use	repeating	linear	gradient	syntax.	By	adding

`repeating-	in	front	of	the	linear	gradients,	they	are	made	infinitely	repeating	within	the	size	of	the
gradient.	In	other	words,	the	declared	color	stops	and	color	hints	are	repeated	on	a	loop	along	the
gradient	line,	over	and	over	again.	Thus,	we	can	remove	the	sizing	and	repetition	properties,	as	in	the
following,	and	get	the	same	result	as	shown	in	Figure	8-70.

div	{

	 background-image:

	 	 repeating-linear-gradient(to	top,	transparent	1vw,	rgba(0	0	0	/	0.2)	1vw),

	 	 repeating-linear-gradient(to	right,	transparent	1vw,	rgba(0	0	0	/	0.2)	

1vw);

}

div.fruit	{background-color:	papayawhip;}

div.grain	{background-color:	palegoldenrod;}

div.fishy	{background-color:	salmon;}

This	is	nice	for	simple	patterns	like	these	tablecloths,	but	it	comes	in	really	handy	for	more	complex
situations.	For	example,	if	you	declare	the	following	non-repeating	gradient,	then	you	end	up	with	the
situation	shown	in	Figure	8-71.	As	the	figure	shows,	there	is	a	discontinuity	where	the	image	repeats.

h1.example	{background:

				linear-gradient(-45deg,	black	0,	black	25px,	yellow	25px,	yellow	50px)

				top	left/40px	40px	repeat;}

Figure	8-71.	Tiling	gradient	images	with	background-repeat

You	could	try	to	nail	down	the	exact	sizes	of	the	element	and	gradient	image	and	then	mess	with	the
construction	of	the	gradient	image	in	order	to	try	to	make	the	sides	line	up,	but	it	would	be	a	lot	easier	to
do	the	following,	with	the	result	shown	in	Figure	8-72.

h1.example	{background:	repeating-linear-gradient(-45deg,

								black	0	25px,	yellow	25px	50px)	top	left;}

Figure	8-72.	A	repeating	gradient	image

Note	that	the	last	color	stop	ends	with	an	explicit	length	(50px).	This	is	important	to	do	with	repeating
gradients,	because	the	length	value(s)	of	the	last	color	stop	defines	the	overall	length	of	the	pattern.	If	you
leave	off	an	ending	stop,	it	will	default	to	100%,	which	is	the	end	of	the	gradient	line.

If	you’re	using	smoother	transitions,	you	need	to	be	careful	that	the	color	value	at	the	last	color	stop
matches	the	color	value	at	the	first	color	stop.	Consider	this:

repeating-linear-gradient(-45deg,	purple	0px,	gold	50px)

This	will	produce	a	smooth	gradient	from	purple	to	gold	at	50	pixels,	and	then	a	hard	switch	back	to
purple	and	another	50-pixel	purple-to-gold	blend.	By	adding	one	more	color	stop	with	the	same	color	as
the	first	color	stop,	the	gradient	can	be	smoothed	out	to	avoid	hard-stop	lines.	See	Figure	8-73	for	a
comparison	of	the	two	approaches:

repeating-linear-gradient(-45deg,	purple	0px,	gold	50px,	purple	100px)

Figure	8-73.	Dealing	with	hard	resets	in	repeating-gradient	images

You	may	have	noticed	that	none	of	the	repeating	gradients	we’ve	seen	so	far	have	a	defined	size.	That
means	the	images	are	defaulting	in	size	to	the	full	background	positioning	area	of	the	element	to	which
they’re	applied,	per	the	default	behavior	for	images	that	have	no	intrinsic	height	and	width.

If	you	resize	a	repeating-gradient	image	using	background-size,	the	gradient	would	only	repeat
within	the	bounds	of	the	gradient	image.	If	you	then	repeated	that	image	using	background-repeat,
you	could	very	easily	be	back	to	the	situation	of	having	discontinuities	in	your	background.

If	you	use	percentages	in	your	repeating	linear	gradients,	they’ll	be	placed	the	same	as	if	the	gradient
wasn’t	of	the	repeating	variety.	Then	again,	this	would	mean	that	all	of	the	gradients	defined	by	those
color	stops	would	be	seen	and	none	of	the	repetitions	would	be	visible,	so	percentages	tend	to	be	kind	of
pointless	with	repeating	linear	gradients.

Radial	Gradients
Linear	gradients	are	pretty	awesome,	but	there	are	times	when	you	really	want	a	circular	gradient.	You
can	use	such	a	gradient	to	create	a	spotlight	effect,	a	circular	shadow,	a	rounded	glow,	or	any	number	of
other	effects,	including	a	reflected	gradient.	The	syntax	used	is	similar	to	that	for	linear	gradients,	but
there	are	some	interesting	differences:

radial-gradient(

				[[<shape>	ǁ	<size>]	[at	<position>]?	,	|	at	<position>,]?
						[<color-stop-list>	[,	<color-hint>]?]	[,	<color-stop-list>]+

)

What	this	boils	down	to	is	you	can	optionally	declare	a	shape	and	size,	optionally	declare	where	the
center	of	the	gradient	is	positioned,	and	then	declare	two	or	more	color	stops	with	optional	color	hints	in
between	the	stops.	There	are	some	interesting	options	in	the	shape	and	size	bits,	so	let’s	build	up	to	those.

First,	let’s	look	at	a	simple	radial	gradient—the	simplest	possible,	in	fact—presented	in	a	variety	of
differently	shaped	elements	(Figure	8-74):

.radial	{background-image:	radial-gradient(purple,	gold);}

Figure	8-74.	A	simple	radial	gradient	in	multiple	settings

In	all	of	these	cases,	because	no	position	was	declared,	the	default	of	center	was	used,	and	the	default
ellipse	has	the	same	aspect	ratio	as	the	image	size.	Because	no	shape	was	declared,	the	shape	is	an
ellipse	for	all	cases	but	the	square	element;	in	that	case,	the	shape	is	a	circle.	Finally,	because	no	color-
stop	or	color-hint	positions	were	declared,	the	first	is	placed	at	the	beginning	of	the	gradient	ray,	and	the
last	at	the	end,	with	a	linear	blend	from	one	to	the	other.

That’s	right:	the	gradient	ray,	which	is	the	radial	equivalent	to	the	gradient	line	in	linear	gradients.	It
extends	outward	from	the	center	of	the	gradient	directly	to	the	right,	and	the	rest	of	the	gradient	is
constructed	from	it.	(We’ll	get	to	the	details	on	that	in	just	a	bit.)

Shape	and	size
First	off,	there	are	exactly	two	possible	shape	values	(and	thus	two	possible	shapes)	for	a	radial	gradient:
circle	and	ellipse.	The	shape	of	a	gradient	can	be	declared	explicitly,	or	it	can	be	implied	by	the
way	you	size	the	gradient	image.

So,	on	to	sizing.	As	always,	the	simplest	way	to	size	a	radial	gradient	is	with	either	one	non-negative
length	(if	you’re	sizing	a	circle)	or	two	non-negative	lengths	(if	it’s	an	ellipse).	Say	you	have	this	radial
gradient:

radial-gradient(50px,	purple,	gold)

This	creates	a	circular	radial	gradient	that	fades	from	purple	at	the	center	to	gold	at	a	distance	of	50
pixels	from	the	center.	If	we	add	another	length,	then	the	shape	becomes	an	ellipse	that’s	as	wide	as	the
first	length,	and	as	tall	as	the	second	length:

radial-gradient(50px	100px,	purple,	gold)

These	two	gradients	are	illustrated	in	Figure	8-75.

Figure	8-75.	Simple	radial	gradients

Notice	how	the	shape	of	the	gradients	has	nothing	to	do	with	the	overall	size	and	shape	of	the	images	in
which	they	appear.	If	you	make	a	gradient	a	circle,	it	will	be	a	circle,	even	if	it’s	inside	a	rectangular
gradient	image.	So	too	will	an	ellipse	always	be	an	ellipse,	even	when	inside	a	square	gradient	image
(where	it	will	look	like	a	circle,	since	an	ellipse	with	the	same	height	and	width	forms	a	circle).

You	can	also	use	percentage	values	for	the	size,	but	only	for	ellipses.	Circles	cannot	be	given	percentage
sizes	because	there’s	no	way	to	indicate	the	axis	to	which	that	percentage	refers.	(Imagine	an	image	100
pixels	tall	by	500	wide.	Should	10%	mean	10	pixels	or	50	pixels?)	If	you	try	to	provide	percentage
values	for	a	circle,	the	entire	declaration	will	fail	due	to	the	invalid	value.

If	you	do	supply	percentages	to	an	ellipse,	then	as	usual,	the	first	refers	to	the	horizontal	axis	and	the
second	to	the	vertical.	The	following	gradient	is	shown	in	various	settings	in	Figure	8-76:

radial-gradient(50%	25%,	purple,	gold)

Figure	8-76.	Percentage-sized	elliptical	gradients

When	it	comes	to	ellipses,	you’re	also	able	to	mix	lengths	and	percentages,	with	the	usual	caveat	to	be
careful.	So	if	you’re	feeling	confident,	you	can	absolutely	make	an	elliptical	radial	gradient	10	pixels	tall
and	half	the	element	width,	like	so:

radial-gradient(50%	10px,	purple,	gold)

As	it	happens,	lengths	and	percentages	aren’t	the	only	way	to	size	radial	gradients.	In	addition	to	those
value	types,	there	are	also	four	keywords	available	for	sizing	radial	gradients,	the	effects	of	which	are
summarized	in	Table	8-3.

Table	8-3.	Radial	gradient	sizing	keywords

Keyword Meaning

closest-side
If	the	radial	gradient’s	shape	is	a	circle,	the	gradient	is	sized	so	that	the	end	of	the	gradient	ray	exactly	touches	the	
edge	of	the	gradient	image	that	is	closest	to	the	center	point	of	the	radial	gradient.		If	the	shape	is	an	ellipse,	then	the	
end	of	the	gradient	ray	exactly	touches	the	closest	edge	in	each	of	the	horizontal	and	vertical	axes.

farthest-side
If	the	radial	gradient’s	shape	is	a	circle,	the	gradient	is	sized	so	that	the	end	of	the	gradient	ray	exactly	touches	the	
edge	of	the	gradient	image	that	is	farthest	from	the	center	point	of	the	radial	gradient.		If	the	shape	is	an	ellipse,	then	
the	end	of	the	gradient	ray	exactly	touches	the	farthest	edge	in	each	of	the	horizontal	and	vertical	axes.

closest-corne

r
If	the	radial	gradient’s	shape	is	a	circle,	the	gradient	is	sized	so	that	the	end	of	the	gradient	ray	exactly	touches	the	
corner	of	the	gradient	image	that	is	closest	to	the	center	point	of	the	radial	gradient.		If	the	shape	is	an	ellipse,	then	the	
end	of	the	gradient	ray	still	touches	the	corner	closest	to	the	center,	and	the	ellipse	has	the	same	aspect	ratio	that	it	
would	have	had	if	closest-side	had	been	specified.

farthest-corn

er	(default) If	the	radial	gradient’s	shape	is	a	circle,	the	gradient	is	sized	so	that	the	end	of	the	gradient	ray	exactly	touches	the	
corner	of	the	gradient	image	that	is	farthest	from	the	center	point	of	the	radial	gradient.		If	the	shape	is	an	ellipse,	then	
the	end	of	the	gradient	ray	still	touches	the	corner	farthest	from	the	center,	and	the	ellipse	has	the	same	aspect	ratio	
that	it	would	have	had	if	farthest-side	had	been	specified.	Note:	this	is	the	default	size	value	for	a	radial	gradient	
and	so	is	used	if	no	size	values	are	declared.

In	order	to	better	visualize	the	results	of	each	keyword,	see	Figure	8-77,	which	depicts	each	keyword
applied	as	both	a	circle	and	an	ellipse.

Figure	8-77.	The	effects	of	radial	gradient	sizing	keywords

These	keywords	cannot	be	mixed	with	lengths	or	percentages	in	elliptical	radial	gradients;	thus,
closest-side	25px	is	invalid	and	will	be	ignored.

Something	you	might	have	noticed	in	Figure	8-77	is	that	the	gradients	didn’t	start	at	the	center	of	the
image.	That’s	because	they	were	positioned	elsewhere,	which	is	the	topic	of	the	next	section.

Positioning	radial	gradients
If	you	want	to	shift	the	center	of	a	radial	gradient	away	from	the	default	of	center,	then	you	can	do	so
using	any	position	value	that	would	be	valid	for	background-position.	We’re	not	going	to
reproduce	that	rather	complicated	syntax	here;	flip	back	to	the	section	on	background-position
(“Background	Positioning”)	if	you	need	a	refresher.

When	we	say	“any	position	value	that	would	be	valid,”	that	means	any	permitted	combination	of	lengths,
percentages,	keywords,	and	so	on.	It	also	means	that	if	you	leave	off	one	of	the	two	position	values,	it
will	be	inferred	just	the	same	as	for	background-position.	So,	just	for	one	example,	center	is
equivalent	to	center	center.	The	one	major	difference	between	radial	gradient	positions	and
background	positions	is	the	default:	for	radial	gradients,	the	default	position	is	center,	not	0%	0%.

To	give	some	idea	of	the	possibilities,	consider	the	following	rules,	illustrated	in	Figure	8-78:

radial-gradient(at	bottom	left,	purple,	gold);

radial-gradient(at	center	right,	purple,	gold);

radial-gradient(at	30px	30px,	purple,	gold);

radial-gradient(at	25%	66%,	purple,	gold);

radial-gradient(at	30px	66%,	purple,	gold);

Figure	8-78.	Changing	the	center	position	of	radial	gradients

None	of	those	positioned	radial	gradients	were	explicitly	sized,	so	they	all	defaulted	to	farthest-
corner.	That’s	a	reasonable	guess	at	the	intended	default	behavior,	but	it’s	not	the	only	possibility.	Let’s
mix	some	sizes	into	the	gradients	we	just	saw	and	find	out	how	that	changes	things	(as	depicted	in
Figure	8-79):

radial-gradient(30px	at	bottom	left,	purple,	gold);

radial-gradient(30px	15px	at	center	right,	purple,	gold);

radial-gradient(50%	15%	at	30px	30px,	purple,	gold);

radial-gradient(farthest-side	at	25%	66%,	purple,	gold);

radial-gradient(closest-corner	at	30px	66%,	purple,	gold);

Figure	8-79.	Changing	the	center	position	of	explicitly	sized	radial	gradients

Nifty.	Now,	suppose	we	want	something	a	little	more	complicated	than	a	fade	from	one	color	to	another.
Next	stop,	color	stops!

Radial	color	stops	and	the	gradient	ray
Color	stops	for	radial	gradients	have	the	same	syntax,	and	work	in	a	similar	fashion,	to	linear	gradients.
Let’s	return	to	the	simplest	possible	radial	gradient	and	follow	it	with	a	more	explicit	equivalent:

radial-gradient(purple,	gold);

radial-gradient(purple	0%,	gold	100%);

So	the	gradient	ray	extends	out	from	the	center	point.	At	0%	(the	start	point,	and	also	the	center	of	the
gradient),	the	ray	will	be	purple.	At	100%	(the	ending	point),	the	ray	will	be	gold.	Between	the	two	stops
is	a	smooth	blend	from	purple	to	gold;	beyond	the	ending	point,	solid	gold.

If	we	add	a	stop	between	purple	and	gold,	but	don’t	give	it	a	position,	then	it	will	be	placed	midway
between	them,	and	the	blending	will	be	altered	accordingly,	as	shown	in	Figure	8-80:

radial-gradient(100px	circle	at	center,	purple	0%,	green,	gold	100%);

Figure	8-80.	Adding	a	color	stop

We’d	have	gotten	the	same	result	if	we’d	added	green	50%	there,	but	you	get	the	idea.	The	gradient
ray’s	color	goes	smoothly	from	purple	to	green	to	gold,	and	then	is	solid	gold	beyond	that	point	on	the	ray.

This	illustrates	one	difference	between	gradient	lines	(for	linear	gradients)	and	gradient	rays:	a	linear
gradient	is	derived	by	extending	the	color	at	each	point	along	the	gradient	line	off	perpendicular	to	the
gradient	line.	A	similar	behavior	occurs	with	a	radial	gradient,	except	in	that	case,	they	aren’t	lines	that
come	off	the	gradient	ray.	Instead,	they	are	ellipses	that	are	scaled-up	or	scaled-down	versions	of	the
ellipse	at	the	ending	point.	This	is	illustrated	in	Figure	8-81,	where	an	ellipse	shows	its	gradient	ray	and
then	the	ellipses	that	are	drawn	at	various	points	along	that	ray.

Figure	8-81.	The	gradient	ray	and	some	of	the	ellipses	it	spawns

That	brings	up	an	interesting	question:	how	is	the	ending	point	(the	100%	point,	if	you	like)	determined
for	each	gradient	ray?	It’s	the	point	where	the	gradient	ray	intersects	with	the	shape	described	by	the	size.
In	the	case	of	a	circle,	that’s	easy:	the	gradient	ray’s	ending	point	is	however	far	from	the	center	that	the
size	value	indicates.	So	for	a	25px	circle	gradient,	the	ending	point	of	the	ray	is	25	pixels	from	the
center.

For	an	ellipse,	it’s	essentially	the	same	operation,	except	that	the	distance	from	the	center	is	dependent	on
the	horizontal	axis	of	the	ellipse.	Given	a	radial	gradient	that’s	a	40px	20px	ellipse,	the	ending
point	will	be	40	pixels	from	the	center	and	directly	to	its	right.	Figure	8-82	shows	this	in	some	detail.

Figure	8-82.	Setting	the	gradient	ray’s	ending	point

Another	difference	between	linear	gradient	lines	and	radial	gradient	rays	is	that	you	can	see	beyond	the
ending	point.	If	you	recall,	a	linear	gradient	line	is	always	drawn	so	that	you	can	see	the	colors	at	the	0%
and	100%	points,	but	nothing	beyond	them;	the	gradient	line	can	never	be	any	smaller	than	the	longest	axis
of	the	gradient	image,	and	will	frequently	be	longer	than	that.	With	a	radial	gradient,	on	the	other	hand,
you	can	size	the	radial	shape	to	be	smaller	than	the	total	gradient	image.	In	that	case,	the	color	at	the	last
color	stop	is	extended	outward	from	the	ending	point.	(We’ve	already	seen	this	in	several	previous
figures.)

Conversely,	if	you	set	a	color	stop	that’s	beyond	the	ending	point	of	a	ray,	you	might	get	to	see	the	color
out	to	that	stop.	Consider	the	following	gradient,	illustrated	in	Figure	8-83:

radial-gradient(50px	circle	at	center,	purple,	green,	gold	80px)

Figure	8-83.	Color	stops	beyond	the	ending	point

The	first	color	stop	has	no	position,	so	it’s	set	to	0%,	which	is	the	center	point.	The	last	color	stop	is	set
to	80px,	so	it	will	be	80	pixels	away	from	the	center	in	all	directions.	The	middle	color	stop,	green,	is
placed	midway	between	the	two	(40	pixels	from	the	center).	So	we	get	a	gradient	that	goes	out	to	gold	at
80	pixels	and	then	continues	gold	beyond	that	point.

This	happens	even	though	the	circle	was	explicitly	set	to	be	50	pixels	large.	It	still	is	50	pixels	in	radius,
it’s	just	that	the	positioning	of	the	last	color	stop	makes	that	fact	vaguely	irrelevant.	Visually,	we	might	as
well	have	declared	this:

radial-gradient(80px	circle	at	center,	purple,	green,	gold)

or,	more	simply,	just	this:

radial-gradient(80px,	purple,	green,	gold)

The	same	behaviors	apply	if	you	use	percentages	for	your	color	stops.	These	are	equivalent	to	the
previous	examples,	and	to	each	other,	visually	speaking:

radial-gradient(50px,	purple,	green,	gold	160%)

radial-gradient(80px,	purple,	green,	gold	100%)

Now,	what	if	you	set	a	negative	position	for	a	color	stop?	It’s	pretty	much	the	same	result	as	we	saw	with
linear	gradient	lines:	the	negative	color	stop	is	used	to	figure	out	the	color	at	the	starting	point,	but	is
otherwise	unseen.	Thus,	the	following	gradient	will	have	the	result	shown	in	Figure	8-84:

radial-gradient(80px,	purple	-40px,	green,	gold)

Figure	8-84.	Handling	a	negative	color-stop	position

Given	these	color-stop	positions,	the	first	color	stop	is	at	-40px,	the	last	is	at	80px	(because,	given	its
lack	of	an	explicit	position,	it	defaults	to	the	ending	point),	and	the	middle	is	placed	midway	between
them.	The	result	is	the	same	as	if	we’d	explicitly	said:

radial-gradient(80px,	purple	-40px,	green	20px,	gold	80px)

That’s	why	the	color	at	the	center	of	the	gradient	is	a	green-purple:	it’s	a	blend	of	one-third	purple,	two-
thirds	green.	From	there,	it	blends	the	rest	of	the	way	to	green,	and	then	on	to	gold.	The	rest	of	the	purple-
green	blend,	the	part	that	sits	on	the	“negative	space”	of	the	gradient	ray,	is	invisible.

Degenerate	cases
Given	that	we	can	declare	size	and	position	for	a	radial	gradient,	the	question	arises:	what	if	a	circular
gradient	has	zero	radius,	or	an	elliptical	gradient	has	zero	height	or	width?	These	conditions	aren’t	quite
as	hard	to	create	as	you	might	think:	besides	explicitly	declaring	that	a	radial	gradient	has	zero	size	using
0px	or	0%,	you	could	also	do	something	like	this:

radial-gradient(closest-corner	circle	at	top	right,	purple,	gold)

The	gradient’s	size	is	set	to	closest-corner,	and	the	center	has	been	moved	into	the	top	right
corner,	so	the	closest	corner	is	zero	pixels	away	from	the	center.	Now	what?

In	this	case,	the	specification	very	explicitly	says	that	the	gradient	should	be	rendered	as	if	it’s	“a	circle
whose	radius	[is]	an	arbitrary	very	small	number	greater	than	zero.”	So	that	might	mean	as	if	it	had	a
radius	of	one-one-billionth	of	a	pixel,	or	a	picometer,	or	heck,	the	Planck	length.	The	interesting	thing	is
that	it	means	the	gradient	is	still	a	circle.	It’s	just	a	very,	very,	very	small	circle.	Probably,	it	will	be	too
small	to	actually	render	anything	visible.	If	so,	you’ll	just	get	a	solid-color	fill	that	corresponds	to	the

color	of	the	last	color	stop	instead.

Ellipses	with	zero-length	dimensions	have	fascinatingly	different	defined	behaviors.	Let’s	assume	the
following:

radial-gradient(0px	50%	at	center,	purple,	gold)

The	specification	states	that	any	ellipse	with	a	zero	width	is	rendered	as	if	it’s	“an	ellipse	whose	height
[is]	an	arbitrary	very	large	number	and	whose	width	[is]	an	arbitrary	very	small	number	greater	than
zero.”	In	other	words,	render	it	as	though	it’s	a	linear	gradient	mirrored	around	the	vertical	axis	running
through	the	center	of	the	ellipse.	The	specification	also	says	that	in	such	a	case,	any	color	stops	with
percentage	positions	resolve	to	0px.	This	will	usually	result	in	a	solid	color	matching	the	color	defined
for	the	last	color	stop.

On	the	other	hand,	if	you	use	lengths	to	position	the	color	stops,	you	can	get	a	vertically	mirrored
horizontal	linear	gradient	for	free.	Consider	the	following	gradient,	illustrated	in	Figure	8-85:

radial-gradient(0px	50%	at	center,	purple	0px,	gold	100px)

Figure	8-85.	The	effects	of	a	zero-width	ellipse

How	did	this	happen?	First,	remember	that	the	specification	says	that	the	0px	horizontal	width	is	treated
as	if	it’s	a	tiny	non-zero	number.	For	the	sake	of	illustration,	let’s	suppose	that’s	one-one-thousandth	of	a
pixel	(0.001	px).	That	means	the	ellipse	shape	is	a	thousandth	of	a	pixel	wide	by	half	the	height	of	the
image.	Again	for	the	sake	of	illustration,	let’s	suppose	that’s	a	height	of	100	pixels.	That	means	the	first
ellipse	shape	is	a	thousandth	of	a	pixel	wide	by	100	pixels	tall,	which	is	an	aspect	ratio	of	0.001:100,	or
1:100,000.

OK,	so	every	ellipse	drawn	along	the	gradient	ray	has	a	1:100,000	aspect	ratio.	That	means	the	ellipse	at

half	a	pixel	along	the	gradient	ray	is	1	pixel	wide	and	100,000	pixels	tall.	At	1	pixel,	it’s	2	pixels	wide
and	200,000	pixels	tall.	At	5	pixels,	the	ellipse	is	10	pixels	by	a	million	pixels.	At	50	pixels	along	the
gradient	ray,	the	ellipse	is	100	pixels	wide	and	10	million	tall.	And	so	on.	This	is	diagrammed	in
Figure	8-86.

Figure	8-86.	Very,	very	tall	ellipses

So	you	can	see	why	the	visual	effect	is	of	a	mirrored	linear	gradient.	These	ellipses	are	effectively
drawing	vertical	lines.	Technically	they	aren’t,	but	in	practical	terms	they	are.	The	result	is	as	if	you	have
a	vertically	mirrored	horizontal	gradient,	because	each	ellipse	is	centered	on	the	center	of	the	gradient,
and	both	sides	of	it	get	drawn.	While	this	may	be	a	radial	gradient,	we	can’t	see	its	radial	nature.

On	the	other	hand,	if	the	ellipse	has	width	but	not	height,	the	results	are	quite	different.	You’d	think	the
result	would	be	to	have	a	vertical	linear	gradient	mirrored	around	the	horizontal	axis,	but	not	so!	Instead,
the	result	is	a	solid	color	equal	to	the	last	color	stop.	(Unless	it’s	a	repeating	gradient,	a	subject	we’ll	turn
to	shortly,	in	which	case	it	should	be	a	solid	color	equal	to	the	average	color	of	the	gradient.)	So,	given
either	of	the	following,	you’ll	get	a	solid	gold:

radial-gradient(50%	0px	at	center,	purple,	gold)

radial-gradient(50%	0px	at	center,	purple	0px,	gold	100px)

Why	the	difference?	It	goes	back	to	how	radial	gradients	are	constructed	from	the	gradient	ray.	Again,
remember	that,	per	the	specification,	a	zero	distance	here	is	treated	as	a	very	small	non-zero	number.	As
before,	we’ll	assume	that	0px	is	reassigned	to	0.001px,	and	that	the	50%	evaluates	to	100	pixels.
That’s	an	aspect	ratio	of	100:0.001,	or	100,000:1.

So,	to	get	an	ellipse	that’s	1	pixel	tall,	the	width	of	that	ellipse	must	be	100,000	pixels.	But	our	last	color
stop	is	only	at	100	pixels!	At	that	point,	the	ellipse	that’s	drawn	is	100	pixels	wide	and	1,000th	of	a	pixel
tall.	All	of	the	purple-to-gold	transition	that	happens	along	the	gradient	ray	has	to	happen	in	that
thousandth	of	a	pixel.	Everything	after	that	is	gold,	as	per	the	final	color	stop.	Thus,	we	can	only	see	the
gold.

You	might	think	that	if	you	increased	the	position	value	of	the	last	color	stop	to	100000px,	you’d	see	a
thin	sliver	of	purple-ish	color	running	horizontally	across	the	image.	And	you’d	be	right,	if	the	browser
treats	0px	as	0.001px	in	these	cases.	If	it	assumes	0.00000001px	instead,	you’d	have	to	increase
the	color	stop’s	position	a	lot	further	in	order	to	see	anything.	And	that’s	assuming	the	browser	was
actually	caulculating	and	drawing	all	those	ellipses,	instead	of	just	hard-coding	the	special	cases.	The
latter	is	a	lot	more	likely,	honestly.	It’s	what	we’d	do	if	we	were	in	charge	of	a	browser’s	gradient-
rendering	code.

And	what	if	an	ellipse	has	zero	width	and	zero	height?	In	that	case,	the	specification	is	written	such	that
the	zero-width	behavior	is	used;	thus,	you’ll	get	the	mirrored-linear-gradient	behavior.

NOTE
As	of	late	2022,	browser	support	for	the	defined	behavior	in	these	edge	cases	was	unstable,	at	best.	Some	browsers	used	the	last	color-
stop’s	color	in	all	cases,	and	others	refused	to	draw	a	gradient	at	all	in	some	cases.

Repeating	radial	gradients
While	percentages	in	repeating	linear	gradients	could	turn	them	into	non-repeating	gradients,	percentages
can	be	very	useful	with	repeating	radial	gradients,	where	the	size	of	the	circle	or	ellipse	is	defined,
percentage	positions	along	the	gradient	ray	are	defined,	and	you	can	see	beyond	the	endpoint	of	the
gradient	ray.	For	example,	assume:

.allhail	{background:

				repeating-radial-gradient(100px	50px,	purple,	gold	20%,	green	40%,

																														purple	60%,	yellow	80%,	purple);}

Given	this	rule,	there	will	be	a	color	stop	every	20	pixels,	with	the	colors	repeating	in	the	declared
pattern.	Because	the	first	and	last	color	stops	have	the	same	color	value,	there	is	no	hard	color	switch.
The	ripples	just	spread	out	forever,	or	at	least	until	they’re	beyond	the	edges	of	the	gradient	image.	See
Figure	8-87	for	an	example.

Figure	8-87.	Repeating	radial	gradients

Just	imagine	what	that	would	look	like	with	a	repeating	radial	gradient	of	a	rainbow!

.wdim	{background:

				repeating-radial-gradient(

								100px	circle	at	bottom	center,

								rgb(83%,83%,83%)	50%,

								violet	55%,	indigo	60%,	blue	65%,	green	70%,

								yellow	75%,	orange	80%,	red	85%,

								rgb(47%,60%,73%)	90%

);}

There	are	a	couple	of	things	to	keep	in	mind	when	creating	repeating	radial	gradients:

If	you	don’t	declare	size	dimensions	for	a	radial,	it	will	default	to	an	ellipse	that	has	the	same	height-
to-width	ratio	as	the	overall	gradient	image;	and,	if	you	don’t	declare	a	size	for	the	image	with
background-size,	the	gradient	image	will	default	to	the	height	and	width	of	the	element
background	where	it’s	being	applied.	(Or,	in	the	case	of	being	used	as	a	list-style	bullet,	the	size	that
the	browser	gives	it.)

The	default	radial	size	value	is	farthest-corner.	This	will	put	the	endpoint	of	the	gradient	ray
far	enough	to	the	right	that	its	ellipse	intersects	with	the	corner	of	the	gradient	image	that’s	furthest
from	the	center	point	of	the	radial	gradient.

These	are	reiterated	here	to	remind	you	that	if	you	stick	to	the	defaults,	there’s	not	really	any	point	to

having	a	repeating	gradient,	since	you’ll	only	be	able	to	see	the	first	iteration	of	the	repeat.	It’s	only	when
you	restrict	the	initial	size	of	the	gradient	that	the	repeats	become	visible.

Conic	Gradients
Radial	gradients	are	fun,	but	what	if	you	want	a	gradient	that	wraps	around	a	central	point,	similar	to	a
color	hue	wheel?	That’s	what	CSS	calls	a	conic	gradient,	which	can	be	thought	of	as	a	concentric	series
of	linear	gradients	that	are	bent	into	circles.	Looked	at	another	way,	at	any	distance	from	the	center,
there’s	a	circle	whose	outer	rim	could	be	straightened	out	into	a	linear	gradient	with	the	color	stop
specified.

Conic	gradients	are	more	easily	shown	than	described,	so	consider	the	following	CSS,	which	is
illustrated	in	Figure	8-88	along	with	a	linear	diagram	to	show	how	the	stops	wrap	around	the	conical
space:

background:

					conic-gradient(

										black,	gray,	black,	white,	black,	silver,	gray

);

Figure	8-88.	A	simple	conic	gradient	and	its	linear	equivalent

Note	how	each	of	the	color	stops	is	labeled	on	the	linear	gradient:	the	circled	numbers	listed	there	are
repeated	in	the	conic	gradient,	to	show	where	each	color	stop	falls.	At	60	degrees	around	the	conic
gradient,	there	is	a	gray	color	stop.	At	180	degrees,	a	white	color	stop.	At	the	top	of	the	conic
gradient,	the	0deg	and	360deg	points	meet,	so	black	and	gray	sit	next	to	each	other.

By	default,	conic	gradients	start	at	zero	degrees,	using	the	same	compass	degree	system	that	transforms
and	other	parts	of	CSS	use,	so	0deg	is	at	the	top.	If	you	want	to	start	from	a	different	angle	and	wrap
around	the	circle	back	to	that	point,	it’s	as	straightforward	as	adding	from	and	an	angle	value	to	the	front
of	the	conic-gradient	value,	which	rotates	the	entire	gradient	by	the	declared	angle.	The	following
would	all	have	the	same	result.

conic-gradient(from	144deg,	black,	gray,	black,	white)

conic-gradient(from	2.513274rad,	black,	gray,	black,	white)

conic-gradient(from	0.4turn,	black,	gray,	black,	white)

If	the	conic	gradient	has	been	given	a	different	start	angle,	such	as	from	45deg,	then	it	acts	as	a
rotation	of	the	entire	conic	gradient.	Consider	the	following	two	examples,	with	the	results	depicted	in
Figure	8-89.

conic-gradient(black,	white	90deg,	gray	180deg,	black	270deg,	white)

conic-gradient(from	45deg,	black,	white	90deg,	gray	180deg,	black	270deg,	white)

Figure	8-89.	Conic	gradients	with	angled	color	stops	and	different	start	angles

Not	only	is	the	starting	point	rotated	45	degrees,	but	all	the	other	color	stops	are	as	well.	Thus,	even
though	the	first	color	stop	has	an	angle	of	90deg,	it	actually	occurs	at	the	135-degree	mark,	that	being	90
degrees	with	a	45-degree	rotation	added.

It’s	also	possible	to	change	the	location	of	the	gradient’s	centerpoint	within	the	image,	just	as	with	radial
gradients.	The	syntax	is	quite	similar,	as	you	can	see	in	this	code	block	(illustrated	by	Figure	8-90):

conic-gradient(from	144deg	at	3em	6em,	black,	gray,	black,	white)

conic-gradient(from	144deg	at	67%	25%,	black,	gray,	black,	white)

conic-gradient(from	144	deg	at	center	bottom,	black,	gray,	black,	white)

Figure	8-90.	Rotated	and	offset	conic	gradients

In	the	first	of	the	three	examples,	the	center	of	the	conic	gradient	is	placed	3em	to	the	right	of	the	top	left
corner,	and	6em	down	from	that	same	corner.	Similarly,	the	second	example	shows	the	centerpoint	67%
of	the	way	across	the	conic-gradient	image,	and	25%	down	from	the	top.

The	third	example	shows	what	happens	when	the	centerpoint	of	a	conic	gradient	is	placed	along	one	edge
of	the	image:	we	only	see	half	(at	most)	of	the	gradient.	In	this	case,	the	top	half	is	visible—that	is,	the
colors	from	270	degrees	through	90	degrees.

So	all	together,	the	syntax	for	a	conic	gradient	is:

conic-gradient(

				[from	<angle>]?	[at	<position>]?	,	|	at	<position>,]?

						<color-stop>	,	[<color-hint>]?	,	<color-stop>]+

)

If	the	from	angle	is	not	given,	it	defaults	to	0deg.	If	not	at	position	is	given,	then	it	defaults	to	50%
50%	(that	is,	the	center	of	the	conic-gradient	image).

Much	as	with	radial	and	linear	gradients,	color	stop	distances	can	be	specific	by	a	percentage	value;	in
this	case,	it	resolves	to	an	angle	value.	Thus,	for	a	conic	gradient	starting	at	0	degrees,	the	color	stop
distance	25%	would	resolve	to	90	degrees,	as	90	is	25%	of	360.	Conic	color	stops	can	also	be	specified
as	a	degree	value,	as	shown	previously.

You	cannot	specify	a	length	value	for	a	conic	gradient’s	color	stop’s	distance.	Only	percentages	and
angles	are	acceptable,	and	they	can	be	mixed.

Conic	color	stops
If	you	want	a	conic	gradient	to	blend	smoothly	from	color	to	color	all	the	way	around	the	circle,	then	it	is
necessary	to	make	the	last	color	stop	match	the	first	color	stop.	Otherwise,	you’ll	see	the	kinds	of	hard
transitions	seen	in	earlier	examples.	If	you	wanted	to	create	a	color	hue	wheel,	for	example,	you’d	need	to
declare	it	like	so:

conic-gradient(red,	magenta,	blue,	aqua,	lime,	yellow,	red)

Except	that’s	not	actually	a	wheel,	since	the	conic-gradient	image	fills	the	entire	background	area,	and
background	areas	in	CSS	are	(thus	far)	rectangular	by	default.	To	make	the	color	wheel	actually	look	like
a	color	wheel,	you’d	need	to	either	use	a	circular	clipping	path	(see	XREF	HERE)	or	round	the	corners
on	a	square	element	(see	Chapter	7).	For	example,	the	following	will	have	the	result	shown	in	Figure	8-
91.

.hues	{

					height:	10em;	width:	10em;

					background:	conic-gradient(red,	magenta,	blue,	aqua,	lime,	yellow,	red);

}

#wheel	{

					border-radius:	50%;

}

<div	class="hues"></div>

<div	class="hues"	id="wheel"></div>

Figure	8-91.	Hue-wheel	conic	gradients	with	and	without	corner	rounding

This	emphasizes	that	while	it’s	easy	to	think	of	conic	gradients	as	circles,	the	end	result	is	a	rectangle,
absent	any	clipping	or	other	effort	to	make	the	element’s	background	area	non-rectangular.	So	if	you’re
thinking	about	using	conic	gradients	to	make,	say,	a	pie	chart,	you’ll	have	to	do	more	than	just	define	a
conic	gradient	with	hard	stops.

Just	as	we	used	two	length-percentage	values	to	create	hard	stops	in	linear	gradients,	we	can	use	two	hard
stops	in	conic	gradients.	For	example:

conic-gradient(

	 green	37.5%,

	 yellow	37.5%	62.5%,

	 red	62.5%);

In	this	syntax,	a	given	color	stop	can	be	written	as	<color>	<beginning>	<ending>,	where
<beginning>	and	<ending>	are	percentage	or	angle	values.

If	you	want	to	create	smoother	transitions	between	colors	but	still	have	them	be	mostly	solid,	then	the
<color>	<beginning>	<ending>	syntax	can	help	a	lot.	For	example,	the	following	conic	gradient	eases
the	transitions	between	green,	yellow,	and	red	without	making	the	overall	gradient	too	“smeared.”

conic-gradient(green	35%,	yellow	40%	60%,	red	65%);

This	runs	a	solid	wedge	of	green	from	zero	to	126	degrees	(35%),	then	transitions	smoothly	from	green	to
yellow	between	126	degrees	and	144	degrees	(40%),	past	which	there	is	a	solid	wedge	of	yellow
spanning	from	144	degrees	to	216	degrees	(60%).	Similarly,	there	is	a	smoothed	transition	from	yellow	to
red	between	216	degrees	and	234	degrees	(65%),	and	beyond	that,	a	solid	red	wedge	running	to	360
degrees.

All	this	is	illustrated	in	Figure	8-92,	with	extra	annotations	to	mark	where	the	calculated	angles	land.

Figure	8-92.	Conic	gradients	with	solid	color	wedges	and	smooth	transitions

And,	as	it	happens,	that	syntax	makes	it	relatively	easy	to	recreate	those	picnic	tablecloths	discussed
earlier	in	the	chapter	using	a	conic	gradient:

background-image:	conic-gradient(

	 rgba(0	0	0	/	0.2)	0%	25%,

	 rgba(0	0	0	/	0.4)	25%	50%,

	 rgba(0	0	0	/	0.2)	50%	75%,

	 transparent	75%	100%

);

background-size:	2vw	2vw;

background-repeat:	repeat;

This	creates,	in	a	single	gradient	image,	a	set	of	four	squares	in	the	pattern.	That	image	is	then	sized	and
repeated.	It’s	not	more	efficient	or	elegant	than	using	repeating	linear	gradients,	but	it	does	embody	a
certain	cleverness	that	appeals	to	us.

Repeating	conic	gradients
And	now	we	come	to	repeating	conic	gradients,	which	are	highly	useful	if	you	want	to	create	a	starburst
pattern,	or	even	something	simple	like	a	checkerboard	pattern.	For	example:

conic-gradient(

				#0002	0	25%,	#FFF2	0	50%,	#0002	0	75%,	#FFF2	0	100%

)

This	sets	up	a	checkerboard	pattern	with	four	color	stops,	but	only	two	colors.	We	can	restate	that	using
repeating-conic-gradient	like	so,	with	new	colors	to	make	the	pattern	a	little	more	clear:

repeating-conic-gradient(

					#343	0	25%,	#ABC	0	50%

)

All	that	was	necessary	in	this	simple	repeating	case	was	to	set	up	the	first	two	color	stops.	After	that,	the
stops	are	repeated	until	the	full	360	degrees	of	the	conic	are	filled,	as	shown	in	Figure	8-93.

Figure	8-93.	A	repeating	conic	gradient

This	means	we	can	create	wedges	of	any	size,	with	any	transition,	and	repeat	them	all	the	way	around	the
conic	circle.	Here	are	just	three	examples,	rendered	in	Figure	8-94.

repeating-conic-gradient(#117	5deg,	#ABE	15deg,	#117	25deg)

repeating-conic-gradient(#117	0	5deg,	#ABE	0	15deg,	#117	0	25deg)

repeating-conic-gradient(#117	5deg,	#ABE	15deg)

Figure	8-94.	Three	variants	on	a	repeating	conic	gradient

Notice	how	the	first	(leftmost)	example’s	smoothed	transitions	hold	true	even	at	the	top	of	the	image:	the
transition	from	#117	at	350	degrees	to	#ABE	at	5	degrees	is	handled	like	all	of	the	other	transitions.
Repeated	conic	gradients	are	unique	in	this	way,	since	both	linear	and	radial	gradients	never	“wrap
around”	to	have	the	end	meet	the	beginning.	This	is	also	seen	in	the	third	(rightmost)	example	in	Figure	8-
94.

It’s	possible	to	break	this	special	behavior,	though,	as	the	second	(center)	example	illustrates:	note	the
narrower	wedge	from	355	degrees	through	360	degrees.	This	happened	because	the	first	color	stop	in	the
pattern	explicitly	runs	from	0	degrees	through	5	degrees.	Thus,	there	is	no	way	to	transition	from	355
degrees	through	to	five	degrees,	which	leads	to	a	hard	transition	at	360/0	degrees.

Manipulating	Gradient	Images
As	has	been	previously	emphasized	(possibly	to	excess),	gradients	are	images.	That	means	you	can	size,
position,	repeat,	and	otherwise	affect	them	with	the	various	background	properties,	just	as	you	would	any
PNG	or	SVG.

One	way	this	can	be	leveraged	is	to	repeat	simple	gradients.	(Repeating	in	more	complex	ways	is	the
subject	of	the	next	section.)	For	example,	you	could	use	a	hard-stop	radial	gradient	to	give	your
background	a	dotted	look,	as	shown	in	Figure	8-86:

body	{background:	radial-gradient(circle	at	center,

																				rgba(0	0	0	/	0.1),	rgba(0	0	0	/	0.1)	10px,

																				transparent	10px,	transparent)

																				center	/	25px	25px	repeat,

																				tan;}

Figure	8-95.	Tiled	radial	gradient	images

Yes,	this	is	visually	pretty	much	the	same	as	tiling	a	PNG	that	has	a	mostly-transparent	dark	circle	10
pixels	in	diameter.	There	are	three	advantages	to	using	a	gradient	in	this	case:

The	CSS	is	almost	certainly	smaller	in	bytes	than	the	PNG	would	be.

Even	more	importantly,	the	PNG	requires	an	extra	hit	on	the	server.	This	slows	down	both	page	and
server	performance.	A	CSS	gradient	is	part	of	the	stylesheet	and	so	eliminates	the	extra	server	hit.

Changing	the	gradient	is	a	lot	simpler,	so	experimenting	to	find	exactly	the	right	size,	shape,	and
darkness	is	much	easier.

Gradients	can’t	do	everything	a	raster	or	vector	image	can,	so	it’s	not	as	though	you’ll	be	giving	up
external	images	completely	now	that	gradients	are	a	thing.	You	can	still	pull	off	some	pretty	impressive
effects	with	gradients,	though.	Consider	the	background	effect	shown	in	Figure	8-96.

Figure	8-96.	It’s	time	to	play	the	music…

That	curtain	effect	was	accomplished	with	just	two	linear	gradients	repeated	at	differing	intervals,	plus	a
third	to	create	a	“glow”	effect	along	the	bottom	of	the	background.	Here’s	the	code	that	accomplished	it:

background-image:

				linear-gradient(0deg,	rgba(255	128	128	/	0.25),	transparent	75%),

				linear-gradient(89deg,

								transparent	30%,

								#510A0E	35%	40%,	#61100F	43%,	#B93F3A	50%,

								#4B0408	55%,	#6A0F18	60%,	#651015	65%,

								#510A0E	70%	75%,	rgba(255	128	128	/	0)	80%,	transparent),

				linear-gradient(92deg,

								#510A0E	20%,	#61100F	25%,	#B93F3A	40%,	#4B0408	50%,

								#6A0F18	70%,	#651015	80%,	#510A0E	90%);

background-size:	auto,	300px	100%,	109px	100%;

background-repeat:	repeat-x;

The	first	(and	therefore	topmost)	gradient	is	just	a	fade	from	a	75%-transparent	light	red	up	to	full
transparency	at	the	75%	point	of	the	gradient	line.	Then	two	“fold”	images	are	created.	Figure	8-97
shows	each	separately.

With	those	images	defined,	they	are	repeated	along	the	x-axis	and	given	different	sizes.	The	first,	which	is
the	“glow”	effect,	is	given	auto	size	in	order	to	let	it	cover	the	entire	element	background.	The	second	is
given	a	width	of	300px	and	a	height	of	100%;	thus,	it	will	be	as	tall	as	the	element	background	and	300
pixels	wide.	This	means	it	will	be	tiled	every	300	pixels	along	the	x-axis.	The	same	is	true	of	the	third
image,	except	it	tiles	every	109	pixels.	The	end	result	looks	like	an	irregular	stage	curtain.

Figure	8-97.	The	two	“fold”	gradients

The	beauty	of	this	is	that	adjusting	the	tiling	intervals	is	just	a	matter	of	editing	the	stylesheet.	Changing
the	color-stop	positions	or	the	colors	is	less	trivial,	but	not	too	difficult	if	you	know	what	effect	you’re
after.	And	adding	a	third	set	of	repeating	folds	is	no	more	difficult	than	just	adding	another	gradient	to	the
stack.

Average	gradient	colors
It’s	worth	asking	what	happens	if	a	repeating	gradient’s	first	and	last	color	stops	somehow	end	up	being	in
the	same	place.	For	example,	suppose	your	fingers	missed	the	“5”	key	and	you	accidentally	declared	the
following:

repeating-radial-gradient(center,	purple	0px,	gold	0px)

The	first	and	last	color	stops	are	zero	pixels	apart,	but	the	gradient	is	supposed	to	repeat	ad	infinitum
along	the	gradient	line.	Now	what?

In	such	a	case,	the	browser	finds	the	average	gradient	color	and	fills	it	in	throughout	the	entire	gradient
image.	In	our	simple	case	in	the	preceding	code,	that	will	be	a	50/50	blend	of	purple	and	gold	(which
will	be	about	#C06C40	or	rgb(75%,42%,25%)).	Thus,	the	resulting	gradient	image	should	be	a	solid
orangey-brown,	which	doesn’t	really	look	much	like	a	gradient.

This	condition	can	also	be	triggered	in	cases	where	the	browser	rounds	the	color-stop	positions	to	zero,
or	cases	where	the	distance	between	the	first	and	last	color	stops	is	so	small	as	compared	to	the	output
resolution	that	nothing	useful	can	be	rendered.	This	could	happen	if,	for	example,	a	repeating	radial
gradient	used	all	percentages	for	the	color-stop	positions	and	was	sized	using	closest-side,	but	was
accidentally	placed	into	a	corner.

WARNING
As	of	late	2022,	no	browsers	really	do	avergae	colors	correctly.	It	is	possible	to	trigger	some	of	the	correct	behaviors	under	very	limited
conditions,	but	in	most	cases,	browsers	either	just	use	the	last	color	stop	as	a	fill	color,	or	else	try	really	hard	to	draw	sub-pixel	repeating
patterns.

Box	Shadows
In	an	earlier	chapter,	we	explored	the	property	text-shadow,	which	adds	a	drop	shadow	to	the	text	of
a	non-replaced	element.	There’s	a	version	of	this	that	creates	a	shadow	for	the	box	of	an	element,	called
box-shadow.

BOX-SHADOW

Values none	|	[inset?	&&	<length>{2,4}	&&	<color>?]#

Initial	value none

Applies	to All	elements

Computed	value <length>	values	as	absolute	length	values;	<color>	values	as	computed	internally;	otherwise	as	specified

Inherited No

Animatable Yes

It	might	seem	a	little	out	of	place	to	talk	about	shadows	in	a	chapter	mostly	concerned	with	backgrounds
and	gradients,	but	there’s	a	reason	it	goes	here,	which	we’ll	see	in	a	moment.

Let’s	consider	a	simple	box	drop	shadow:	one	that’s	10	pixels	down	and	10	pixels	to	the	right	of	an
element	box,	with	no	spread	or	blur,	and	a	half-opaque	black.	Behind	it	we’ll	put	a	repeating	background
on	the	body	element.	All	of	this	is	illustrated	in	Figure	8-98.

#box	{background:	silver;	border:	medium	solid;

					box-shadow:	10px	10px	rgba(0,0,0,0.5);}

Figure	8-98.	A	simple	box	shadow

We	can	see	that	the	body’s	background	is	visible	through	the	half-opaque	(or	half-transparent,	if	you
prefer)	drop	shadow.	Because	no	blur	or	spread	distances	were	defined,	the	drop	shadow	exactly	mimics
the	outer	shape	of	the	element	box	itself.	At	least,	it	appears	to	do	so.

The	reason	it	only	appears	to	mimic	the	shape	of	the	box	is	that	the	shadow	is	only	visible	outside	the
outer	border	edge	of	the	element.	We	couldn’t	really	see	that	in	the	previous	figure,	because	the	element
had	an	opaque	background.	You	might	have	just	assumed	that	the	shadow	extended	all	the	way	under	the
element,	but	it	doesn’t.	Consider	the	following,	illustrated	in	Figure	8-99.

#box	{background:	transparent;	border:	thin	dashed;

					box-shadow:	10px	10px	rgba(0,0,0,0.5);}

Figure	8-99.	Box	shadows	are	incomplete

So	it	looks	as	though	the	element’s	content	(and	padding	and	border)	area	“knocks	out”	part	of	the
shadow.	In	truth,	it’s	just	that	the	shadow	was	never	drawn	there,	due	to	the	way	box	shadows	are	defined
in	the	specification.	This	does	mean,	as	Figure	8-99	demonstrates,	that	any	background	“behind”	the	box
with	a	drop	shadow	can	be	visible	through	the	element	itself.	This	(perhaps	bizarre-seeming)	interaction

with	the	backgrounds	and	borders	is	why	box-shadow	is	covered	here,	instead	of	at	an	earlier	point	in
the	text.

So	far,	we’ve	seen	box	shadows	defined	with	two	length	values.	The	first	defines	a	horizontal	offset,	and
the	second	a	vertical	offset.	Positive	numbers	move	the	shadow	down	and	to	right	right,	and	negative
numbers	move	the	shadow	up	and	to	the	left.

If	a	third	length	is	given,	it	defines	a	blur	distance,	which	determines	how	much	space	is	given	to	blurring.
A	fourth	length	defines	a	spread	distance,	which	changes	the	size	of	the	shadow.	Positive	length	values
make	the	shadow	expand	before	blurring	happens;	negative	values	cause	the	shadow	to	shrink.	The
following	have	the	results	shown	in	Figure	8-100.

.box:nth-of-type(1)	{box-shadow:	1em	1em	2px	rgba(0,0,0,0.5);}

.box:nth-of-type(2)	{box-shadow:	2em	0.5em	0.25em	rgba(128,0,0,0.5);}

.box:nth-of-type(3)	{box-shadow:	0.5em	2ch	1vw	13px	rgba(0,128,0,0.5);}

.box:nth-of-type(4)	{box-shadow:	-10px	25px	5px	-5px	rgba(0,128,128,0.5);}

.box:nth-of-type(5)	{box-shadow:	0.67em	1.33em	0	-0.1em	rgba(0,0,0,0.5);}

.box:nth-of-type(6)	{box-shadow:	0.67em	1.33em	0.2em	-0.1em	rgba(0,0,0,0.5);}

.box:nth-of-type(7)	{box-shadow:	0	0	2ch	2ch	rgba(128,128,0,0.5);}

Figure	8-100.	Various	blurred	and	spread	shadows

You	may	have	noticed	that	some	of	the	boxes	in	Figure	8-100	have	rounded	corners	(via	border-
radius),	and	that	their	shadows	were	curved	to	match.	This	is	the	defined	behavior,	fortunately.

There’s	one	aspect	of	box-shadow	we	have	yet	to	cover,	which	is	the	inset	keyword.	If	inset	is
added	to	the	value	of	box-shadow,	then	the	shadow	is	rendered	inside	the	box,	as	if	the	box	were	a
punched-out	hole	in	the	canvas	rather	than	floating	above	it	(visually	speaking).	Let’s	take	the	previous	set
of	examples	and	redo	them	with	inset	shadows.	This	will	have	the	result	shown	in	Figure	8-101.

.box:nth-of-type(1)	{box-shadow:	inset	1em	1em	2px	rgba(0,0,0,0.5);}

.box:nth-of-type(2)	{box-shadow:	inset	2em	0.5em	0.25em	rgba(128,0,0,0.5);}

.box:nth-of-type(3)	{box-shadow:	0.5em	2ch	1vw	13px	rgba(0,128,0,0.5)	inset;}

.box:nth-of-type(4)	{box-shadow:	inset	-10px	25px	5px	-5px		rgba(0,128,128,0.5);}

.box:nth-of-type(5)	{box-shadow:	0.67em	1.33em	0	-0.1em	rgba(0,0,0,0.5)	inset;}

.box:nth-of-type(6)	{box-shadow:	inset	0.67em	1.33em	0.2em	-0.1em	rgba(0,0,0,0.5);}

.box:nth-of-type(7)	{box-shadow:	0	0	2ch	2ch	rgba(128,128,0,0.5)	inset;}

Figure	8-101.	Various	inset	shadows

Note	that	the	inset	keyword	can	appear	before	the	rest	of	the	value,	or	after,	but	not	in	the	middle	of	the
lengths	and	colors.	A	value	like	0	0	0.1em	inset	gray	would	be	ignored	as	invalid,	because	of
the	placement	of	the	inset	keyword.

The	last	thing	to	note	is	that	you	can	apply	to	an	element	a	list	of	as	many	comma-separated	box	shadows
as	you	like,	just	as	with	text	shadows.	Some	could	be	inset,	and	some	outset.	The	following	rules	are	just
two	of	the	infinite	possibilities.

#shadowbox	{

	 padding:	20px;

	 box-shadow:	inset	0	-3em	3em	rgba(0	0	0	/0.1),

	 	 0	0	0	2px	rgb(255	255	255),

	 	 0.3em	0.3em	1em	rgba(0	0	0	/	0.3);}

#wacky	{box-shadow:	inset	10px	2vh	0.77em	1ch	red,

					1cm	1in	0	-1px	cyan	inset,

					2ch	3ch	0.5ch	hsla(117,100%,50%,0.343),

					-2ch	-3ch	0.5ch	hsla(297,100%,50%,0.23);}

Multiple	shadows	are	drawn	back	to	front,	just	as	background	layers	are,	so	the	first	shadow	in	the
comma	separated	list	will	be	“on	top”	of	all	the	others.	Given:

box-shadow:	0	0	0	5px	red,

												0	0	0	10px	blue,

												0	0	0	15px	green;

…the	green	is	drawn	first,	then	the	blue	on	top	of	the	green,	and	the	red	drawn	last.	While	box	shadows
can	be	infinitely	wide,	they	do	not	contribute	to	the	box	model	and	take	up	no	space.	Because	of	this,
make	sure	to	include	enough	space	if	you’re	doing	large	offsets	or	blur	distances.

TIP
The	filter	property	is	another	way	to	create	element	drop	shadows,	although	it	is	much	closer	in	behavior	to	text-shadow	than
box-shadow,	albeit	applying	to	the	entire	element	box	and	text.	See	XREF	HERE	for	details.

Summary
Adding	backgrounds	to	elements,	whether	with	colors	or	images,	gives	authors	a	great	deal	of	power	over
the	total	visual	presentation.	The	advantage	of	CSS	over	older	methods	is	that	colors	and	backgrounds	can

be	applied	to	any	element	in	a	document,	and	manipulated	in	surprisingly	complex	ways.

1 	The	exact	curve	is	logarithmic	and	based	on	the	gradient-progression	equation	used	by	Adobe	Photoshop

Chapter	9.	Floating	and	Positioning

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	9th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

For	a	very	long	time,	floated	elements	were	the	basis	of	all	our	web	layout	schemes.	(This	is	largely
because	of	the	property	clear,	which	we’ll	get	to	in	a	bit.)	But	floats	were	never	meant	for	layout;	their
use	as	a	layout	tool	was	a	hack	nearly	as	egregious	as	the	use	of	tables	for	layout.	They	were	just	what	we
had.

Floats	are	quite	interesting	and	useful	in	their	own	right,	however,	especially	given	the	recent	addition	of
float	shaping,	which	allows	the	creation	of	nonrectangular	shapes	past	which	content	can	flow.

Floating
Ever	since	the	early	1990s,	it	has	been	possible	to	float	images	by	declaring,	for	instance,	.	This	causes	an	image	to	float	to	the	right	and	allows	other
content	(such	as	text)	to	“flow	around”	the	image.	The	name	“floating,”	in	fact,	comes	from	the	Netscape
DevEdge	page	“Extensions	to	HTML	2.0,”	which	explained	the	then-new	align	attribute.

Unlike	HTML,	CSS	lets	you	float	any	element,	from	images	to	paragraphs	to	lists.	This	is	accomplished
using	the	property	float.

mailto:rfernando@oreilly.com

FLOAT

Values left	|	right	|	inline-start	|	inline-end	|	none

Initial	value none

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

For	example,	to	float	an	image	to	the	left,	you	could	use	this	markup:

As	Figure	9-1	illustrates,	the	image	“floats”	to	the	left	side	of	the	browser	window	and	the	text	flows
around	it.

Figure	9-1.	A	floating	image

You	can	float	to	the	left	or	right,	as	well	as	to	the	inline-start	and	inline-end	edges	of	an
element.	These	latter	two	are	useful	when	you	have	an	element	you	want	to	be	floated	toward	the	start	or
end	of	the	inline	axis, 	regardless	of	the	direction	that	axis	is	pointing.

NOTE
Throughout	the	rest	of	this	section,	we’ll	mostly	stick	to	left	and	right	because	they	make	explanations	simpler.	They’re	also	going	to
be	nearly	the	only	float	values	you	see	in	the	wild,	at	least	for	the	next	few	years.

Floated	Elements
Keep	a	few	things	in	mind	with	regard	to	floating	elements.	In	the	first	place,	a	floated	element	is,	in	some
ways,	removed	from	the	normal	flow	of	the	document,	although	it	still	affects	the	layout	of	the	normal
flow.	In	a	manner	utterly	unique	within	CSS,	floated	elements	exist	almost	on	their	own	plane,	yet	they
still	have	influence	over	the	rest	of	the	document.

1

This	influence	derives	from	the	fact	that	when	an	element	is	floated,	other	normal-flow	content	“flows
around”	it.	This	is	familiar	behavior	with	floated	images,	but	the	same	is	true	if	you	float	a	paragraph,	for
example.	In	Figure	9-2,	you	can	see	this	effect	quite	clearly,	thanks	to	the	margin	added	to	the	floated
paragraph:

p.aside	{float:	inline-end;	width:	15em;	margin:	0	1em	1em;

					padding:	0.25em;	border:	1px	solid;}

Figure	9-2.	A	floating	paragraph

One	of	the	first	things	to	notice	about	floated	elements	is	that	margins	around	floated	elements	do	not
collapse.	If	you	float	an	image	and	give	it	20-pixel	margins,	there	will	be	at	least	20	pixels	of	space
around	that	image.	If	other	elements	adjacent	to	the	image—and	that	means	adjacent	horizontally	and
vertically—also	have	margins,	those	margins	will	not	collapse	with	the	margins	on	the	floated	image,	as
shown	in	Figure	9-3,	where	there	is	50	pixels	of	space	between	the	two	floated	images:

p	img	{float:	inline-start;	margin:	25px;}

Figure	9-3.	Floating	images	with	margins

No	floating	at	all
There	is	one	other	value	for	float	besides	the	ones	we’ve	discussed:	float:	none	is	used	to
prevent	an	element	from	floating	at	all.

This	might	seem	a	little	silly,	since	the	easiest	way	to	keep	an	element	from	floating	is	to	avoid	declaring
a	float,	right?	Well,	first	of	all,	the	default	value	of	float	is	none.	In	other	words,	the	value	has	to	exist
in	order	for	normal,	nonfloating	behavior	to	be	possible;	without	it,	all	elements	would	float	in	one	way
or	another.

Second,	you	might	want	to	override	floating	in	some	cases.	Imagine	that	you’re	using	a	server-wide
stylesheet	that	floats	images.	On	one	particular	page,	you	don’t	want	those	images	to	float.	Rather	than
writing	a	whole	new	stylesheet,	you	could	place	img	{float:	none;}	in	your	document’s
embedded	stylesheet.

Floating:	The	Details
Before	we	start	digging	into	details	of	floating,	it’s	important	to	establish	the	concept	of	a	containing
block.	A	floated	element’s	containing	block	is	the	nearest	block-level	ancestor	element.	Therefore,	in	the
following	markup,	the	floated	element’s	containing	block	is	the	paragraph	element	that	contains	it:

<h1>

				Test

</h1>

<p>

				This	is	paragraph	text,	but	you	knew	that.	Within	the	content	of	this

				paragraph	is	an	image	that's	been	floated.	<img	src="testy.gif"

				class="floated-figure">	The	containing	block	for	the	floated	image	is

				the	paragraph.

</p>

We’ll	return	to	the	concept	of	containing	blocks	when	we	discuss	positioning	in	“Positioning”.

Furthermore,	a	floated	element	generates	a	block	box,	regardless	of	the	kind	of	element	it	is.	Thus,	if	you
float	a	link,	even	though	the	element	is	inline	and	would	ordinarily	generate	an	inline	box,	it	generates	a
block	box	when	floated.	It	will	be	laid	out	and	act	as	if	it	was,	for	example,	a	div.	This	is	not	unlike
declaring	display:	block	for	the	floated	element,	although	it	is	not	necessary	to	do	so.

A	series	of	specific	rules	govern	the	placement	of	a	floated	element,	so	let’s	cover	those	before	digging
into	applied	behavior.	These	rules	are	vaguely	similar	to	those	that	govern	the	evaluation	of	margins	and
widths	and	have	the	same	initial	appearance	of	common	sense.	They	are	as	follows:

1.	 The	left	(or	right)	outer	edge	of	a	floated	element	may	not	be	to	the	left	(or	right)	of	the	inner	edge	of
its	containing	block.

This	is	straightforward	enough.	The	outer-left	edge	of	a	left-floated	element	can	only	go	as	far	left	as	the
inner-left	edge	of	its	containing	block.	Similarly,	the	furthest	right	a	right-floated	element	may	go	is	its
containing	block’s	inner-right	edge,	as	shown	in	Figure	9-4.	(In	this	and	subsequent	figures,	the	circled

numbers	show	the	position	where	the	markup	element	actually	appears	in	relation	to	the	source,	and	the
numbered	boxes	show	the	position	and	size	of	the	floated	visible	element.)

Figure	9-4.	Floating	to	the	left	(or	right)

2.	 To	prevent	overlap	with	other	floated	elements,	the	left	outer	edge	of	a	floated	element	must	be	to	the
right	of	the	right	outer	edge	of	a	left-floating	element	that	occurs	earlier	in	the	document	source,
unless	the	top	of	the	later	element	is	below	the	bottom	of	the	earlier	element.	Similarly,	the	right
outer	edge	of	a	floated	element	must	be	to	the	left	of	the	left,	outer	edge	of	a	right-floating	element
that	comes	earlier	in	the	document	source,	unless	the	top	of	the	later	element	is	below	the	bottom	of
the	earlier	element.

This	rule	prevents	floated	elements	from	“overwriting”	each	other.	If	an	element	is	floated	to	the	left,	and
another	floated	element	is	already	there,	the	latter	element	will	be	placed	against	the	outer-right	edge	of
the	previously	floated	element.	If,	however,	a	floated	element’s	top	is	below	the	bottom	of	all	earlier
floated	images,	then	it	can	float	all	the	way	to	the	inner-left	edge	of	the	parent.	Some	examples	of	this	are
shown	in	Figure	9-5.

Figure	9-5.	Keeping	floats	from	overlapping

The	advantage	of	this	rule	is	that	all	your	floated	content	will	be	visible,	since	you	don’t	have	to	worry
about	one	floated	element	obscuring	another.	This	makes	floating	a	fairly	safe	thing	to	do.	The	situation	is
markedly	different	when	using	positioning,	where	it	is	very	easy	to	cause	elements	to	overwrite	one
another.

3.	 The	right,	outer	edge	of	a	left-floating	element	may	not	be	to	the	right	of	the	left,	outer	edge	of	any
right-floating	element	to	its	right.	The	left,	outer	edge	of	a	right-floating	element	may	not	be	to	the	left
of	the	right,	outer	edge	of	any	left-floating	element	to	its	left.

This	rule	prevents	floated	elements	from	overlapping	each	other.	Let’s	say	you	have	a	body	that	is	500
pixels	wide,	and	its	sole	content	is	two	images	that	are	300	pixels	wide.	The	first	is	floated	to	the	left,
and	the	second	is	floated	to	the	right.	This	rule	prevents	the	second	image	from	overlapping	the	first	by
100	pixels.	Instead,	it	is	forced	down	until	its	top	is	below	the	bottom	of	the	right-floating	image,	as
depicted	in	Figure	9-6.

Figure	9-6.	More	overlap	prevention

4.	 A	floating	element’s	top	may	not	be	higher	than	the	inner	top	of	its	parent.	If	a	floating	element	is
between	two	collapsing	margins,	then	the	floated	element	is	placed	as	though	it	had	a	block-level
parent	element	between	the	two	elements.

The	first	part	of	this	rule	keeps	floating	elements	from	floating	all	the	way	to	the	top	of	the	document.	The
correct	behavior	is	illustrated	in	Figure	9-7.	The	second	part	of	this	rule	fine-tunes	the	alignment	in	some
situations—for	example,	when	the	middle	of	three	paragraphs	is	floated.	In	that	case,	the	floated
paragraph	is	floated	as	if	it	had	a	block-level	parent	element	(say,	a	div).	This	prevents	the	floated
paragraph	from	moving	up	to	the	top	of	whatever	common	parent	the	three	paragraphs	share.

Figure	9-7.	Unlike	balloons,	floated	elements	can’t	float	upward

5.	 A	floating	element’s	top	may	not	be	higher	than	the	top	of	any	earlier	floating	or	block-level	element.

Similarly	to	rule	4,	rule	5	keeps	floated	elements	from	floating	all	the	way	to	the	top	of	their	parent

elements.	It	is	also	impossible	for	a	floated	element’s	top	to	be	any	higher	than	the	top	of	a	floated
element	that	occurs	earlier.	Figure	9-8	is	an	example	of	this:	since	the	second	float	was	forced	to	be
below	the	first	one,	the	third	float’s	top	is	even	with	the	top	of	the	second	float,	not	the	first.

Figure	9-8.	Keeping	floats	below	their	predecessors

6.	 A	floating	element’s	top	may	not	be	higher	than	the	top	of	any	line	box	that	contains	a	box	generated
by	an	element	that	comes	earlier	in	the	document	source.

Similarly	to	rules	4	and	5,	this	rule	further	limits	the	upward	floating	of	an	element	by	preventing	it	from
being	above	the	top	of	a	line	box	containing	content	that	precedes	the	floated	element.	Let’s	say	that,	right
in	the	middle	of	a	paragraph,	there	is	a	floated	image.	The	highest	the	top	of	that	image	may	be	placed	is
the	top	of	the	line	box	from	which	the	image	originates.	As	you	can	see	in	Figure	9-9,	this	keeps	images
from	floating	too	far	upward.

Figure	9-9.	Keeping	floats	level	with	their	context

7.	 A	left-floating	element	that	has	another	floating	element	to	its	left	may	not	have	its	right	outer	edge	to
the	right	of	its	containing	block’s	right	edge.	Similarly,	a	right-floating	element	that	has	another
floating	element	to	its	right	may	not	have	its	right	outer	edge	to	the	left	of	its	containing	block’s	left
edge.

In	other	words,	a	floating	element	cannot	stick	out	beyond	the	edge	of	its	containing	element,	unless	it’s
too	wide	to	fit	on	its	own.	This	prevents	a	situation	where	a	succeeding	number	of	floated	elements	could
appear	in	a	horizontal	line	and	far	exceed	the	edges	of	the	containing	block.	Instead,	a	float	that	would
otherwise	stick	out	of	its	containing	block	by	appearing	next	to	another	one	will	be	floated	down	to	a
point	below	any	previous	floats,	as	illustrated	by	Figure	9-10	(in	the	figure,	the	floats	start	on	the	next	line
in	order	to	more	clearly	illustrate	the	principle	at	work	here).

Figure	9-10.	If	there	isn’t	room,	floats	get	pushed	to	a	new	“line”

8.	 A	floating	element	must	be	placed	as	high	as	possible.

Rule	8	is,	as	you	might	expect,	subject	to	the	restrictions	introduced	by	the	previous	seven	rules.
Historically,	browsers	aligned	the	top	of	a	floated	element	with	the	top	of	the	line	box	after	the	one	in
which	the	image’s	tag	appears.	Rule	8,	however,	implies	that	its	top	should	be	even	with	the	top	of	the
same	line	box	as	that	in	which	its	tag	appears,	assuming	there	is	enough	room.	The	theoretically	correct
behaviors	are	shown	in	Figure	9-11.

Figure	9-11.	Given	the	other	constraints,	go	as	high	as	possible

9.	 A	left-floating	element	must	be	put	as	far	to	the	left	as	possible,	and	a	right-floating	element	as	far	to

the	right	as	possible.	A	higher	position	is	preferred	to	one	that	is	further	to	the	right	or	left.

Again,	this	rule	is	subject	to	restrictions	introduced	in	the	preceding	rules.	As	you	can	see	in	Figure	9-12,
it	is	pretty	easy	to	tell	when	an	element	has	gone	as	far	as	possible	to	the	right	or	left.

Figure	9-12.	Get	as	far	to	the	left	(or	right)	as	possible

Applied	Behavior
There	are	a	number	of	interesting	consequences	that	fall	out	of	the	rules	we’ve	just	seen,	both	because	of
what	they	say	and	what	they	don’t	say.	The	first	thing	to	discuss	is	what	happens	when	the	floated	element
is	taller	than	its	parent	element.

This	happens	quite	often,	as	a	matter	of	fact.	Take	the	example	of	a	short	document,	composed	of	no	more
than	a	few	paragraphs	and	h3	elements,	where	the	first	paragraph	contains	a	floated	image.	Further,	this
floated	image	has	a	margin	of	5	pixels	(5px).	You	would	expect	the	document	to	be	rendered	as	shown	in
Figure	9-13.

Figure	9-13.	Expected	floating	behavior

Nothing	there	is	unusual,	but	Figure	9-14	shows	what	happens	when	you	set	the	first	paragraph	to	have	a
background.

There	is	nothing	different	about	the	second	example,	except	for	the	visible	background.	As	you	can	see,
the	floated	image	sticks	out	of	the	bottom	of	its	parent	element.	It	also	did	so	in	the	first	example,	but	it
was	less	obvious	there	because	you	couldn’t	see	the	background.	The	floating	rules	we	discussed	earlier
address	only	the	left,	right,	and	top	edges	of	floats	and	their	parents.	The	deliberate	omission	of	bottom
edges	requires	the	behavior	in	Figure	9-14.

Figure	9-14.	Backgrounds	and	floated	elements

CSS	2.1	clarified	one	aspect	of	floated-element	behavior,	which	is	that	a	floated	element	will	expand	to
contain	any	floated	descendants.	(Previous	versions	of	CSS	were	unclear	about	what	should	happen.)
Thus,	you	could	contain	a	float	within	its	parent	element	by	floating	the	parent,	as	in	this	example:

<div	style="float:	left;	width:	100%;">

					The	'div'	will	stretch	around	the

				floated	image	because	the	'div'	has	been	floated.

</div>

On	a	related	note,	consider	backgrounds	and	their	relationship	to	floated	elements	that	occur	earlier	in	the
document,	which	is	illustrated	in	Figure	9-15.

Because	the	floated	element	is	both	within	and	outside	of	the	flow,	this	sort	of	thing	is	bound	to	happen.
What’s	going	on?	The	content	of	the	heading	is	being	“displaced”	by	the	floated	element.	However,	the
heading’s	element	width	is	still	as	wide	as	its	parent	element.	Therefore,	its	content	area	spans	the	width
of	the	parent,	and	so	does	the	background.	The	actual	content	doesn’t	flow	all	the	way	across	its	own
content	area	so	that	it	can	avoid	being	obscured	behind	the	floating	element.

Figure	9-15.	Element	backgrounds	“slide	under”	floated	elements

Negative	margins
Interestingly,	negative	margins	can	cause	floated	elements	to	move	outside	of	their	parent	elements.	This
seems	to	be	in	direct	contradiction	to	the	rules	explained	earlier,	but	it	isn’t.	In	the	same	way	that	elements
can	appear	to	be	wider	than	their	parents	through	negative	margins,	floated	elements	can	appear	to
protrude	out	of	their	parents.

Let’s	consider	an	image	that	is	floated	to	the	left,	and	that	has	left	and	top	margins	of	-15px.	This	image
is	placed	inside	a	div	that	has	no	padding,	borders,	or	margins.	The	result	is	shown	in	Figure	9-16.

Figure	9-16.	Floating	with	negative	margins

Contrary	to	appearances,	this	does	not	violate	the	restrictions	on	floated	elements	being	placed	outside
their	parent	elements.

Here’s	the	technicality	that	permits	this	behavior:	a	close	reading	of	the	rules	in	the	previous	section	will
show	that	the	outer	edges	of	a	floating	element	must	be	within	the	element’s	parent.	However,	negative
margins	can	place	the	floated	element’s	content	such	that	it	effectively	overlaps	its	own	outer	edge,	as
detailed	in	Figure	9-17.

Figure	9-17.	The	details	of	floating	up	and	left	with	negative	margins

There	is	one	important	question	here:	what	happens	to	the	document	display	when	an	element	is	floated

out	of	its	parent	element	by	using	negative	margins?	For	example,	an	image	could	be	floated	so	far	up	that
it	intrudes	into	a	paragraph	that	has	already	been	displayed	by	the	user	agent.	In	such	a	case,	it’s	up	to	the
user	agent	to	decide	whether	the	document	should	be	reflowed.

The	CSS	specification	explicitly	states	that	user	agents	are	not	required	to	reflow	previous	content	to
accommodate	things	that	happen	later	in	the	document.	In	other	words,	if	an	image	is	floated	up	into	a
previous	paragraph,	it	will	probably	overwrite	whatever	was	already	there.	This	makes	the	utility	of
negative	margins	on	floats	somewhat	limited.	Hanging	floats	are	usually	fairly	safe,	but	trying	to	push	an
element	upward	on	the	page	is	generally	a	bad	idea.

There	is	one	other	way	for	a	floated	element	to	exceed	its	parent’s	inner	left	and	right	edges,	and	that’s
when	the	floated	element	is	wider	than	its	parent.	In	that	case,	the	floated	element	will	overflow	the	right
or	left	inner	edge—depending	on	which	way	the	element	is	floated—in	its	best	attempt	to	display	itself
correctly.	This	will	lead	to	a	result	like	that	shown	in	Figure	9-18.

Figure	9-18.	Floating	an	element	that	is	wider	than	its	parent

Floats,	Content,	and	Overlapping
An	interesting	question	is	this:	what	happens	when	a	float	overlaps	content	in	the	normal	flow?	This	can
happen	if,	for	example,	a	float	has	a	negative	margin	on	the	side	where	content	is	flowing	past	(e.g.,	a
negative	left	margin	on	a	right-floating	element).	You’ve	already	seen	what	happens	to	the	borders	and
backgrounds	of	block-level	elements.	What	about	inline	elements?

The	CSS	2.1	specification	states:

An	inline	box	that	overlaps	with	a	float	has	its	borders,	background,	and	content	all	rendered	“on
top”	of	the	float.

A	block	box	that	overlaps	with	a	float	has	its	borders	and	background	rendered	“behind”	the	float,
whereas	its	content	is	rendered	“on	top”	of	the	float.

To	illustrate	these	rules,	consider	the	following	situation:

<p	class="box">

				This	paragraph,	unremarkable	in	most	ways,	does	contain	an	inline	element.

				This	inline	contains	some	strongly	emphasized	text,	which	is	so

				marked	to	make	an	important	point.	The	rest	of	the	element's

				content	is	normal	anonymous	inline	content.

</p>

<p>

				This	is	a	second	paragraph.		There's	nothing	remarkable	about	it,	really.

				Please	move	along	to	the	next	bit.

</p>

<h2	id="jump-up">

				A	Heading!

</h2>

To	that	markup,	apply	the	following	styles,	with	the	result	seen	in	Figure	9-19:

.sideline	{float:	left;	margin:	10px	-15px	10px	10px;}

p.box	{border:	1px	solid	gray;	background:	hsl(117,50%,80%);	padding:	0.5em;}

p.box	strong	{border:	3px	double;	background:	hsl(215,100%,80%);	padding:	2px;}

h2#jump-up	{margin-top:	-25px;	background:	hsl(42,70%,70%);}

Figure	9-19.	Layout	behavior	when	overlapping	floats

The	inline	element	(strong)	completely	overlaps	the	floated	image—background,	border,	content,	and	all.
The	block	elements,	on	the	other	hand,	have	only	their	content	appear	on	top	of	the	float.	Their
backgrounds	and	borders	are	placed	behind	the	float.

The	described	overlapping	behavior	is	independent	of	the	document	source	order.	It	does	not	matter	if	an
element	comes	before	or	after	a	float:	the	same	behaviors	still	apply.

Clearing
We’ve	talked	quite	a	bit	about	floating	behavior,	so	there’s	only	one	more	thing	to	discuss	before	we	turn
to	shapes.	You	won’t	always	want	your	content	to	flow	past	a	floated	element—in	some	cases,	you’ll
specifically	want	to	prevent	it.	If	you	have	a	document	that	is	grouped	into	sections,	you	might	not	want
the	floated	elements	from	one	section	hanging	down	into	the	next.	In	that	case,	you’d	want	to	set	the	first
element	of	each	section	to	prohibit	floating	elements	from	appearing	next	to	it.	If	the	first	element	might
otherwise	be	placed	next	to	a	floated	element,	it	will	be	pushed	down	until	it	appears	below	the	floated
image,	and	all	subsequent	content	will	appear	after	that,	as	shown	in	Figure	9-20.

Figure	9-20.	Displaying	an	element	in	the	clear

This	is	done	with	clear.

CLEAR

Values both	|	left	|	right	|	inline-start	|	inline-end	|	none

Initial	value none

Applies	to Block-level	elements

Computed	value As	specified

Inherited No

Animatable No

For	example,	to	make	sure	all	h3	elements	are	not	placed	to	the	right	of	left-floating	elements,	you	would
declare	h3	{clear:	left;}.	This	can	be	translated	as	“make	sure	that	the	left	side	of	an	h3	is	clear
of	floating	images.”	The	following	rule	uses	clear	to	prevent	h3	elements	from	flowing	past	floated
elements	to	the	left	side:

h3	{clear:	left;}

While	this	will	push	the	h3	past	any	left-floating	elements,	it	will	allow	floated	elements	to	appear	on	the
right	side	of	h3	elements,	as	shown	in	Figure	9-21.

Figure	9-21.	Clear	to	the	left,	but	not	the	right

In	order	to	avoid	this	sort	of	thing,	and	to	make	sure	that	h3	elements	do	not	coexist	on	a	line	with	any
floated	elements,	you	use	the	value	both:

h3	{clear:	both;}

Understandably	enough,	this	value	prevents	coexistence	with	floated	elements	on	both	sides	of	the	cleared
element,	as	demonstrated	in	Figure	9-22.

Figure	9-22.	Clear	on	both	sides

If,	on	the	other	hand,	we	were	only	worried	about	h3	elements	being	pushed	down	past	floated	elements
to	their	right,	then	you’d	use	h3	{clear:	right;}.

As	with	float,	you	can	give	clear	the	values	inline-start	or	inline-end.	If	you’re	floating
with	those	values,	then	clearing	with	them	makes	sense.	If	you’re	floating	using	left	and	right,	then
using	those	values	for	clear	is	sensible.

Finally,	there’s	clear:	none,	which	allows	elements	to	float	to	either	side	of	an	element.	As	with
float:	none,	this	value	mostly	exists	to	allow	for	normal	document	behavior,	in	which	elements	will
permit	floated	elements	to	both	sides.	none	can	be	used	to	override	other	styles,	as	shown	in	Figure	9-
23.	Despite	the	document-wide	rule	that	h3	elements	will	not	permit	floated	elements	to	either	side,	one
h3	in	particular	has	been	set	so	that	it	does	permit	floated	elements	on	either	side:

h3	{clear:	both;}

<h3	style="clear:	none;">What's	With	All	The	NEO?</h3>

Figure	9-23.	Not	clear	at	all

The	clear	property	works	by	way	of	what’s	called	clearance.	Clearance	is	extra	spacing	added	above
an	element’s	top	margin	in	order	to	push	it	past	any	floated	elements.	This	means	that	the	top	margin	of	a
cleared	element	does	not	change	when	an	element	is	cleared.	Its	downward	movement	is	caused	by	the
clearance	instead.	Pay	close	attention	to	the	placement	of	the	heading’s	border	in	Figure	9-24,	which
results	from	the	following:

img.sider	{float:	left;	margin:	0;}

h3	{border:	1px	solid	gray;	clear:	left;	margin-top:	15px;}

<h3>

				Why	Doubt	Salmon?

</h3>

Figure	9-24.	Clearing	and	its	effect	on	margins

There	is	no	separation	between	the	top	border	of	the	h3	and	the	bottom	border	of	the	floated	image
because	25	pixels	of	clearance	were	added	above	the	15-pixel	top	margin	in	order	to	push	the	h3’s	top
border	edge	just	past	the	bottom	edge	of	the	float.	This	will	be	the	case	unless	the	h3’s	top	margin
calculates	to	40	pixels	or	more,	in	which	case	the	h3	will	naturally	place	itself	below	the	float,	and	the
clear	value	will	be	irrelevant.

In	most	cases,	you	can’t	know	how	far	an	element	needs	to	be	cleared.	The	way	to	make	sure	a	cleared
element	has	some	space	between	its	top	and	the	bottom	of	a	float	is	to	put	a	bottom	margin	on	the	float
itself.	Therefore,	if	you	want	there	to	be	at	least	15	pixels	of	space	below	the	float	in	the	previous
example,	you	would	change	the	CSS	like	this:

img.sider	{float:	left;	margin:	0	0	15px;}

h3	{border:	1px	solid	gray;	clear:	left;}

The	floated	element’s	bottom	margin	increases	the	size	of	the	float	box,	and	thus	the	point	past	which
cleared	elements	must	be	pushed.	This	is	because,	as	we’ve	seen	before,	the	margin	edges	of	a	floated
element	define	the	edges	of	the	floated	box.

Positioning
The	idea	behind	positioning	is	fairly	simple.	It	allows	you	to	define	exactly	where	element	boxes	will
appear	relative	to	where	they	would	ordinarily	be—or	position	them	in	relation	to	a	parent	element,
another	element,	or	even	to	the	viewport	(e.g.,	the	browser	window)	itself.

Before	we	delve	into	the	various	kinds	of	positioning,	it’s	a	good	idea	to	look	at	what	types	exist	and	how
they	differ.

Types	of	Positioning
You	can	choose	one	of	five	different	types	of	positioning,	which	affect	how	the	element’s	box	is
generated,	by	using	the	position	property.

POSITION

Values static	|	relative	|	sticky	|	absolute	|	fixed

Initial	value static

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

The	values	of	position	have	the	following	meanings:

static

The	element’s	box	is	generated	as	normal.	Block-level	elements	generate	a	rectangular	box	that	is	part
of	the	document’s	flow,	and	inline-level	boxes	cause	the	creation	of	one	or	more	line	boxes	that	are
flowed	within	their	parent	element.

relative

The	element’s	box	is	offset	by	some	distance.	The	element	retains	the	shape	it	would	have	had	were	it
not	positioned,	and	the	space	that	the	element	would	ordinarily	have	occupied	is	preserved.

absolute

The	element’s	box	is	completely	removed	from	the	flow	of	the	document	and	positioned	with	respect
to	its	containing	block,	which	may	be	another	element	in	the	document	or	the	initial	containing	block
(described	in	the	next	section).	Whatever	space	the	element	might	have	occupied	in	the	normal
document	flow	is	closed	up,	as	though	the	element	did	not	exist.	The	positioned	element	generates	a
block-level	box,	regardless	of	the	type	of	box	it	would	have	generated	if	it	were	in	the	normal	flow.

fixed

The	element’s	box	behaves	as	though	it	was	set	to	absolute,	but	its	containing	block	is	the
viewport	itself.

sticky

The	element	is	left	in	the	normal	flow,	until	the	conditions	that	trigger	its	stickiness	come	to	pass,	at
which	point	it	is	removed	from	the	normal	flow	but	its	original	space	in	the	normal	flow	is	preserved.
It	will	then	act	as	if	absolutely	positioned	with	respect	to	its	containing	block.	Once	the	conditions	to
enforce	stickiness	are	no	longer	met,	the	element	is	returned	to	the	normal	flow	in	its	original	space.

Don’t	worry	so	much	about	the	details	right	now,	as	we’ll	look	at	each	of	these	kinds	of	positioning	later.
Before	we	do	that,	we	need	to	discuss	containing	blocks.

The	Containing	Block
In	general	terms,	a	containing	block	is	the	box	that	contains	another	element.	As	an	example,	in	the
normal-flow	case,	the	root	element	(html	in	HTML)	is	the	containing	block	for	the	body	element,	which
is	in	turn	the	containing	block	for	all	its	children,	and	so	on.	When	it	comes	to	positioning,	the	containing
block	depends	entirely	on	the	type	of	positioning.

For	a	non-root	element	whose	position	value	is	relative	or	static,	its	containing	block	is
formed	by	the	content	edge	of	the	nearest	block-level,	table-cell,	or	inline-block	ancestor	box.

For	a	non-root	element	that	has	a	position	value	of	absolute,	its	containing	block	is	set	to	the
nearest	ancestor	(of	any	kind)	that	has	a	position	value	other	than	static.	This	happens	as	follows:

If	the	ancestor	is	block-level,	the	containing	block	is	set	to	be	that	element’s	padding	edge;	in	other
words,	the	area	that	would	be	bounded	by	a	border.

If	the	ancestor	is	inline-level,	the	containing	block	is	set	to	the	content	edge	of	the	ancestor.	In	left-to-
right	languages,	the	top	and	left	of	the	containing	block	are	the	top	and	left	content	edges	of	the	first
box	in	the	ancestor,	and	the	bottom	and	right	edges	are	the	bottom	and	right	content	edges	of	the	last
box.	In	right-to-left	languages,	the	right	edge	of	the	containing	block	corresponds	to	the	right	content
edge	of	the	first	box,	and	the	left	is	taken	from	the	last	box.	The	top	and	bottom	are	the	same.

If	there	are	no	ancestors,	then	the	element’s	containing	block	is	defined	to	be	the	initial	containing
block.

There’s	an	interesting	variant	to	the	containing-block	rules	when	it	comes	to	sticky-positioned	elements,
which	is	that	a	rectangle	is	defined	in	relation	to	the	containing	block	called	the	sticky-constraint
rectangle.	This	rectangle	has	everything	to	do	with	how	sticky	positioning	works,	and	will	be	explained
in	full	later,	in	“Sticky	Positioning”.

An	important	point:	positioned	elements	can	be	positioned	outside	of	their	containing	block.	This	suggests
that	the	term	“containing	block”	should	really	be	“positioning	context,”	but	since	the	specification	uses
“containing	block,”	so	will	we.

Offset	Properties
Four	of	the	positioning	schemes	described	in	the	previous	section—relative,	absolute,	sticky,	and	fixed—
use	distinct	properties	to	describe	the	offset	of	a	positioned	element’s	sides	with	respect	to	its	containing
block.	These	properties,	which	are	referred	to	as	the	offset	properties,	are	a	big	part	of	what	makes
positioning	work.	There	are	four	physical	offset	properties,	and	four	logical	offset	properties.

TOP,	RIGHT,	BOTTOM,	LEFT,	INSET-BLOCK-START,	INSET-BLOCK-END,
INSET-INLINE-START,	INSET-INLINE-END

Values <length>	|	<percentage>	|	auto

Initial	value auto

Applies	to Positioned	elements

Percentages Refer	to	the	height	of	the	containing	block	for	top	and
bottom,	and	the	width	of	the	containing	block	for	right	and	left;	to	the	size	of	the	containing	block	along	
the	block	axis	for	inset-block-start	and	inset-block-end,	and	the	size	along	the	inline	axis	for	in
set-inline-start	and	inset-inline-end

Computed	value For	relative	or	sticky-positioned	elements,	see
the	sections	on	those	positioning	types.	For	static	elements,	auto;	for
length	values,	the	corresponding	absolute	length;	for	percentage	values,
the	specified	value;	otherwise,	auto.

Inherited No

Animatable <length>,	<percentage>

These	properties	describe	an	offset	from	the	nearest	side	of	the	containing	block	(thus	the	term	offset
properties).	The	simplest	way	to	look	at	it	is	that	positive	values	cause	inward	offsets,	moving	the	edges
toward	the	center	of	the	containing	block,	and	negative	values	cause	outward	offsets.

For	example,	top	describes	how	far	the	top	margin	edge	of	the	positioned	element	should	be	placed	from
the	top	of	its	containing	block.	In	the	case	of	top,	positive	values	move	the	top	margin	edge	of	the
positioned	element	downward,	while	negative	values	move	it	above	the	top	of	its	containing	block.
Similarly,	left	describes	how	far	to	the	right	(for	positive	values)	or	left	(for	negative	values)	the	left
margin	edge	of	the	positioned	element	is	from	the	left	edge	of	the	containing	block.	Positive	values	will
shift	the	margin	edge	of	the	positioned	element	to	the	right,	and	negative	values	will	move	it	to	the	left.

The	implication	of	offsetting	the	margin	edges	is	that	it’s	possible	to	set	margins,	borders,	and	padding	for
a	positioned	element;	these	will	be	preserved	and	kept	with	the	positioned	element,	and	they	will	be
contained	within	the	area	defined	by	the	offset	properties.

It	is	important	to	remember	that	the	offset	properties	define	an	offset	from	the	analogous	side	(e.g.,
inset-block-end	defines	the	offset	from	the	block-end	side)	of	the	containing	block,	not	from	the
upper-left	corner	of	the	containing	block.	This	is	why,	for	example,	one	way	to	fill	up	the	lower-right
corner	of	a	containing	block	is	to	use	these	values:

top:	50%;	bottom:	0;	left:	50%;	right:	0;

In	this	example,	the	outer-left	edge	of	the	positioned	element	is	placed	halfway	across	the	containing
block.	This	is	its	offset	from	the	left	edge	of	the	containing	block.	The	outer-right	edge	of	the	positioned

element,	on	the	other	hand,	is	not	offset	from	the	right	edge	of	the	containing	block,	so	the	two	are
coincident.	Similar	reasoning	holds	true	for	the	top	and	bottom	of	the	positioned	element:	the	outer-top
edge	is	placed	halfway	down	the	containing	block,	but	the	outer-bottom	edge	is	not	moved	up	from	the
bottom.	This	leads	to	what’s	shown	in	Figure	9-25.

Figure	9-25.	Filling	the	lower-right	quarter	of	the	containing	block

NOTE
What’s	depicted	in	Figure	9-25,	and	in	most	of	the	examples	in	this	chapter,	is	based	around	absolute	positioning.	Since	absolute	positioning
is	the	simplest	scheme	in	which	to	demonstrate	how	the	offset	properties	work,	we’ll	stick	to	that	for	now.

Note	the	background	area	of	the	positioned	element.	In	Figure	9-25,	it	has	no	margins,	but	if	it	did,	they
would	create	blank	space	between	the	borders	and	the	offset	edges.	This	would	make	the	positioned
element	appear	as	though	it	did	not	completely	fill	the	lower-right	quarter	of	the	containing	block.	In	truth,
it	would	fill	the	area,	because	margins	count	as	part	of	the	area	of	a	positioned	element,	but	this	fact
wouldn’t	be	immediately	apparent	to	the	eye.

Thus,	the	following	two	sets	of	styles	would	have	approximately	the	same	visual	appearance,	assuming
that	the	containing	block	is	100em	high	by	100em	wide:

#ex1	{top:	50%;	bottom:	0;	left:	50%;	right:	0;	margin:	10em;}

#ex2	{top:	60%;	bottom:	10%;	left:	60%;	right:	10%;	margin:	0;}

By	using	negative	offset	values,	it	is	possible	to	position	an	element	outside	its	containing	block.	For
example,	the	following	values	will	lead	to	the	result	shown	in	Figure	9-26:

top:	50%;	bottom:	-2em;	left:	75%;	right:	-7em;

Figure	9-26.	Positioning	an	element	outside	its	containing	block

In	addition	to	length	and	percentage	values,	the	offset	properties	can	also	be	set	to	auto,	which	is	the
default	value.	There	is	no	single	behavior	for	auto;	it	changes	based	on	the	type	of	positioning	used.
We’ll	explore	how	auto	works	later	on,	as	we	consider	each	of	the	positioning	types	in	turn.

Inset	Shorthands

In	addition	to	the	logical	inset	properties	mentioned	in	the	previous	section,	there	are	a	few	inset
shorthand	properties:	two	logical,	and	one	physical.

Table	9-1.	inset-block,	inset-inline

Values [<length>	|	<percentage>]{1,2}	|	auto

Initial	value auto

Applies	to Positioned	elements

Percentages Refer	to	the	size	of	the	containing	block	along	the	block	axis	for	inset-block,	and	the	size	along	the	inline	
axis	for	inset-inline

Computed	value For	relative	or	sticky-positioned	elements,	see
the	sections	on	those	positioning	types.	For	static	elements,	auto;	for
length	values,	the	corresponding	absolute	length;	for	percentage	values,
the	specified	value;	otherwise,	auto.

Inherited No

Animatable <length>,	<percentage>

For	both	these	properties,	you	can	supply	one	or	two	values.	If	you	supply	one,	the	same	value	is	used	for
both	sides;	that	is,	inset-block:	10px	will	use	10	pixels	of	inset	for	both	the	block-start	and	block-
end	edges.

If	you	supply	two	values,	then	the	first	is	used	for	the	start	edge,	and	the	second	of	the	end	edge.	Thus,
inset-inline:	1em	2em	will	use	1em	of	inset	for	the	inline	start	edge,	and	2em	of	inset	for	the
inline	end	edge.

It’s	usually	a	lot	easier	to	use	these	two	shorthands	for	logical	insets,	since	you	can	always	supply	auto
in	cases	where	you	don’t	want	to	set	a	specific	offset;	for	example,	inset-block:	25%	auto.

There	is	a	shorthand	for	all	four	edges	in	one	property,	and	it’s	called	inset,	but	it’s	a	physical	property
—	it’s	a	shorthand	for	top,	bottom,	left,	and	right.

INSET

Values [<length>	|	<percentage>]{1,4}	|	auto

Initial	value auto

Applies	to Positioned	elements

Percentages Refer	to	the	height	of	the	containing	block	for	top	and
bottom,	and	the	width	of	the	containing	block	for	right	and	left

Inherited No

Animatable <length>,	<percentage>

Yes,	it	looks	a	lot	like	this	should	actually	be	a	shorthand	for	the	logical	properties,	but	it	isn’t.	The
following	two	rules	have	the	same	result:

#popup	{top:	25%;	right:	4em;	bottom:	25%;	left:	2em;}

#popup	{inset:	25%	4em	25%	2em;}

As	with	other	physical	shorthands	such	as	those	seen	in	Chapter	7,	the	values	are	in	the	order	TRBL	(top-
right-bottom-left)	and	an	omitted	value	is	copied	from	the	opposite	side.	Thus,	inset:	20px	2em	is
the	same	as	writing	inset:	20px	2em	20px	2em.

Setting	Width	and	Height
There	will	be	many	cases	when,	having	determined	where	you’re	going	to	position	an	element,	you	will
want	to	declare	how	wide	and	how	high	that	element	should	be.	In	addition,	there	will	likely	be
conditions	where	you’ll	want	to	limit	how	high	or	wide	a	positioned	element	gets.

If	you	want	to	give	your	positioned	element	a	specific	width,	then	the	property	to	turn	to	is	width.
Similarly,	height	will	let	you	declare	a	specific	height	for	a	positioned	element.

Although	it	is	sometimes	important	to	set	the	width	and	height	of	a	positioned	element,	it	is	not
always	necessary.	For	example,	if	the	placement	of	the	four	sides	of	the	element	is	described	using	top,
right,	bottom,	and	left	(or	with	inset-block-start,	inset-inline-start,	etc.),	then
the	height	and	width	of	the	element	are	implicitly	determined	by	the	offsets.	Assume	that	we	want	an
absolutely	positioned	element	to	fill	the	left	half	of	its	containing	block,	from	top	to	bottom.	We	could	use
these	values,	with	the	result	depicted	in	Figure	9-27:

top:	0;	bottom:	0;	left:	0;	right:	50%;

Figure	9-27.	Positioning	and	sizing	an	element	using	only	the	offset	properties

Since	the	default	value	of	both	width	and	height	is	auto,	the	result	shown	in	Figure	9-27	is	exactly
the	same	as	if	we	had	used	these	values:

top:	0;	bottom:	0;	left:	0;	right:	50%;	width:	50%;	height:	100%;

The	presence	of	width	and	height	in	this	specific	example	add	nothing	to	the	layout	of	the	element.

If	we	were	to	add	padding,	a	border,	or	a	margin	to	the	element,	then	the	presence	of	explicit	values	for
height	and	width	could	very	well	make	a	difference:

top:	0;	bottom:	0;	left:	0;	right:	50%;	width:	50%;	height:	100%;

				padding:	2em;

This	will	give	us	a	positioned	element	that	extends	out	of	its	containing	block,	as	shown	in	Figure	9-28.

Figure	9-28.	Positioning	an	element	partially	outside	its	containing	block

This	happens	because	(by	default)	the	padding	is	added	to	the	content	area,	and	the	content	area’s	size	is
determined	by	the	values	of	height	and	width.	In	order	to	get	the	padding	we	want	and	still	have	the
element	fit	inside	its	containing	block,	we	would	either	remove	the	height	and	width	declarations,
explicitly	set	them	both	to	auto,	or	set	box-sizing	to	border-box.

Limiting	Width	and	Height
Should	it	become	necessary	or	desirable,	you	can	place	limits	on	an	element’s	width	by	using	the
following	properties,	which	we’ll	refer	to	as	the	min-max	properties.	An	element’s	content	area	can	be
defined	to	have	minimum	dimensions	using	min-width	and	min-height.

MIN-WIDTH,	MIN-HEIGHT

Values <length>	|	<percentage>

Initial	value 0

Applies	to All	elements	except	nonreplaced	inline	elements	and	table
elements

Percentages Refer	to	the	width	of	the	containing	block

Computed	value For	percentages,	as	specified;	for	length	values,	the
absolute	length;	otherwise,	none

Inherited No

Animatable <length>,	<percentage>

Similarly,	an	element’s	dimensions	can	be	limited	using	the	properties	max-width	and	max-height.

MAX-WIDTH,	MAX-HEIGHT

Values <length>	|	<percentage>	|	none

Initial	value none

Applies	to All	elements	except	nonreplaced	inline	elements	and	table
elements

Percentages Refer	to	the	height	of	the	containing	block

Computed	value For	percentages,	as	specified;	for	length	values,	the
absolute	length;	otherwise,	none

Inherited No

Animatable <length>,	<percentage>

The	names	of	these	properties	make	them	fairly	self-explanatory.	What’s	less	obvious	at	first,	but	makes
sense	once	you	think	about	it,	is	that	values	for	all	these	properties	cannot	be	negative.

The	following	styles	will	force	the	positioned	element	to	be	at	least	10em	wide	by	20em	tall,	as
illustrated	in	Figure	9-29:

top:	10%;	bottom:	20%;	left:	50%;	right:	10%;

				min-width:	10em;	min-height:	20em;

Figure	9-29.	Setting	a	minimum	width	and	height	for	a	positioned	element

This	isn’t	a	very	robust	solution	since	it	forces	the	element	to	be	at	least	a	certain	size	regardless	of	the
size	of	its	containing	block.	Here’s	a	better	one:

top:	10%;	bottom:	auto;	left:	50%;	right:	10%;

				height:	auto;	min-width:	15em;

Here	we	have	a	case	where	the	element	should	be	40%	as	wide	as	the	containing	block	but	can	never	be
less	than	15em	wide.	We’ve	also	changed	the	bottom	and	height	so	that	they’re	automatically
determined.	This	will	let	the	element	be	as	tall	as	necessary	to	display	its	content,	no	matter	how	narrow
it	gets	(never	less	than	15em,	though!).

NOTE
We’ll	look	at	the	role	auto	plays	in	the	height	and	width	of	positioned	elements	in	the	upcoming	section,	“Placement	and	Sizing	of
Absolutely	Positioned	Elements”.

You	can	turn	all	this	around	to	keep	elements	from	getting	too	wide	or	tall	by	using	max-width	and
max-height.	Let’s	consider	a	situation	where,	for	some	reason,	we	want	an	element	to	have	three-
quarters	the	width	of	its	containing	block	but	to	stop	getting	wider	when	it	hits	400	pixels.	The
appropriate	styles	are:

left:	0%;	right:	auto;	width:	75%;	max-width:	400px;

One	great	advantage	of	the	min-max	properties	is	that	they	let	you	mix	units	with	relative	safety.	You	can
use	percentage-based	sizes	while	setting	length-based	limits,	or	vice	versa.

It’s	worth	mentioning	that	these	min-max	properties	can	be	very	useful	in	conjunction	with	floated
elements.	For	example,	we	can	allow	a	floated	element’s	width	to	be	relative	to	the	width	of	its	parent
element	(which	is	its	containing	block),	while	making	sure	that	the	float’s	width	never	goes	below	10em.
The	reverse	approach	is	also	possible:

p.aside	{float:	left;	width:	40em;	max-width:	40%;}

This	will	set	the	float	to	be	40em	wide,	unless	that	would	be	more	than	40%	the	width	of	the	containing
block,	in	which	case	the	float	will	be	limited	to	that	40%	width.

NOTE
For	details	on	what	to	do	with	content	that	overflows	an	element	when	it’s	been	constrained	to	a	certain	maximum	size,	see	the	section	on
“Handling	Content	Overflow”	in	Chapter	6.

Absolute	Positioning
Since	most	of	the	examples	and	figures	in	the	previous	sections	are	examples	of	absolute	positioning,
you’ve	already	seen	a	bunch	of	it	in	action.	Most	of	what	remains	are	the	details	of	what	happens	when
absolute	positioning	is	invoked.

Containing	Blocks	and	Absolutely	Positioned	Elements
When	an	element	is	positioned	absolutely,	it	is	completely	removed	from	the	document	flow.	It	is	then
positioned	with	respect	to	its	containing	block,	and	its	margin	edges	are	placed	using	the	offset	properties
(top,	left,	inset-inline-start,	etc.).	The	positioned	element	does	not	flow	around	the	content
of	other	elements,	nor	does	their	content	flow	around	the	positioned	element.	This	implies	that	an
absolutely	positioned	element	may	overlap	other	elements	or	be	overlapped	by	them.	(We’ll	see	how	to

affect	the	overlapping	order	later.)

The	containing	block	for	an	absolutely	positioned	element	is	the	nearest	ancestor	element	that	has	a
position	value	other	than	static.	It	is	common	for	an	author	to	pick	an	element	that	will	serve	as	the
containing	block	for	the	absolutely	positioned	element	and	give	it	a	position	of	relative	with	no
offsets,	like	so:

.contain	{position:	relative;}

Consider	the	example	in	Figure	9-30,	which	is	an	illustration	of	the	following:

p	{margin:	2em;}

p.contain	{position:	relative;}	/*	establish	a	containing	block*/

b	{position:	absolute;	top:	auto;	right:	0;	bottom:	0;	left:	auto;

				width:	8em;	height:	5em;	border:	1px	solid	gray;}

<body>

<p>

				This	paragraph	does	not	establish	a	containing	block	for	any	of

				its	descendant	elements	that	are	absolutely	positioned.	Therefore,	the

				absolutely	positioned	boldface	element	it	contains	will	be

				positioned	with	respect	to	the	initial	containing	block.

</p>

<p	class="contain">

				Thanks	to	<code>position:	relative</code>,	this	paragraph	establishes	a

				containing	block	for	any	of	its	descendant	elements	that	are	absolutely

				positioned.	Since	there	is	such	an	element--	that	is	to	say,	a

				boldfaced	element	that	is	absolutely	positioned,	placed	with	respect

				to	its	containing	block	(the	paragraph),	it	will	appear	within	the

				element	box	generated	by	the	paragraph.

</p>

</body>

The	b	elements	in	both	paragraphs	have	been	absolutely	positioned.	The	difference	is	in	the	containing
block	used	for	each	one.	The	b	element	in	the	first	paragraph	is	positioned	with	respect	to	the	initial
containing	block,	because	all	of	its	ancestor	elements	have	a	position	of	static.	The	second
paragraph	has	been	set	to	position:	relative,	so	it	establishes	a	containing	block	for	its
descendants.

Figure	9-30.	Using	relative	positioning	to	define	containing	blocks

You’ve	probably	noted	that	in	that	second	paragraph,	the	positioned	element	overlaps	some	of	the	text
content	of	the	paragraph.	There	is	no	way	to	avoid	this,	short	of	positioning	the	b	element	outside	of	the
paragraph	or	by	specifying	a	padding	for	the	paragraph	that	is	wide	enough	to	accommodate	the
positioned	element.	Also,	since	the	b	element	has	a	transparent	background,	the	paragraph’s	text	shows
through	the	positioned	element.	The	only	way	to	avoid	this	is	to	set	a	background	for	the	positioned
element,	or	else	move	it	out	of	the	paragraph	entirely.

You	will	sometimes	want	to	ensure	that	the	body	element	establishes	a	containing	block	for	all	its
descendants,	rather	than	allowing	the	user	agent	to	pick	an	initial	containing	block.	This	is	as	simple	as
declaring:

body	{position:	relative;}

In	such	a	document,	you	could	drop	in	an	absolutely	positioned	paragraph,	as	follows,	and	get	a	result	like
that	shown	in	Figure	9-31:

<p	style="position:	absolute;	top:	0;	right:	25%;	left:	25%;	bottom:

				auto;	width:	50%;	height:	auto;	background:	silver;">

				...

</p>

The	paragraph	is	now	positioned	at	the	very	beginning	of	the	document,	half	as	wide	as	the	document’s
width	and	overwriting	other	content.

Figure	9-31.	Positioning	an	element	whose	containing	block	is	the	root	element

An	important	point	to	highlight	is	that	when	an	element	is	absolutely	positioned,	it	establishes	a	containing
block	for	its	descendant	elements.	For	example,	we	can	absolutely	position	an	element	and	then
absolutely	position	one	of	its	children,	as	shown	in	Figure	9-32,	which	was	generated	using	the	following
styles	and	basic	markup:

div	{position:	relative;	width:	100%;	height:	10em;

				border:	1px	solid;	background:	#EEE;}

div.a	{position:	absolute;	top:	0;	right:	0;	width:	15em;	height:	100%;

				margin-left:	auto;	background:	#CCC;}

div.b	{position:	absolute;	bottom:	0;	left:	0;	width:	10em;	height:	50%;

				margin-top:	auto;	background:	#AAA;}

<div>

				<div	class="a">

								absolutely	positioned	element	A

								<div	class="b">

												absolutely	positioned	element	B

								</div>

				</div>

				containing	block

</div>

Remember	that	if	the	document	is	scrolled,	the	absolutely	positioned	elements	will	scroll	right	along	with
it.	This	is	true	of	all	absolutely	positioned	elements	that	are	not	descendants	of	fixed-position	or	sticky-
position	elements.

This	happens	because,	eventually,	the	elements	are	positioned	in	relation	to	something	that’s	part	of	the
normal	flow.	For	example,	if	you	absolutely	position	a	table,	and	its	containing	block	is	the	initial
containing	block,	then	it	will	scroll	because	the	initial	containing	block	is	part	of	the	normal	flow,	and
thus	it	scrolls.

If	you	want	to	position	elements	so	that	they’re	placed	relative	to	the	viewport	and	don’t	scroll	along	with
the	rest	of	the	document,	keep	reading.	The	upcoming	section	on	fixed	positioning	has	the	answers	you

seek.

Figure	9-32.	Absolutely	positioned	elements	establish	containing	blocks

Placement	and	Sizing	of	Absolutely	Positioned	Elements
It	may	seem	odd	to	combine	the	concepts	of	placement	and	sizing,	but	it’s	a	necessity	with	absolutely
positioned	elements	because	the	specification	binds	them	very	closely	together.	This	is	not	such	a	strange
pairing,	upon	reflection.	Consider	what	happens	if	an	element	is	positioned	using	the	four	physical	offset
properties,	like	so:

#masthead	h1	{position:	absolute;	top:	1em;	left:	1em;	right:	25%;	bottom:	10px;

				margin:	0;	padding:	0;	background:	silver;}

Here,	the	height	and	width	of	the	h1’s	element	box	is	determined	by	the	placement	of	its	outer	margin
edges,	as	shown	in	Figure	9-33.

Figure	9-33.	Determining	the	height	of	an	element	based	on	the	offset	properties

If	the	containing	block	were	made	taller,	then	the	h1	would	also	become	taller;	if	the	containing	block	is
narrowed,	then	the	h1	will	become	narrower.	If	we	were	to	add	margins	or	padding	to	the	h1,	then	that
would	have	further	effects	on	the	calculated	height	and	width	of	the	h1.

But	what	if	we	do	all	that	and	then	also	try	to	set	an	explicit	height	and	width?

#masthead	h1	{position:	absolute;	top:	0;	left:	1em;	right:	10%;	bottom:	0;

				margin:	0;	padding:	0;	height:	1em;	width:	50%;	background:	silver;}

Something	has	to	give,	because	it’s	incredibly	unlikely	that	all	those	values	will	be	accurate.	In	fact,	the
containing	block	would	have	to	be	exactly	two	and	a	half	times	as	wide	as	the	h1’s	computed	value	of
font-size	for	all	of	the	shown	values	to	be	accurate.	Any	other	width	would	mean	at	least	one	value
is	wrong	and	has	to	be	ignored.	Figuring	out	which	one	depends	on	a	number	of	factors,	and	the	factors
change	depending	on	whether	an	element	is	replaced	or	nonreplaced.

For	that	matter,	consider	the	following:

#masthead	h1	{position:	absolute;	top:	auto;	left:	auto;}

What	should	the	result	be?	As	it	happens,	the	answer	is	not	“reset	the	values	to	zero.”	We’ll	see	the	actual
answer,	starting	in	the	next	section.

Auto-edges
When	absolutely	positioning	an	element,	there	is	a	special	behavior	that	applies	when	any	of	the	offset
properties	other	than	bottom	is	set	to	auto.	Let’s	take	top	as	an	example.	Consider	the	following:

<p>

2

				When	we	consider	the	effect	of	positioning,	it	quickly	becomes	clear	that

				authors	can	do	a	great	deal	of	damage	to	layout,	just	as	they	can	do	very

				interesting	things.<span	style="position:	absolute;	top:	auto;

				left:	0;">[4]	This	is	usually	the	case	with	useful	technologies:

				the	sword	always	has	at	least	two	edges,	both	of	them	sharp.

</p>

What	should	happen?	For	left,	the	left	edge	of	the	element	should	be	placed	against	the	left	edge	of	its
containing	block	(which	we’ll	assume	here	to	be	the	initial	containing	block).

For	top,	however,	something	much	more	interesting	happens.	The	top	of	the	positioned	element	should
line	up	with	the	place	where	its	top	would	have	been	if	it	were	not	positioned	at	all.	In	other	words,
imagine	where	the	span	would	have	been	placed	if	its	position	value	were	static;	this	is	its
static	position—the	place	where	its	top	edge	should	be	calculated	to	sit.	Therefore,	we	should	get	the
result	shown	in	Figure	9-34.

Figure	9-34.	Absolutely	positioning	an	element	consistently	with	its	“static”	top	edge

The	“[4]”	sits	just	outside	the	paragraph’s	content	because	the	initial	containing	block’s	left	edge	is	to	the
left	of	the	paragraph’s	left	edge.

The	same	basic	rules	hold	true	for	left	and	right	being	set	to	auto.	In	those	cases,	the	left	(or	right)
edge	of	a	positioned	element	lines	up	with	the	spot	where	the	edge	would	have	been	placed	if	the	element
weren’t	positioned.	So	let’s	modify	our	previous	example	so	that	both	top	and	left	are	set	to	auto:

<p>

				When	we	consider	the	effect	of	positioning,	it	quickly	becomes	clear	that

				authors	can	do	a	great	deal	of	damage	to	layout,	just	as	they	can	do	very

				interesting	things.<span	style="position:	absolute;	top:	auto;	left:

				auto;">[4]	This	is	usually	the	case	with	useful	technologies:

				the	sword	always	has	at	least	two	edges,	both	of	them	sharp.

</p>

This	would	have	the	result	shown	in	Figure	9-35.

Figure	9-35.	Absolutely	positioning	an	element	consistently	with	its	“static”	position

The	“[4]”	now	sits	right	where	it	would	have	were	it	not	positioned.	Note	that,	since	it	is	positioned,	its
normal-flow	space	is	closed	up.	This	causes	the	positioned	element	to	overlap	the	normal-flow	content.

This	auto-placement	works	only	in	certain	situations,	generally	wherever	there	are	few	constraints	on	the
other	dimensions	of	a	positioned	element.	Our	previous	example	could	be	auto-placed	because	it	had	no
constraints	on	its	height	or	width,	nor	on	the	placement	of	the	bottom	and	right	edges.	But	suppose,	for
some	reason,	there	had	been	such	constraints.	Consider:

<p>

				When	we	consider	the	effect	of	positioning,	it	quickly	becomes	clear	that

				authors	can	do	a	great	deal	of	damage	to	layout,	just	as	they	can	do	very

				interesting	things.<span	style="position:	absolute;	top:	auto;	left:	auto;

				right:	0;	bottom:	0;	height:	2em;	width:	5em;">[4]	This	is	usually

				the	case	with	useful	technologies:	the	sword	always	has	at	least	two	edges,

				both	of	them	sharp.

</p>

It	is	not	possible	to	satisfy	all	of	those	values.	Determining	what	happens	is	the	subject	of	the	next	section.

Placing	and	Sizing	Nonreplaced	Elements
In	general,	the	size	and	placement	of	an	element	depends	on	its	containing	block.	The	values	of	its	various
properties	(width,	right,	padding-left,	and	so	on)	affect	its	layout,	but	the	foundation	is	the
containing	block.

Consider	the	width	and	horizontal	placement	of	a	positioned	element.	It	can	be	represented	as	an	equation
which	states:

left	+	margin-left	+	border-left-width	+	padding-left	+	width	+

padding-right	+	border-right-width	+	margin-right	+	right	=

the	width	of	the	containing	block

This	calculation	is	fairly	reasonable.	It’s	basically	the	equation	that	determines	how	block-level	elements
in	the	normal	flow	are	sized,	except	it	adds	left	and	right	to	the	mix.	So	how	do	all	these	interact?
There	is	a	series	of	rules	to	work	through.

First,	if	left,	width,	and	right	are	all	set	to	auto,	then	you	get	the	result	seen	in	the	previous
section:	the	left	edge	is	placed	at	its	static	position,	assuming	a	left-to-right	language.	In	right-to-left
languages,	the	right	edge	is	placed	at	its	static	position.	The	width	of	the	element	is	set	to	be	“shrink	to
fit,”	which	means	the	element’s	content	area	is	made	only	as	wide	as	necessary	to	contain	its	content.	The
nonstatic	position	property	(right	in	left-to-right	languages,	left	in	right-to-left)	is	set	to	take	up	the
remaining	distance.	For	example:

<div	style="position:	relative;	width:	25em;	border:	1px	dotted;">

				An	absolutely	positioned	element	can	have	its	content	<span	style="position:

				absolute;	top:	0;	left:	0;	right:	auto;	width:	auto;	background:

				silver;">shrink-wrapped	thanks	to	the	way	positioning	rules	work.

</div>

This	has	the	result	shown	in	Figure	9-36.

Figure	9-36.	The	“shrink-to-fit”	behavior	of	absolutely	positioned	elements

The	top	of	the	element	is	placed	against	the	top	of	its	containing	block	(the	div,	in	this	case),	and	the
width	of	the	element	is	just	as	much	as	is	needed	to	contain	the	content.	The	remaining	distance	from	the
right	edge	of	the	element	to	the	right	edge	of	the	containing	block	becomes	the	computed	value	of	right.

Now	suppose	that	only	the	left	and	right	margins	are	set	to	auto,	not	left,	width,	and	right,	as	in
this	example:

<div	style="position:	relative;	width:	25em;	border:	1px	dotted;">

				An	absolutely	positioned	element	can	have	its	content	<span	style="position:

				absolute;	top:	0;	left:	1em;	right:	1em;	width:	10em;	margin:	0	auto;

				background:	silver;">shrink-wrapped	thanks	to	the	way	positioning

				rules	work.

</div>

What	happens	here	is	that	the	left	and	right	margins,	which	are	both	auto,	are	set	to	be	equal.	This	will
effectively	center	the	element,	as	shown	in	Figure	9-37.

Figure	9-37.	Horizontally	centering	an	absolutely	positioned	element	with	auto	margins

This	is	basically	the	same	as	auto-margin	centering	in	the	normal	flow.	So	let’s	make	the	margins
something	other	than	auto:

<div	style="position:	relative;	width:	25em;	border:	1px	dotted;">

				An	absolutely	positioned	element	can	have	its	content	<span	style="position:

				absolute;	top:	0;	left:	1em;	right:	1em;	width:	10em;	margin-left:	1em;

				margin-right:	1em;	background:	silver;">shrink-wrapped	thanks	to	the

				way	positioning	rules	work.

</div>

Now	we	have	a	problem.	The	positioned	span’s	properties	add	up	to	only	14em,	whereas	the	containing
block	is	25em	wide.	That’s	an	11-em	deficit	we	have	to	make	up	somewhere.

The	rules	state	that,	in	this	case,	the	user	agent	ignores	the	value	for	for	the	inline-end	side	of	the	element
and	solves	for	that.	In	other	words,	the	result	will	be	the	same	as	if	we’d	declared:

<span	style="position:	absolute;	top:	0;	left:	1em;

right:	12em;	width:	10em;	margin-left:	1em;	margin-right:	1em;

right:	auto;	background:	silver;">shrink-wrapped

This	has	the	result	shown	in	Figure	9-38.

Figure	9-38.	Ignoring	the	value	for	right	in	an	overconstrained	situation

If	one	of	the	margins	had	been	left	as	auto,	then	that	would	have	been	changed	instead.	Suppose	we
change	the	styles	to	state:

<span	style="position:	absolute;	top:	0;	left:	1em;

right:	1em;	width:	10em;	margin-left:	1em;	margin-right:	auto;

background:	silver;">shrink-wrapped

The	visual	result	would	be	the	same	as	that	in	Figure	9-38,	only	it	would	be	attained	by	computing	the
right	margin	to	12em	instead	of	overriding	the	value	assigned	to	the	property	right.

If,	on	the	other	hand,	we	made	the	left	margin	auto,	then	it	would	be	reset,	as	illustrated	in	Figure	9-39:

<span	style="position:	absolute;	top:	0;	left:	1em;

right:	1em;	width:	10em;	margin-left:	auto;	margin-right:	1em;

background:	silver;">shrink-wrapped

Figure	9-39.	Making	use	of	an	auto	left	margin

In	general,	if	only	one	of	the	properties	is	set	to	auto,	then	it	will	be	used	to	satisfy	the	equation	given
earlier	in	the	section.	Thus,	given	the	following	styles,	the	element’s	width	would	expand	to	whatever	size
is	needed,	instead	of	“shrink-wrapping”	the	content:

<span	style="position:	absolute;	top:	0;	left:	1em;

right:	1em;	width:	auto;	margin-left:	1em;	margin-right:	1em;

background:	silver;">not	shrink-wrapped

So	far	we’ve	really	only	examined	behavior	along	the	horizontal	axis,	but	very	similar	rules	hold	true
along	the	vertical	axis.	If	we	take	the	previous	discussion	and	rotate	it	90	degrees,	as	it	were,	we	get
almost	the	same	behavior.	For	example,	the	following	markup	results	in	Figure	9-40:

<div	style="position:	relative;	width:	30em;	height:	10em;	border:	1px	solid;">

				<div	style="position:	absolute;	left:	0;	width:	30%;

								background:	#CCC;	top:	0;">

												element	A

				</div>

				<div	style="position:	absolute;	left:	35%;	width:	30%;

								background:	#AAA;	top:	0;	height:	50%;">

												element	B

				</div>

				<div	style="position:	absolute;	left:	70%;	width:	30%;

								background:	#CCC;	height:	50%;	bottom:	0;">

												element	C

				</div>

</div>

In	the	first	case,	the	height	of	the	element	is	shrink-wrapped	to	the	content.	In	the	second,	the	unspecified
property	(bottom)	is	set	to	make	up	the	distance	between	the	bottom	of	the	positioned	element	and	the
bottom	of	its	containing	block.	In	the	third	case,	top	is	unspecified,	and	therefore	used	to	make	up	the
difference.

Figure	9-40.	Vertical	layout	behavior	for	absolutely	positioned	elements

For	that	matter,	auto-margins	can	lead	to	vertical	centering.	Given	the	following	styles,	the	absolutely
positioned	div	will	be	vertically	centered	within	its	containing	block,	as	shown	in	Figure	9-41:

<div	style="position:	relative;	width:	10em;	height:	10em;	border:	1px	solid;">

				<div	style="position:	absolute;	left:	0;	width:	100%;	background:	#CCC;

								top:	0;	height:	5em;	bottom:	0;	margin:	auto	0;">

												element	D

				</div>

</div>

Figure	9-41.	Vertically	centering	an	absolutely	positioned	element	with	auto-margins

There	are	two	small	variations	to	point	out.	In	horizontal	layout,	either	right	or	left	can	be	placed
according	to	the	static	position	if	their	values	are	auto.	In	vertical	layout,	only	top	can	take	on	the	static
position;	bottom,	for	whatever	reason,	cannot.

Also,	if	an	absolutely	positioned	element’s	size	is	overconstrained	in	the	vertical	direction,	bottom	is
ignored.	Thus,	in	the	following	situation,	the	declared	value	of	bottom	would	be	overridden	by	the
calculated	value	of	5em:

<div	style="position:	relative;	width:	10em;	height:	10em;	border:	1px	solid;">

				<div	style="position:	absolute;	left:	0;	width:	100%;	background:	#CCC;

								top:	0;	height:	5em;	bottom:	0;	margin:	0;">

												element	D

				</div>

</div>

There	is	no	provision	for	top	to	be	ignored	if	the	properties	are	overconstrained.

Placing	and	Sizing	Replaced	Elements
Positioning	rules	are	different	for	replaced	elements	(e.g.,	images)	than	they	are	for	nonreplaced	elements.
This	is	because	replaced	elements	have	an	intrinsic	height	and	width,	and	therefore	are	not	altered	unless
explicitly	changed	by	the	author.	Thus,	there	is	no	concept	of	“shrink	to	fit”	in	the	positioning	of	replaced
elements.

The	behaviors	that	go	into	placing	and	sizing	replaced	elements	are	most	easily	expressed	by	a	series	of

rules	to	be	taken	one	after	the	other.	These	state:

1.	 If	width	is	set	to	auto,	the	used	value	of	width	is	determined	by	the	intrinsic	width	of	the
element’s	content.	Thus,	if	an	image	is	intriniscally	50	pixels	wide,	then	the	used	value	is	calculated
to	be	50px.	If	width	is	explicitly	declared	(that	is,	something	like	100px	or	50%),	then	the	width
is	set	to	that	value.

2.	 If	left	has	the	value	auto	in	a	left-to-right	language,	replace	auto	with	the	static	position.	In
right-to-left	languages,	replace	an	auto	value	for	right	with	the	static	position.

3.	 If	either	left	or	right	is	still	auto	(in	other	words,	it	hasn’t	been	replaced	in	a	previous	step),
replace	any	auto	on	margin-left	or	margin-right	with	0.

4.	 If,	at	this	point,	both	margin-left	and	margin-right	are	still	defined	to	be	auto,	set	them
to	be	equal,	thus	centering	the	element	in	its	containing	block.

5.	 After	all	that,	if	there	is	only	one	auto	value	left,	change	it	to	equal	the	remainder	of	the	equation.

This	leads	to	the	same	basic	behaviors	we	saw	with	absolutely	positioned	nonreplaced	elements,	as	long
as	you	assume	that	there	is	an	explicit	width	for	the	nonreplaced	element.	Therefore,	the	following	two
elements	will	have	the	same	width	and	placement,	assuming	the	image’s	intrinsic	width	is	100	pixels	(see
Figure	9-42):

<div>

				<img	src="frown.gif"	alt="a	frowny	face"

								style="position:	absolute;	top:	0;	left:	50px;	margin:	0;">

</div>

<div	style="position:	absolute;	top:	0;	left:	50px;

								width:	100px;	height:	100px;	margin:	0;">

				it's	a	div!

</div>

Figure	9-42.	Absolutely	positioning	a	replaced	element

As	with	nonreplaced	elements,	if	the	values	are	overconstrained,	the	user	agent	is	supposed	to	ignore	the
value	on	the	inline-end	side:	right	in	left-to-right	languages	and	left	in	right-to-left	languages.	Thus,

in	the	following	example,	the	declared	value	for	right	is	overridden	with	a	computed	value	of	50px:

<div	style="position:	relative;	width:	300px;">

				<img	src="frown.gif"	alt="a	frowny	face"	style="position:	absolute;	top:	0;

								left:	50px;	right:	125px;	width:	200px;	margin:	0;">

</div>

Similarly,	layout	along	the	vertical	axis	is	governed	by	a	series	of	rules	that	state:

1.	 If	height	is	set	to	auto,	the	computed	value	of	height	is	determined	by	the	intrinsic	height	of
the	element’s	content.	Thus,	the	height	of	an	image	50	pixels	tall	is	computed	to	be	50px.	If
height	is	explicitly	declared	(that	is,	something	like	100px	or	50%),	then	the	height	is	set	to	that
value.

2.	 If	top	has	the	value	auto,	replace	it	with	the	replaced	element’s	static	position.

3.	 If	bottom	has	a	value	of	auto,	replace	any	auto	value	on	margin-top	or	margin-bottom
with	0.

4.	 If,	at	this	point,	both	margin-top	and	margin-bottom	are	still	defined	to	be	auto,	set	them
to	be	equal,	thus	centering	the	element	in	its	containing	block.

5.	 After	all	that,	if	there	is	only	one	auto	value	left,	change	it	to	equal	the	remainder	of	the	equation.

As	with	nonreplaced	elements,	if	the	values	are	overconstrained,	then	the	user	agent	is	supposed	to	ignore
the	value	for	bottom.

Thus,	the	following	markup	would	have	the	results	shown	in	Figure	9-43:

<div	style="position:	relative;	height:	200px;	width:	200px;	border:	1px	solid;">

				<img	src="one.gif"	alt="one"	width="25"	height="25"

								style="position:	absolute;	top:	0;	left:	0;	margin:	0;">

				<img	src="two.gif"	alt="two"	width="25"	height="25"

								style="position:	absolute;	top:	0;	left:	60px;	margin:	10px	0;

												bottom:	4377px;">

				<img	src="three.gif"	alt="	three"	width="25"	height="25"

								style="position:	absolute;	left:	0;	width:	100px;	margin:	10px;

												bottom:	0;">

				<img	src="four.gif"	alt="	four"	width="25"	height="25"

								style="position:	absolute;	top:	0;	height:	100px;	right:	0;

												width:	50px;">

				<img	src="five.gif"	alt="five"	width="25"	height="25"

								style="position:	absolute;	top:	0;	left:	0;	bottom:	0;	right:	0;

												margin:	auto;">

</div>

Figure	9-43.	Stretching	replaced	elements	through	positioning

Placement	on	the	Z-Axis
With	all	of	the	positioning	going	on,	there	will	inevitably	be	a	situation	where	two	elements	will	try	to
exist	in	the	same	place,	visually	speaking.	One	of	them	will	have	to	overlap	the	other—so	how	do	we
control	which	element	comes	out	“on	top”?	This	is	where	the	property	z-index	comes	in.

z-index	lets	you	alter	the	way	in	which	elements	overlap	each	other.	It	takes	its	name	from	the
coordinate	system	in	which	side-to-side	is	the	x-axis	and	top-to-bottom	is	the	y-axis.	In	such	a	case,	the
third	axis—that	which	runs	from	back	to	front,	as	you	look	at	the	display	surface—is	termed	the	z-axis.
Thus,	elements	are	given	values	along	this	axis	using	z-index.	Figure	9-44	illustrates	this	system.

Z-INDEX

Values <integer>	|	auto

Initial	value auto

Applies	to Positioned	elements

Computed	value As	specified

Inherited No

Animatable Yes

Figure	9-44.	A	conceptual	view	of	z-index	stacking

In	this	coordinate	system,	an	element	with	a	higher	z-index	value	is	closer	to	the	reader	than	those	with
lower	z-index	values.	This	will	cause	the	high-value	element	to	overlap	the	others,	as	illustrated	in
Figure	9-45,	which	is	a	“head-on”	view	of	Figure	9-44.	This	precedence	of	overlapping	is	referred	to	as
stacking.

Figure	9-45.	How	the	elements	are	stacked

Any	integer	can	be	used	as	a	value	for	z-index,	including	negative	numbers.	Assigning	an	element	a
negative	z-index	will	move	it	further	away	from	the	reader;	that	is,	it	will	be	moved	lower	in	the	stack.
Consider	the	following	styles,	illustrated	in	Figure	9-46:

p	{background:	rgba(255,255,255,0.9);	border:	1px	solid;}

p#first	{position:	absolute;	top:	0;	left:	0;

				width:	40%;	height:	10em;	z-index:	8;}

p#second	{position:	absolute;	top:	-0.75em;	left:	15%;

				width:	60%;	height:	5.5em;	z-index:	4;}

p#third	{position:	absolute;	top:	23%;	left:	25%;

				width:	30%;	height:	10em;	z-index:	1;}

p#fourth	{position:	absolute;	top:	10%;	left:	10%;

				width:	80%;	height:	10em;	z-index:	0;}

Each	of	the	elements	is	positioned	according	to	its	styles,	but	the	usual	order	of	stacking	is	altered	by	the
z-index	values.	Assuming	the	paragraphs	were	in	numeric	order,	then	a	reasonable	stacking	order
would	have	been,	from	lowest	to	highest,	p#first,	p#second,	p#third,	p#fourth.	This	would
have	put	p#first	behind	the	other	three	elements,	and	p#fourth	in	front	of	the	others.	Thanks	to	z-
index,	the	stacking	order	is	under	your	control.

Figure	9-46.	Stacked	elements	can	overlap

As	the	previous	example	demonstrates,	there	is	no	particular	need	to	have	the	z-index	values	be

contiguous.	You	can	assign	any	integer	of	any	size.	If	you	want	to	be	fairly	certain	that	an	element	stays	in
front	of	everything	else,	you	might	use	a	rule	along	the	lines	of	z-index:	100000.	This	would	work
as	expected	in	most	cases—although	if	you	ever	declared	another	element’s	z-index	to	be	100001	(or
higher),	it	would	appear	in	front.

Once	you	assign	an	element	a	value	for	z-index	(other	than	auto),	that	element	establishes	its	own
local	stacking	context.	This	means	that	all	of	the	element’s	descendants	have	their	own	stacking	order,
except	relative	to	their	ancestor	element.	This	is	very	similar	to	the	way	that	elements	establish	new
containing	blocks.	Given	the	following	styles,	you	would	see	something	like	Figure	9-47:

p	{border:	1px	solid;	background:	#DDD;	margin:	0;}

#one	{position:	absolute;	top:	1em;	left:	0;

				width:	40%;	height:	10em;	z-index:	3;}

#two	{position:	absolute;	top:	-0.75em;	left:	15%;

				width:	60%;	height:	5.5em;	z-index:	10;}

#three	{position:	absolute;	top:	10%;	left:	30%;

				width:	30%;	height:	10em;	z-index:	8;}

p[id]	em	{position:	absolute;	top:	-1em;	left:	-1em;

				width:	10em;	height:	5em;}

#one	em	{z-index:	100;	background:	hsla(0,50%,70%,0.9);}

#two	em	{z-index:	10;	background:	hsla(120,50%,70%,0.9);}

#three	em	{z-index:	-343;	background:	hsla(240,50%,70%,0.9);}

Figure	9-47.	Positioned	elements	establish	local	stacking	contexts

Note	where	the	em	elements	fall	in	the	stacking	order.	Each	of	them	is	correctly	layered	with	respect	to	its
parent	element.	Each	em	is	drawn	in	front	of	its	parent	element,	whether	or	not	its	z-index	is	negative,
and	parents	and	children	are	grouped	together	like	layers	in	an	editing	program.	(The	specification	keeps
children	from	being	drawn	behind	their	parents	when	using	z-index	stacking,	so	the	em	in	p#three	is
drawn	on	top	of	p#one,	even	though	its	z-index	value	is	-343.)	This	is	because	its	z-index	value
is	taken	with	respect	to	its	local	stacking	context:	its	containing	block.	That	containing	block,	in	turn,	has	a
z-index,	which	operates	within	its	local	stacking	context.

There	remains	one	more	z-index	value	to	examine.	The	CSS	specification	has	this	to	say	about	the
default	value,	auto:

The	stack	level	of	the	generated	box	in	the	current	stacking	context	is	0.	The	box	does	not	establish
a	new	stacking	context	unless	it	is	the	root	element.

So,	any	element	with	z-index:	auto	can	be	treated	as	though	it	is	set	to	z-index:	0.

TIP
z-index	is	also	honored	by	flex	and	grid	items,	even	though	they	are	not	positioned	using	the	position	property.	The	rules	are
essentially	the	same.

Fixed	Positioning
As	implied	in	a	previous	section,	fixed	positioning	is	just	like	absolute	positioning,	except	the	containing
block	of	a	fixed	element	is	the	viewport.	A	fixed-position	element	is	totally	removed	from	the	document’s
flow	and	does	not	have	a	position	relative	to	any	part	of	the	document.

Fixed	positioning	can	be	exploited	in	a	number	of	interesting	ways.	First	off,	it’s	possible	to	create	frame-
style	interfaces	using	fixed	positioning.	Consider	Figure	9-48,	which	shows	a	very	common	layout
scheme.

Figure	9-48.	Emulating	frames	with	fixed	positioning

This	could	be	done	using	the	following	styles:

header	{position:	fixed;	top:	0;	bottom:	80%;	left:	20%;	right:	0;

				background:	gray;}

div#sidebar	{position:	fixed;	top:	0;	bottom:	0;	left:	0;	right:	80%;

				background:	silver;}

This	will	fix	the	header	and	sidebar	to	the	top	and	side	of	the	viewport,	where	they	will	remain
regardless	of	how	the	document	is	scrolled.	The	drawback	here,	though,	is	that	the	rest	of	the	document
will	be	overlapped	by	the	fixed	elements.	Therefore,	the	rest	of	the	content	should	probably	be	contained
in	its	own	wrapper	element	and	employ	something	like	the	following:

main	{position:	absolute;	top:	20%;	bottom:	0;	left:	20%;	right:	0;

				overflow:	scroll;	background:	white;}

It	would	even	be	possible	to	create	small	gaps	between	the	three	positioned	elements	by	adding	some
appropriate	margins,	as	follows:

body	{background:	black;	color:	silver;}	/*	colors	for	safety's	sake	*/

div#header	{position:	fixed;	top:	0;	bottom:	80%;	left:	20%;	right:	0;

				background:	gray;	margin-bottom:	2px;	color:	yellow;}

div#sidebar	{position:	fixed;	top:	0;	bottom:	0;	left:	0;	right:	80%;

				background:	silver;	margin-right:	2px;	color:	maroon;}

div#main	{position:	absolute;	top:	20%;	bottom:	0;	left:	20%;	right:	0;

				overflow:	auto;	background:	white;	color:	black;}

Given	such	a	case,	a	tiled	image	could	be	applied	to	the	body	background.	This	image	would	show
through	the	gaps	created	by	the	margins,	which	could	certainly	be	widened	if	the	author	saw	fit.

Another	use	for	fixed	positioning	is	to	place	a	“persistent”	element	on	the	screen,	like	a	short	list	of	links.
We	could	create	a	persistent	footer	with	copyright	and	other	information	as	follows:

footer	{position:	fixed;	bottom:	0;	width:	100%;	height:	auto;}

This	would	place	the	footer	element	at	the	bottom	of	the	viewport	and	leave	it	there	no	matter	how
much	the	document	is	scrolled.

NOTE
Many	of	the	layout	cases	for	fixed	positioning,	besides	“persistent	elements,”	are	handled	as	well,	if	not	better,	by	Grid	layout	(see	XREF
HERE	for	more).

Relative	Positioning
The	simplest	of	the	positioning	schemes	to	understand	is	relative	positioning.	In	this	scheme,	a	positioned
element	is	shifted	by	use	of	the	offset	properties.	However,	this	can	have	some	interesting	consequences.

On	the	surface,	it	seems	simple	enough.	Suppose	we	want	to	shift	an	image	up	and	to	the	left.	Figure	9-49
shows	the	result	of	these	styles:

img	{position:	relative;	top:	-20px;	left:	-20px;}

Figure	9-49.	A	relatively	positioned	element

All	we’ve	done	here	is	offset	the	image’s	top	edge	20	pixels	upward	and	offset	the	left	edge	20	pixels	to
the	left.	However,	notice	the	blank	space	where	the	image	would	have	been	had	it	not	been	positioned.
This	happened	because	when	an	element	is	relatively	positioned,	it’s	shifted	from	its	normal	place,	but	the
space	it	would	have	occupied	doesn’t	disappear.

NOTE
Relative	positioning	is	very	similar	to	translation	element	transforms,	which	are	discussed	in	XREF	HERE.

Consider	the	results	of	the	following	styles,	which	are	depicted	in	Figure	9-50:

em	{position:	relative;	top:	10em;	color:	red;}

Figure	9-50.	Another	relatively	positioned	element

As	you	can	see,	the	paragraph	has	some	blank	space	in	it.	This	is	where	the	em	element	would	have	been,
and	the	layout	of	the	em	element	in	its	new	position	exactly	mirrors	the	space	it	left	behind.

It’s	also	possible	to	shift	a	relatively	positioned	element	to	overlap	other	content.	For	example,	the
following	styles	and	markup	are	illustrated	in	Figure	9-51:

img.slide	{position:	relative;	left:	30px;}

<p>

				In	this	paragraph,	we	will	find	that	there	is	an	image	that	has	been

				pushed	to	the	right.	It	will	therefore	<img	src="star.gif"	alt="A	star!"

				class="slide">	overlap	content	nearby,	assuming	that	it	is	not	the

				last	element	in	its	line	box.

</p>

Figure	9-51.	Relatively	positioned	elements	can	overlap	other	content

There	is	one	interesting	wrinkle	to	relative	positioning.	What	happens	when	a	relatively	positioned
element	is	overconstrained?	For	example:

strong	{position:	relative;	top:	10px;	bottom:	20px;}

Here	we	have	values	that	call	for	two	very	different	behaviors.	If	we	consider	only	top:	10px,	then
the	element	should	be	shifted	downward	10	pixels,	but	bottom:	20px	clearly	calls	for	the	element	to

be	shifted	upward	20	pixels.

CSS	states	that	when	it	comes	to	overconstrained	relative	positioning,	one	value	is	reset	to	be	the
negative	of	the	other.	Thus,	bottom	would	always	equal	-top.	This	means	the	previous	example	would
be	treated	as	though	it	had	been:

strong	{position:	relative;	top:	10px;	bottom:	-10px;}

Therefore,	the	strong	element	will	be	shifted	downward	10	pixels.	The	specification	also	makes
allowances	for	writing	directions.	In	relative	positioning,	right	always	equals	-left	in	left-to-right
languages;	but	in	right-to-left	languages,	this	is	reversed:	left	always	equals	-right.

NOTE
As	we	saw	in	previous	sections,	when	we	relatively	position	an	element,	it	immediately	establishes	a	new	containing	block	for	any	of	its
children.	This	containing	block	corresponds	to	the	place	where	the	element	has	been	newly	positioned.

Sticky	Positioning
The	last	type	of	positioning	in	CSS	is	sticky	positioning.	If	you’ve	ever	used	a	decent	music	app	on	a
mobile	device,	you’ve	probably	noticed	this	in	action:	as	you	scroll	through	an	alphabetized	list	of	artists,
the	current	letter	stays	stuck	at	the	top	of	the	window	until	a	new	letter	section	is	entered,	at	which	point
the	new	letter	replaces	the	old.	It’s	a	little	hard	to	show	in	print,	but	Figure	9-52	takes	a	stab	at	it	by
showing	three	points	in	a	scroll.

Figure	9-52.	Sticky	positioning

CSS	makes	this	sort	of	thing	possible	by	declaring	an	element	to	be	position:	sticky,	but	(as
usual)	there’s	more	to	it	than	that.

First	off,	the	offsets	(top,	left,	etc.)	are	used	to	define	a	sticky-positioning	rectangle	with	relation	to
the	containing	block.	Take	the	following	as	an	example.	It	will	have	the	effect	shown	in	Figure	9-53,
where	the	dashed	line	shows	where	the	sticky-positioning	rectangle	is	created:

#scrollbox	{overflow:	scroll;	width:	15em;	height:	18em;}

#scrollbox	h2	{position:	sticky;	top:	2em;	bottom:	auto;

				left:	auto;	right:	auto;}

Figure	9-53.	The	sticky-positioning	rectangle

Notice	that	the	h2	is	actually	in	the	middle	of	the	rectangle	in	Figure	9-53.	That’s	its	place	in	the	normal
flow	of	the	content	inside	the	#scrollbox	element	that	contains	the	content.	The	only	way	to	make	it
sticky	is	to	scroll	that	content	until	the	top	of	the	h2	touches	the	top	of	the	sticky-positioning	rectangle
(which	is	2em	below	the	top	of	the	scrollbox)—at	which	point,	the	h2	will	stick	there.	This	is	illustrated
in	Figure	9-54.

Figure	9-54.	Sticking	to	the	top	of	the	sticky-positioning	rectangle

In	other	words,	the	h2	sits	in	the	normal	flow	until	its	sticky	edge	touches	the	sticky	edge	of	the	sticky-
positioning	rectangle.	At	that	point,	it	sticks	there	as	if	absolutely	positioned,	except	that	it	leaves	behind
the	space	it	otherwise	would	have	occupied	in	the	normal	flow.

You	may	have	noticed	that	the	#scrollbox	element	doesn’t	have	a	position	declaration.	There	isn’t
one	hiding	offstage,	either:	it’s	the	overflow:	scroll	set	on	#scrollbox	that	created	a
containing	block	for	the	sticky-positioned	h2	elements.	This	is	a	case	where	a	containing	block	isn’t
determined	by	position.

If	the	scrolling	is	reversed	so	that	the	h2’s	normal-flow	position	moves	lower	than	the	top	of	the
rectangle,	the	h2	is	detached	from	the	rectangle	and	resumes	its	place	in	the	normal	flow.	This	is	shown
in	Figure	9-55.

Figure	9-55.	Detaching	from	the	top	of	the	sticky-positioning	rectangle

Note	that	the	reason	the	h2	stuck	to	the	top	of	the	rectangle	in	these	examples	is	that	the	value	of	top	was
set	to	something	other	than	auto	for	the	h2;	that	is,	for	the	sticky-positioned	element.	You	can	use
whatever	offset	side	you	want.	For	example,	you	could	have	elements	stick	to	the	bottom	of	the	rectangle
as	you	scroll	downwards	through	the	content.	This	is	illustrated	in	Figure	9-56:

#scrollbox	{overflow:	scroll;	position:	relative;	width:	15em;	height:	10em;}

#scrollbox	h2	{position:	sticky;	top:	auto;	bottom:	0;	left:	auto;	right:	auto;}

Figure	9-56.	Sticking	to	the	bottom	of	the	sticky-positioning	rectangle

This	could	be	a	way	to	show	footnotes	or	comments	for	a	given	paragraph,	for	example,	while	allowing
them	to	scroll	away	as	the	paragraph	moves	upward.	The	same	rules	apply	for	the	left	and	right	sides,
which	is	useful	for	side-scrolling	content.

If	you	define	more	than	one	offset	property	to	have	a	value	other	than	auto,	then	all	of	them	will	become
sticky	edges.	For	example,	this	set	of	styles	will	force	the	h2	to	always	appear	inside	the	scrollbox,
regardless	of	which	way	its	content	is	scrolled	(Figure	9-57):

#scrollbox	{overflow:	scroll;	:	15em;	height:	10em;}

#scrollbox	h2	{position:	sticky;	top:	0;	bottom:	0;	left:	0;	right:	0;}

Figure	9-57.	Making	every	side	a	sticky	side

You	might	wonder:	what	happens	if	I	have	multiple	sticky-positioned	elements	in	a	situation	like	this,	and
I	scroll	past	two	or	more?	In	effect,	they	pile	up	on	top	of	one	another:

#scrollbox	{overflow:	scroll;	width:	15em;	height:	18em;}

#scrollbox	h2	{position:	sticky;	top:	0;	width:	40%;}

h2#h01	{margin-right:	60%;	background:	hsla(0,100%,50%,0.75);}

h2#h02	{margin-left:	60%;	background:	hsla(120,100%,50%,0.75);}

h2#h03	{margin-left:	auto;	margin-right:	auto;

				background:	hsla(240,100%,50%,0.75);}

It’s	not	easy	to	see	in	static	images	like	Figure	9-58,	but	the	way	the	headers	are	piling	up	is	that	the	later
they	are	in	the	source,	the	closer	they	are	to	the	viewer.	This	is	the	usual	z-index	behavior—which
means	that	you	can	decide	which	sticky	elements	sit	on	top	of	others	by	assigning	explicit	z-index
values.	For	example,	suppose	we	wanted	the	first	sticky	element	in	our	content	to	sit	atop	all	the	others.
By	giving	it	z-index:	1000,	or	any	other	sufficiently	high	number,	it	would	sit	on	top	of	all	the	other
sticky	elements	that	stuck	in	the	same	place.	The	visual	effect	would	be	of	the	other	elements	“sliding
under”	the	topmost	element.

Figure	9-58.	A	sticky-header	pileup

Summary
As	we	saw	in	this	chapter,	there	are	numerous	ways	to	affect	the	placement	of	basic	elements.	Floats	may
be	a	fundamentally	simple	aspect	of	CSS,	but	that	doesn’t	keep	them	from	being	useful	and	powerful.
They	fill	a	vital	and	honorable	niche,	allowing	the	placement	of	content	to	one	side	while	the	rest	of	the
content	flows	around	it.

Thanks	to	positioning,	it’s	possible	to	move	elements	around	in	ways	that	the	normal	flow	could	never
accommodate.	Combined	with	the	stacking	possibilities	of	the	z-axis	and	the	various	overflow	patterns,
there’s	still	a	lot	to	like	in	positioning,	even	in	a	time	when	flexbox	and	grid	layout	are	available	to	us.

1 	See	Chapter	6	for	details	on	the	inline	axis.

2 	See	Chapter	6	for	details	on	replaced	versus	nonreplaced	elements.

Chapter	10.	Fonts

The	“Font	Properties”	section	of	the	CSS1	specification,	written	in	1996,	begins	with	this	sentence:
“Setting	font	properties	will	be	among	the	most	common	uses	of	style	sheets.”	Despite	the	awareness	of
font’s	importance	from	the	very	beginning	of	CSS,	it	wasn’t	until	about	2009	that	this	capability	really
began	to	be	widely	and	consistently	supported.	With	the	introduction	of	variable	fonts,	typography	on	the
web	has	become	an	art	form.	While	you	can	include	any	font	you	are	legally	allowed	to	distribute	in	your
design,	you	have	to	pay	attention	to	how	you	use	them.

It’s	important	to	remember	this	does	not	grant	absolute	control	over	fonts.	If	the	font	you’re	using	fails	to
download,	or	is	in	a	file	format	the	user’s	browser	doesn’t	understand,	then	the	text	will	(eventually)	be
displayed	with	a	fallback	font.	That’s	a	good	thing	as	it	means	the	user	still	gets	your	content.

While	fonts	may	seem	vital	to	a	design,	always	bear	in	mind	you	can’t	depend	on	the	presence	of	a	given
font.	If	a	font	is	slow	to	load,	browsers	generally	delay	text	rendering.	While	that	prevents	text	being
redrawn	while	a	user	is	reading,	it’s	bad	to	have	no	text	on	the	page.

Your	font	choice	may	also	be	overridden	by	user	preference,	or	a	browser	extension	meant	to	enhance	the
reading	experience.	An	example	is	the	browser	extension	OpenDyslexic,	which	“overrides	all	fonts	on
webpages	with	the	OpenDyslexic	font,	and	formats	pages	to	be	more	easily	readable.”	In	general,	always
design	assuming	your	fonts	will	be	delayed	and	even	fail	altogether.

Font	Families
What	we	think	of	as	a	“font”	is	usually	composed	of	many	variations	to	describe	bold	text,	italic	text,	bold
italic	text,	and	so	on.	For	example,	you’re	probably	familiar	with	(or	at	least	have	heard	of)	the	font
Times.	Times	is	actually	a	combination	of	many	variants,	including	TimesRegular,	TimesBold,
TimesItalic,	TimesBoldItalic,	and	so	on.	Each	of	these	variants	of	Times	is	an	actual	font	face,	and	Times,
as	we	usually	think	of	it,	is	a	combination	of	all	these	variant	faces.	In	other	words,	system-standard	fonts
like	Times	are	actually	a	font	family,	not	just	a	single	font,	even	though	most	of	us	think	about	fonts	as
being	single	entities.

With	such	font	families,	a	separate	file	is	required	for	each	width,	weight,	and	style	combination	(that	is,
each	font	face),	meaning	you	can	have	upwards	of	20	separate	files	for	a	complete	typeface.	Variable
fonts,	on	the	other	hand,	are	able	to	store	multiple	variants,	such	as	regular,	bold,	italic,	and	bold	italic,	in
a	single	file.	Variable	font	files	are	generally	a	little	bit	larger	(maybe	just	a	few	kilobytes)	than	any
single	font	face	file,	but	smaller	than	the	multiple	files	required	of	a	regular	font,	and	only	require	a	single
HTTP	request.

In	order	to	cover	all	the	bases,	CSS	defines	five	generic	font	families:

Serif	fonts

Serif	fonts	are	proportional	and	have	serifs.	A	font	is	proportional	if	all	characters	in	the	font	have
different	widths	due	to	their	various	sizes.	For	example,	a	lowercase	i	and	a	lowercase	m	take	up

different	horizontal	spaces	because	they	have	different	widths.	(This	book’s	paragraph	font	is
proportional,	for	example.)	Serifs	are	the	decorations	on	the	ends	of	strokes	within	each	character,
such	as	little	lines	at	the	top	and	bottom	of	a	lowercase	l,	or	at	the	bottom	of	each	leg	of	an	uppercase
A.	Examples	of	serif	fonts	are	Times,	Georgia,	and	New	Century	Schoolbook.

Sans-serif	fonts

Sans-serif	fonts	are	proportional	and	do	not	have	serifs.	Examples	of	sans-serif	fonts	are	Helvetica,
Geneva,	Verdana,	Arial,	and	Univers.

Monospace	fonts

Monospace	fonts	are	not	proportional.	Rather,	each	character	in	a	monospace	font	uses	up	the	same
amount	of	horizontal	space	as	all	the	others;	thus,	a	lowercase	i	takes	up	the	same	horizontal	space	as
a	lowercase	m,	even	though	their	actual	letterforms	may	have	different	widths.	These	generally	are
used	for	displaying	programmatic	code	or	tabular	data,	like	this	book’s	code	font,	for	example.	If	a
font	has	uniform	character	widths,	it	is	classified	as	monospace,	regardless	of	the	whether	or	not	it
has	serifs.	Examples	of	monospace	fonts	are	Courier,	Courier	New,	Consolas,	and	Andale	Mono.

Cursive	fonts

Cursive	fonts	attempt	to	emulate	human	handwriting	or	lettering.	Usually,	they	are	composed	largely	of
flowing	curves	and	have	stroke	decorations	that	exceed	those	found	in	serif	fonts.	For	example,	an
uppercase	A	might	have	a	small	curl	at	the	bottom	of	its	left	leg	or	be	composed	entirely	of	swashes
and	curls.	Examples	of	cursive	fonts	are	Zapf	Chancery,	Author,	and	Comic	Sans.

Fantasy	fonts

Fantasy	fonts	are	not	really	defined	by	any	single	characteristic	other	than	our	inability	to	easily
classify	them	in	one	of	the	other	families	(these	are	sometimes	called	“decorative”	or	“display”
fonts).	A	few	such	fonts	are	Western,	Woodblock,	and	Klingon.

Your	operating	system	and	browser	will	have	a	default	font	family	for	each	of	these	generic	families.
Fonts	a	browser	cannot	classify	as	serif,	sans-serif,	monospace,	or	cursive	are	generally	considered	as
“fantasy.”	While	most	font	families	will	fall	into	one	of	these	generic	families,	not	all	do.	For	example,
SVG	icon	fonts,	dingbat	fonts,	and	Material	Icons	Round	contain	images	rather	than	letters.

Using	Generic	Font	Families
You	can	call	on	any	available	font	family	by	using	the	property	font-family.

FONT-FAMILY

Values [<family-name>	|	<generic-family>]#

Initial	value User	agent-specific

Applies	to All	elements

Computed	value As	specified

@font-face	equivalent font-family

Inherited Yes

Animatable No

If	you	want	a	document	to	use	a	sans-serif	font,	but	you	do	not	particularly	care	which	one,	then	the
appropriate	declaration	would	be:

body	{font-family:	sans-serif;}

This	will	cause	the	user	agent	to	pick	a	sans-serif	font	family	(such	as	Helvetica)	and	apply	it	to	the	body
element.	Thanks	to	inheritance,	the	same	font	family	choice	will	be	applied	to	all	visible	elements	that
descend	from	the	body,	unless	overridden	by	the	user	agent.	User	agents	generally	apply	a	font-
family	to	some	elements,	such	as	monospace	in	the	case	of	<code>	and	<pre>	or	a	system	font	to
some	form	input	controls.

Using	nothing	more	than	these	generic	families,	you	can	create	a	fairly	sophisticated	stylesheet.	The
following	rule	set	is	illustrated	in	Figure	10-1:

body	{font-family:	serif;}

h1,	h2,	h3,	h4	{font-family:	sans-serif;}

code,	pre,	kbd	{font-family:	monospace;}

p.signature	{font-family:	cursive;}

Thus,	most	of	the	document	will	use	a	serif	font	such	as	Times,	including	all	paragraphs	except	those	that
have	a	class	of	signature,	which	will	instead	be	rendered	in	a	cursive	font	such	as	Author.	Heading
levels	1	through	4	will	use	a	sans-serif	font	like	Helvetica,	while	the	elements	code,	pre,	tt,	and	kbd
will	use	a	monospace	font	like	Courier.

NOTE
Using	generic	defaults	is	excellent	for	rendering	speed,	as	it	allows	the	browser	to	use	whichever	default	fonts	it	already	has	in	memory
rather	than	having	to	parse	through	a	list	of	specific	fonts	and	load	characters	as	needed.

Figure	10-1.	Various	font	families

A	page	author	may,	on	the	other	hand,	have	more	specific	preferences	for	which	font	to	use	in	the	display
of	a	document	or	element.	In	a	similar	vein,	a	user	may	want	to	create	a	user	stylesheet	that	defines	the
exact	fonts	to	be	used	in	the	display	of	all	documents.	In	either	case,	font-family	is	still	the	property
to	use.

Assume	for	the	moment	that	all	`h1`s	should	use	Georgia	as	their	font.	The	simplest	rule	for	this	would	be
the	following:

h1	{font-family:	Georgia;}

This	will	cause	the	user	agent	displaying	the	document	to	use	Georgia	for	all	h1	elements,	assuming	that
the	user	agent	has	Georgia	available	for	use.	If	it	doesn’t,	the	user	agent	will	be	unable	to	use	the	rule	at
all.	It	won’t	ignore	the	rule,	but	if	it	can’t	find	a	font	called	“Georgia,”	it	can’t	do	anything	but	display	h1
elements	using	the	user	agent’s	default	font.

To	handle	a	situation	like	this	you	can	give	the	user	agent	options	by	combining	specific	font	families	with
generic	font	families.	For	example,	the	following	markup	tells	a	user	agent	to	use	Georgia	if	it’s
available,	and	to	use	another	serif	font	like	Times	as	a	fallback	if	it	isn’t:

h1	{font-family:	Georgia,	serif;}

For	this	reason,	we	strongly	encourage	you	to	always	provide	a	generic	family	as	part	of	any	font-
family	rule.	By	doing	so,	you	provide	a	fallback	mechanism	that	lets	user	agents	pick	an	alternative
when	they	can’t	provide	an	exact	font	match.	This	is	often	referred	to	as	a	font	stack.	Here	are	a	few	more
examples:

h1	{font-family:	Arial,	sans-serif;}

h2	{font-family:	Arvo,	sans-serif;}

p	{font-family:	'Times	New	Roman',	serif;}

address	{font-family:	Chicago,	sans-serif;}

.signature	{font-family:	Author,	cursive;}

If	you’re	familiar	with	fonts,	you	might	have	a	number	of	similar	fonts	in	mind	for	displaying	a	given
element.	Let’s	say	that	you	want	all	paragraphs	in	a	document	to	be	displayed	using	Times,	but	you	would
also	accept	Times	New	Roman,	Georgia,	New	Century	Schoolbook,	and	New	York	(all	of	which	are	serif
fonts)	as	alternate	choices.	First,	decide	the	order	of	preference	for	these	fonts,	and	then	string	them
together	with	commas:

p	{font-family:	Times,	'Times	New	Roman',	'New	Century	Schoolbook',	Georgia,

						'New	York',	serif;}

Based	on	this	list,	a	user	agent	will	look	for	the	fonts	in	the	order	they’re	listed.	If	none	of	the	listed	fonts
are	available,	then	it	will	just	pick	an	available	serif	font.

Using	quotation	marks
You	may	have	noticed	the	presence	of	single	quotes	in	the	previous	code	example,	which	we	haven’t	seen
before	in	this	chapter.	Quotation	marks	are	advisable	in	a	font-family	declaration	only	if	a	font	name
has	one	or	more	spaces	in	it,	such	as	“New	York,”	or	if	the	font	name	includes	symbols.	Thus,	a	font
called	“Karrank%”	should	be	quoted:

h2	{font-family:	Wedgie,	'Karrank%',	Klingon,	fantasy;}

While	quoting	font	names	is	almost	never	required,	if	you	leave	off	the	quotation	marks,	user	agents	may
ignore	the	font	name	and	continue	to	the	next	available	font	in	the	font	stack.	The	exception	to	this	is	font
names	that	match	accepted	font-family	keywords.	For	example,	if	your	font	name	is	“cursive”,
“serif”,	“sans-serif”,	“monospace”,	or	“fantasy”,	it	must	be	quoted	so	the	user	agent	knows	the	difference
between	a	font	name	and	a	font-family	keyword,	as	shown	here

h2	{font-family:	Author,	"cursive",	cursive;}

The	actual	generic	family	names	(serif,	monospace,	etc.)	should	never	be	quoted.	If	they	are	quoted,
the	browser	will	look	for	a	font	with	that	exact	name.

When	quoting	font	names,	either	single	or	double	quotes	are	acceptable,	as	long	as	they	match.	Remember
that	if	you	place	a	font-family	rule	in	a	style	attribute,	which	you	generally	shouldn’t,	you’ll	need
to	use	whichever	quotes	you	didn’t	use	for	the	attribute	itself.	Therefore,	if	you	use	double	quotes	to
enclose	the	font-family	rule,	then	you’ll	have	to	use	single	quotes	within	the	rule,	as	in	the	following
markup:

p	{font-family:	sans-serif;}		/*	sets	paragraphs	to	sans-serif	by	default	*/

<!--	the	next	example	is	correct	(uses	single-quotes)	-->

<p	style="font-family:	'New	Century	Schoolbook',	Times,	serif;">...</p>

<!--	the	next	example	is	NOT	correct	(uses	double-quotes)	-->

<p	style="font-family:	"New	Century	Schoolbook",	Times,	serif;">...</p>

If	you	use	double	quotes	in	such	a	circumstance,	they	interfere	with	the	attribute	syntax.	Note	the	font	name
is	case-insensitive.

Using	@font-face
The	@font-face	rule	enables	you	to	use	custom	fonts	on	the	web,	instead	of	being	forced	to	rely	only
on	“web-safe”	fonts	(that	is,	font	families	which	are	widely	installed,	such	as	Times).

The	two	required	functions	of	the	@font-face	rule	are	1)	to	declare	the	name	used	to	refer	to	a	font
and	2)	to	provide	the	URL	of	that	font’s	file	for	downloading.	In	addition	to	these	required	descriptors,
there	are	14	optional	descriptors.

While	there’s	no	guarantee	that	every	user	will	see	the	font	you	want,	@font-face	is	supported	in	all
browsers	except	browsers	like	Opera	Mini	that	intentionally	don’t	support	it	for	performance	reasons.

Suppose	you	want	to	use	a	very	specific	font	in	your	stylesheets,	one	that	is	not	widely	installed.	Through
the	magic	of	@font-face,	you	can	define	a	specific	family	name	to	correspond	to	a	font	file	on	your
server	which	you	can	refer	to	throughout	your	CSS.	The	user	agent	will	download	that	file	and	use	it	to
render	the	text	in	your	page,	the	same	as	if	it	were	installed	on	the	user’s	machine.	For	example:

@font-face	{

				font-family:	"Switzera";

				src:	url("SwitzeraADF-Regular.otf");

}

This	allows	you	to	tell	user	agents	to	load	the	defined	.otf	file	and	use	that	font	to	render	text	when
called	upon	via	font-family:	SwitzeraADF.

NOTE
The	examples	in	this	section	refer	to	SwitzeraADF,	a	font	face	collection	available	from	the	Arkandis	Digital	Foundry.

The	@font-face	declaration	doesn’t	automatically	load	all	the	referenced	font	files.	The	intent	of
@font-face	is	to	allow	lazy	loading	of	font	faces.	This	means	only	faces	actually	needed	to	render	a
document	will	be	loaded.	Font	files	referenced	in	your	CSS	that	aren’t	necessary	to	render	the	page	will
not	be	downloaded.	Font	files	are	generally	cached,	and	aren’t	re-downloaded	as	your	users	navigate
your	site.

The	ability	to	load	any	font	is	quite	powerful,	but	it	comes	with	some	concerns	to	keep	in	mind:

1.	 For	security	reasons,	font	files	must	be	retrieved	from	the	same	domain	as	the	page	requesting	them.
There’s	a	solution	for	that.

2.	 Requiring	lots	of	font	downloads	can	lead	to	slow	load	times.

3.	 Fonts	with	lots	of	characters	can	lead	to	large	font	files.	Fortunately,	online	tools	and	CSS	enable
limiting	character	sets.

http://arkandis.tuxfamily.org/openfonts.html

4.	 If	fonts	load	slowly,	this	can	lead	to	flashes	of	unstyled	text	or	invisible	text.	CSS	has	a	way	of
addressing	this	issue	as	well.

We’ll	cover	these	problems	and	their	solutions	in	this	chapter.	But,	remember,	with	great	power	comes
great	responsibility.	Use	fonts	wisely!

Font-face	Descriptors
All	the	parameters	that	define	the	font	you’re	referencing	are	contained	within	the	@font-face	{	}
construct.	These	are	called	descriptors,	and	very	much	like	properties,	they	take	the	format
descriptor:	value;.	In	fact,	most	of	the	descriptor	names	refer	directly	to	property	names,	as	will
be	examined	throughout	the	rest	of	the	chapter.	The	list	of	possible	descriptors,	both	required	and
optional,	is	given	in	Table	10-1.

Table	10-1.	Font	descriptors

Descriptor Default	value Description

font-family n/a Required.	The	name	used	for	this	font	in	font-family	property	values.

src n/a Required.	One	or	more	URLs	pointing	to	the	font	file(s)	that	must	be	loaded	to	display	the	font.

font-display auto Determines	how	a	font	face	is	displayed	based	on	whether	and	when	it	is	downloaded	and	
ready	to	use.

font-stretch normal Distinguishes	between	varying	degrees	of	character	widths	(e.g.,	condensed	and	expande
d).

font-style normal Distinguishes	between	normal,	italic,	and	oblique	faces.

font-weight normal Distinguishes	between	various	weights	(e.g.,	bold).

font-variant normal A	value	of	the	font-variant	property.

font-feature-s

ettings

normal Permits	direct	access	to	low-level	OpenType	features	(e.g.,	enabling	ligatures).

font-variation

-settings

normal Allows	low-level	control	over	OpenType	or	TrueType	font	variations,	by	specifying	the	four-
letter	axis	names	of	the	features	to	vary,	along	with	their	variation	values

ascent-overrid

e

normal Defines	the	ascent	metric	for	the	font.

descent-overri

de

normal Defines	the	descent	metric	for	the	font.

line-gap-overr

ide

normal Defines	the	line	gap	metric	for	the	font.

size-adjust 100% Defines	a	multiplier	for	glyph	outlines	and	metrics	associated	with	the	font.

unicode-range U+0-10FFFF Defines	the	range	of	characters	for	which	a	given	face	may	be	used.

As	noted	in	Table	10-1,	there	are	two	required	descriptors:	font-family	and	src.

FONT-FAMILY	DESCRIPTOR

Value <family-name>

Initial	value Not	defined

SRC	DESCRIPTOR

Values <uri>	[format(<string>#)]?	[tech(<font-tech>#)]?	|	<font-face-name>]#

Initial	value Not	defined

The	point	of	src	is	pretty	straightforward,	so	we’ll	describe	it	first:	src	lets	you	define	one	or	more
comma-separated	sources	for	the	font	face	you’re	defining.	With	each	source,	you	can	provide	an	optional
(but	recommended)	format	hint	which	can	help	improve	download	performance.

You	can	point	to	a	font	face	at	any	URL—including	files	on	the	user’s	computer	using	local(),	and
files	elsewhere	with	url().	There	is	a	default	restriction:	unless	you	set	an	exception,	font	faces	can
only	be	loaded	from	the	same	origin	as	the	stylesheet.	You	can’t	simply	point	your	src	at	someone	else’s
site	and	download	their	font.	You’ll	need	to	host	a	local	copy	on	your	own	server,	use	HTTP	access
controls	to	relax	the	same	domain	restriction,	or	use	a	font-hosting	service	that	provides	both	the
stylesheet(s)	and	the	font	file(s).

NOTE
To	create	an	exception	to	the	same-origin	restriction	for	fonts,	include	the	following	in	your	server’s	.htaccess	file:

<FilesMatch	"\.(ttf|otf|woff|woff2)$">
		<IfModule	mod_headers.c>
				Header	set	Access-Control-Allow-Origin	"*"
		</IfModule>
</FilesMatch>

…where	the	FilesMatch	line	includes	all	the	file	extensions	of	the	fonts	you	want	to	import.	This	will	allow	anyone,	from	anywhere,
to	point	at	your	font	files	and	load	them	directly	off	your	server.

You	may	be	wondering	how	it	is	that	we’re	defining	font-family	here	when	it	was	already	defined	in
a	previous	section.	The	difference	is	this	font-family	is	the	font	family	descriptor,	and	the
previously-defined	font-family	was	the	font	family	property.	If	this	seems	confusing,	stick	with	us	a
moment	and	all	should	become	clear.

Essentially,	@font-face	lets	you	create	low-level	definitions	that	underpin	the	font-related	properties
like	font-family.	When	you	define	a	font	family	name	via	the	descriptor	font-family:
"Switzera";,	you’re	setting	up	an	entry	in	the	user	agent’s	table	of	font	families	you	can	refer	to	in
your	font-family	property	values:

@font-face	{

				font-family:	"Switzera";			/*	descriptor	*/

				src:	url("SwitzeraADF-Regular.otf");

}

h1	{font-family:	switzera,	Helvetica,	sans-serif;}		/*	property	*/

Note	how	the	font-family	descriptor	value	and	the	entry	in	the	font-family	property	match	case-
insensitively.	If	they	didn’t	match	at	all,	then	the	h1	rule	would	ignore	the	first	font	family	name	listed	in
the	font-family	value	and	move	on	to	the	next	(Helvetica,	in	this	case).

Also	note	that	the	font-family	descriptor	can	be	(almost)	any	name	you	want	to	give	it.	It	doesn’t
have	to	an	exact	match	of	the	name	of	the	font	file,	though	it	usually	makes	sense	to	use	a	descriptor	that’s
at	least	close	to	the	font’s	name	for	purposes	of	clarity.	That	said,	the	value	used	in	the	font-family
property	does	have	to	(case-insensitively)	match	the	font-family	descriptor.

As	long	as	the	font	has	cleanly	downloaded	and	is	in	a	format	the	user	agent	can	handle,	then	it	will	be
used	in	the	manner	you	direct,	as	illustrated	in	Figure	10-2.

Figure	10-2.	Using	a	downloaded	font

In	a	similar	manner,	the	comma-separated	src	descriptor	value	can	provide	fallbacks.	That	way,	if	the
user	agent	doesn’t	understand	the	file	type	defined	by	the	hint	or,	for	whatever	reason,	the	user	agent	is
unable	to	download	the	first	source,	it	can	move	on	to	the	second	source	and	try	to	load	the	file	defined
there:

@font-face	{

				font-family:	"Switzera";

				src:	url("SwitzeraADF-Regular.otf"),

									url("https://example.com/fonts/SwitzeraADF-Regular.otf");

}

Remember	that	the	same-origin	policy	mentioned	earlier	generally	applies	in	this	case,	so	pointing	to	a
copy	of	the	font	some	other	server	will	usually	fail,	unless	said	server	is	set	up	to	permit	cross-origin
access.

If	you	want	to	be	sure	the	user	agent	understands	what	kind	of	font	you’re	telling	it	to	use,	use	the	optional
but	highly	recommended	format()	hint:

@font-face	{

				font-family:	"Switzera";

				src:	url("SwitzeraADF-Regular.otf")	format("opentype");

}

The	advantage	of	supplying	a	format()	hint	is	that	user	agents	can	skip	downloading	files	in	formats
they	don’t	support,	thus	reducing	bandwidth	use	and	load	time.	If	no	format	hint	is	supplied,	the	font
resource	will	be	downloaded	even	if	its	format	isn’t	supported.	The	format()	hint	also	lets	you
explicitly	declare	a	format	for	a	file	that	might	not	have	a	common	filename	extension:

@font-face	{

				font-family:	"Switzera";

				src:	url("SwitzeraADF-Regular.otf")	format("opentype"),

									url("SwitzeraADF-Regular.true")	format("truetype");

									/*	TrueType	font	files	usually	end	in	'.ttf'	*/

}

Table	10-2	lists	all	of	the	allowed	format	values	(as	of	late	2022).

Table	10-2.	Recognized	font	format	values

Value Format Full	name

collection OTC/TTC OpenType	Collection	(formerly:	TrueType	Collection)

embedded-opentype EOT Embedded	OpenType

opentype OTF OpenType

svg SVG Scalable	Vector	Graphics

truetype TTF TrueType

woff2 WOFF2 Web	Open	Font	Format,	version	2

woff WOFF Web	Open	Font	Format

In	addition	to	the	format,	you	can	also	supply	a	value	corresponding	to	a	font	technology	with	the
tech()	function.	A	color	font	version	of	Switzera	might	look	something	like	this:

@font-face	{

				font-family:	"Switzera";

				src:	url("SwitzeraADF-Regular-Color.otf")	format("opentype")	tech("color-COLRv1"),

									url("SwitzeraADF-Regular.true")	format("truetype");

									/*	TrueType	font	files	usually	end	in	'.ttf'	*/

}

Table	10-3	lists	all	of	the	recognized	font-technology	values	(as	of	late	2022).

Table	10-3.	Recognized	font	technology	values

Value Description

color-CBDT Font	colors	are	defined	using	the	OpenType	CBDT	(Color	Bitmap	Data	Table)	table

color-COLRv0 Font	colors	are	defined	using	the	OpenType	COLR	(Color	Table)	table

color-COLRv1 Font	colors	are	defined	using	the	OpenType	COLR	(Color	Table)	table

color-sbix Font	colors	are	defined	using	the	OpenType	sbix	(Standard	Bitmap	Graphics	Table)	table

color-SVG Font	colors	are	defined	using	the	OpenType	SVG	(Scalable	Vector	Graphics)	table

feature-aat Font	uses	tables	from	the	Apple	Advanced	Typography	(AAT)	Font	Feature	Registry

feature-graphite Font	uses	tables	from	the	Graphite	open-source	font	rendering	engine

feature-opentype Font	uses	tables	from	the	OpenType	specification

incremental Incremental	font-loading	using	the	range-request	or	patch-subset	server	methods

palettes A	font	that	offers	palettes	by	way	of	the	OpenType	CPAL	table

variations Font	uses	variations	as	defined	by	the	OpenType	tables	such	as`GSUB 	̀and	GPOS,	the	AAT	tables	morx	and	kerx,	
or	the	Graphite	tables	Silf,	Glat,	Gloc,	Feat	and	Sill.

Delving	into	the	details	of	all	these	feature	tables	is	well	beyond	the	scope	of	this	book,	and	you	are
unlikely	to	need	to	use	them	most	of	the	time.	Even	if	a	font	has	one	or	more	of	the	listed	feature	tables,
listing	them	is	not	required.	Even	with	a	tech("color-SVG"),	an	SVG	color	font	will	still	render
using	its	colors.

In	addition	to	the	combination	of	url(),	format(),	and	tech(),	you	can	also	supply	a	font	family
name	(or	several	names)	in	case	the	font	is	already	locally	available	on	the	user’s	machine,	using	the
aptly-named	local()	function:

@font-face	{

				font-family:	"Switzera";

				src:	local("Switzera-Regular"),

									local("SwitzeraADF-Regular"),

									url("SwitzeraADF-Regular.otf")	format("opentype"),

									url("SwitzeraADF-Regular.true")	format("truetype");

}

In	this	example,	the	user	agent	looks	to	see	if	it	already	has	a	font	family	named	“Switzera-Regular”	or
“SwitzeraADF-Regular”,	case-insensitively,	available	on	the	local	machine.	If	so,	it	will	use	the	name
Switzera	to	refer	to	that	locally	installed	font.	If	not,	it	will	use	the	url()	values	to	try	downloading
the	first	remote	font	listed	that	has	a	format	type	it	supports.

Bear	in	mind	that	the	order	of	the	resources	listed	in	src	matters.	As	soon	as	the	browser	encounters	a
source	in	a	format	it	supports,	it	attempts	to	use	that	source.	For	this	reason,	local()	values	should	be
listed	first,	with	no	format	hint	needed.	This	should	be	followed	by	external	resources	with	file	type	hints,

generally	in	order	of	smallest	file	size	to	largest	to	minimize	performance	hits.

This	capability	allows	an	author	to	create	custom	names	for	locally	installed	fonts.	For	example,	you
could	set	up	a	shorter	name	for	versions	of	Hiragino,	a	Japanese	font,	like	so:

@font-face	{

				font-family:	"Hiragino";

				src:	local("Hiragino	Kaku	Gothic	Pro"),

									local("Hiragino	Kaku	Gothic	Std");

}

h1,	h2,	h3	{font-family:	Hiragino,	sans-serif;}

As	long	as	the	user	has	one	of	the	versions	of	Hiragino	Kaku	Gothic	installed	on	their	machine,	then	those
rules	will	cause	the	first	three	heading	levels	to	be	rendered	using	using	that	font.

There	are	online	services	that	let	you	upload	font	face	files	and	generate	all	the	@font-face	rules	you
need,	convert	those	files	to	all	the	formats	required,	and	hand	everything	back	to	you	as	a	single	package.
One	of	the	best	known	is	Font	Squirrel’s	@Font-Face	Kit	Generator.	Just	make	sure	you’re	legally	able	to
convert	and	use	the	font	faces	you’re	running	through	the	generator	(see	the	sidebar	“Custom	Font
Considerations”	for	more	information).

http://fontsquirrel.com/fontface/generator

CUSTOM	FONT	CONSIDERATIONS
There	are	two	things	you	need	to	keep	in	mind	when	using	customized	fonts.	The	first	is	that	you
legally	have	to	have	the	rights	to	use	the	font	in	a	web	page,	and	the	second	is	whether	it’s	a	good	idea
to	do	so.

Much	like	stock	photography,	commercial	font	families	come	with	licenses	that	govern	their	use,	and
not	every	font	license	permits	its	use	on	the	web.	You	can	completely	avoid	this	question	by	only
using	FOSS	(Free	and	Open-Source	Software)	fonts,	or	by	using	a	commercial	service	like	Fontdeck
or	Typekit	that	deals	with	the	licensing	and	format	conversion	issues	so	you	don’t	have	to.	Otherwise,
you	need	to	make	sure	you	have	the	legal	right	to	use	a	font	face	in	the	way	you	want	to	use	it,	just	the
same	as	you	make	sure	you	have	the	proper	license	for	any	images	you	want	to	use	in	your	designs.

In	addition,	the	more	font	faces	you	call	upon,	the	more	resources	the	web	server	has	to	hand	over	and
the	higher	the	overall	page	weight	will	become.	Most	faces	are	not	overly	large—usually	50K	to
200K—but	they	add	up	quickly	if	you	decide	to	get	fancy	with	your	type,	and	truly	complicated	faces
can	be	much	larger	than	200K.	You	will	have	to	balance	appearance	against	performance,	leaning	one
way	or	the	other	depending	on	the	circumstances.

That	said,	just	as	there	are	image	optimization	tools	available,	there	are	also	font	optimization	tools.
Typically	these	are	subsetting	tools,	which	construct	fonts	using	only	the	symbols	actually	needed	for
display.	If	you’re	using	a	service	like	Typekit	or	Fonts.com,	they	probably	have	subsetting	tools
available,	or	else	do	it	dynamically	when	the	font	is	requested.

When	subsetting	a	font,	you	can	use	the	unicode-range	descriptor	to	limit	custom	font	use	to	only
the	characters	in	the	font	file.	Services	such	as	Font	Squirrel	will	subset	the	font	for	you	and	provide
the	unicode	range	in	the	CSS	snippet	it	produces.	Just	remember	that	subsetting	needs	to	be	done	in
the	font	file,	not	just	in	the	Unicode	range,	in	order	to	reduce	the	file	size.

Restricting	character	range
There	may	be	situations	where	you	want	to	use	a	custom	font	in	very	limited	circumstances;	for	example,
to	ensure	that	a	font	face	is	only	applied	to	characters	that	are	in	a	specific	language.	In	these	cases,	it	can
be	useful	to	restrict	the	use	of	a	font	to	certain	characters	or	symbols,	and	the	unicode-range
descriptor	allows	precisely	that.

UNICODE-RANGE	DESCRIPTOR

Values <urange>#

Initial	value U+0-10FFFF

By	default,	the	value	of	this	descriptor	covers	U+0	to	U+10FFFF,	which	is	the	entirety	of	Unicode—
meaning	that	if	a	font	can	supply	the	glyph	for	a	character,	it	will.	Most	of	the	time,	this	is	exactly	what

http://fonts.com

you	want.	For	all	the	other	times,	you’ll	want	to	use	specific	font	faces	for	specific	kinds	of	content.	You
can	define	a	single	codepoint,	a	codepoint	range,	or	a	set	of	ranges	with	the	?	wildcard	character.

To	pick	a	few	examples	from	the	CSS	Fonts	Module	Level	3:

unicode-range:	U+0026;	/*	the	Ampersand	(&)	character	*/

unicode-range:	U+590-5FF;		/*	Hebrew	characters	*/

unicode-range:	U+4E00-9FFF,	U+FF00-FF9F,	U+30??,	U+A5;		/*	Japanese

		kanji,	hiragana,	and	katakana,	plus	the	yen/yuan	currency	symbol*/

In	the	first	case,	a	single	codepoint	is	specified.	The	font	will	only	be	used	for	the	ampersand	(&)
character.	If	the	ampersand	character	is	not	used,	the	font	is	not	downloaded.	If	it	is	used,	the	entire	font
file	is	downloaded.	For	this	reason,	it	is	sometimes	good	to	optimize	your	font	files	to	only	include
characters	in	the	specified	unicode	range,	especially	if,	like	in	this	case,	you’re	only	using	one	character
from	a	font	that	could	contain	several	thousand	characters.

In	the	second	case,	a	single	range	is	specified,	spanning	Unicode	character	code	point	590	through	code
point	5FF.	This	covers	the	111	total	characters	used	when	writing	Hebrew.	Thus,	an	author	might	specify
a	Hebrew	font	and	restrict	it	to	only	be	used	for	Hebrew	characters,	even	if	the	face	contains	glyphs	for
other	code	points:

@font-face	{

				font-family:	"CMM-Ahuvah";

				src:	url("cmm-ahuvah.otf"	format("opentype");

				unicode-range:	U+590-5FF;

}

In	the	third	case,	a	series	of	ranges	are	specified	in	a	comma-separated	list	to	cover	all	the	Japanese
characters.	The	interesting	feature	there	is	the	U+30??	value,	with	a	question	mark,	which	is	a	special
format	permitted	in	unicode-range	values.	The	question	marks	are	wildcards	meaning	“any	possible
digit,”	making	U+30??	equivalent	to	U+3000-30FF.	The	question	mark	is	the	only	“special”	character
pattern	permitted	in	the	value.

Ranges	must	always	ascend.	Any	descending	range,	such	as	U+400-300,	is	treated	as	a	parsing	error
and	ignored.

Because	@font-face	is	designed	to	optimize	lazy	loading,	it’s	possible	to	use	unicode-range	to
download	only	the	font	faces	a	page	actually	needs,	with	possibly	a	much	smaller	file	size	when	using	a
font	file	optimized	to	contain	only	the	defined	subset	character	range.	If	the	page	doesn’t	use	any	character
in	the	range,	the	font	is	not	downloaded.	If	a	single	character	on	a	page	requires	a	font,	the	whole	font	is
downloaded.

Suppose	you	have	a	website	that	uses	a	mixture	of	English,	Russian,	and	basic	mathematical	operators,
but	you	don’t	know	which	will	appear	on	any	given	page.	There	could	be	all	English,	a	mixture	of
Russian	and	math,	and	so	on.	Furthermore,	suppose	you	have	special	font	faces	for	all	three	types	of
content.	You	can	make	sure	a	user	agent	only	downloads	the	faces	it	actually	needs	with	a	properly-
constructed	series	of	@font-face	rules:

@font-face	{

				font-family:	"MyFont";

				src:	url("myfont-general.otf"	format("opentype");

}

@font-face	{

				font-family:	"MyFont";

				src:	url("myfont-cyrillic.otf"	format("opentype");

				unicode-range:	U+04??,	U+0500-052F,	U+2DE0-2DFF,	U+A640-A69F,	U+1D2B-1D78;

}

@font-face	{

				font-family:	"MyFont";

				src:	url("myfont-math.otf"	format("opentype");

				unicode-range:	U+22??;			/*	equivalent	to	U+2200-22FF	*/

}

body	{font-family:	MyFont,	serif;}

Because	the	first	rule	doesn’t	specify	a	Unicode	range,	it	is	always	downloaded—unless	a	page	happens
to	contain	no	characters	at	all	(and	maybe	even	then).	The	second	rule	causes	myfont-
cyrillic.otf	to	be	downloaded	only	if	the	page	contains	characters	in	its	declared	Unicode	range;
the	third	rule	does	the	same	for	mathematical	symbols.

If	the	content	calls	for	the	mathematical	character	U+2222	(,	the	“spherical	angle”	character),
myfont-math.otf	will	be	downloaded	and	the	character	from	myfont-math.otf	will	be	used,
even	if	myfont-general.otf	has	that	character.

A	more	likely	way	to	use	this	capability	would	be	our	ampersand	example;	we	can	include	a	fancy
ampersand	from	a	cursive	font	and	use	it	in	place	of	the	ampersand	found	in	a	headline	font.	Something
like	this:

@font-face	{

				font-family:	"Headline";

				src:	url("headliner.otf"	format("opentype");

}

@font-face	{

				font-family:	"Headline";

				src:	url("cursive-font.otf"	format("opentype");

				unicode-range:	U+0026;

}

h1,	h2,	h3,	h4,	h5,	h6	{font-face:	Headline,	cursive;}

In	a	case	like	this,	to	keep	page	weights	low,	take	a	cursive	font	(that	you	have	the	rights	to	use)	and
minimize	it	down	to	contain	just	the	ampersand	character.	You	can	use	a	tool	like	Font	Squirrel	to	create	a
single	character	font	file.

NOTE
Remember	that	pages	can	be	translated	with	automated	services	like	Google	Translate.	If	you	too	aggressively	restrict	your	Unicode
ranges,	say	to	the	range	of	unaccented	letters	used	in	English,	an	auto-translated	version	of	the	page	into	French	or	Swedish,	for	example,
could	end	up	a	mishmash	of	characters	in	different	font	faces,	as	the	accented	characters	in	those	languages	would	use	a	fallback	font	and
the	unaccented	characters	would	be	in	your	intended	font.

Font	display
If	you’re	a	designer	or	developer	of	a	certain	vintage,	you	may	remember	the	days	of	FOUC:	the	Flash	of
Unstyled	Content.	This	happened	in	earlier	browsers	that	would	load	the	HTML	and	display	it	to	the
screen	before	the	CSS	was	finished	loading,	or,	at	least,	before	the	layout	of	the	page	via	CSS	was
finished.

FOUT	(Flash	of	Unstyled	Text)	happens	when	a	browser	has	loaded	the	page	and	the	CSS	and	displays
the	laid-out	page,	along	with	all	the	text,	before	it’s	done	loading	custom	fonts.	FOUT	causes	text	to
appear	in	the	default	font,	or	a	fallback	font,	before	being	replaced	by	text	using	the	custom-loaded	font.

There	is	a	cousin	to	this	problem,	which	is	the	FOIT	(Flash	of	Invisible	Text).	FOIT	was	the	user-agent
solution	to	FOUT,	and	is	caused	when	the	browser	detects	if	text	is	set	in	a	custom	font	that	hasn’t	loaded
yet	and	makes	the	text	invisible	until	the	font	loads	or	a	certain	amount	of	time	passed.

Since	the	replacement	of	text	can	change	its	size,	whether	via	FOUT	or	FOIT,	take	care	when	selecting
fallback	fonts.	If	there	is	a	significant	height	difference	between	the	font	used	to	initially	display	the	text
and	the	custom	font	eventually	loaded	and	used,	significant	page	reflows	are	likely	to	occur.

In	an	attempt	to	help	with	this,	the	font-display	descriptor	guides	the	browser	to	proceed	with	text
rendering	when	a	web	font	has	yet	to	load.

FONT-DISPLAY	DESCRIPTOR

Values auto	|	block	|	swap	|	fallback	|	optional

Initial	value auto

Applies	to All	elements

Computed	value as	specified

What	we	can	call	the	“font	display	timeline	timer”	starts	when	the	user	agent	first	paints	the	page.	The
timeline	is	divided	into	the	three	periods:	block,	swap,	and	failure.

During	the	font-block	period,	if	the	font	face	is	not	loaded,	the	browser	renders	any	content	that	should
use	that	font	using	an	invisible	fallback	font	face,	meaning	the	text	content	is	not	visible	but	the	space	is
reserved.	If	the	font	loads	successfully	during	the	block	period,	the	text	is	rendered	with	the	downloaded
font	and	made	visible.

During	the	swap	period,	if	the	font	face	is	not	loaded,	the	browser	renders	the	content	using	a	visible
fallback	font	face,	most	likely	one	it	has	installed	locally	(e.g.,	Helvetica).	If	the	font	loads	successfully,
the	fallback	font	face	is	swapped	to	the	downloaded	font.

Once	the	failure	period	is	entered,	the	user	agent	treats	it	as	a	failed	load,	falls	back	to	an	available	font,
and	will	not	swap	the	font	if	it	does	eventually	load.	If	the	swap	period	is	infinite,	the	failure	period	is
never	entered.

The	values	of	the	font-display	descriptor	match	these	periods	of	the	timeline,	and	their	effect	is	to
emphasize	one	part	of	the	timeline	at	the	expense	of	the	others.	The	effects	are	summarized	in	“font-
display	values”.

FONT-DISPLAY	VALUES

Value Block	period* Swap	period* Failure	period*

auto Browser	defined Browser	defined Browser	defined

block 3s infinite n/a

swap <100ms infinite n/a

fallback <100ms 3s infinite

optional 0 0 infinite

Recommended	period	length;	actual	times	may	vary

Let’s	consider	each	value	in	turn.

block	tells	the	browser	to	hold	open	space	for	the	font	for	a	few	seconds	(three	is	what	the	specification
recommends,	but	browsers	may	choose	their	own	values),	and	then	enters	an	infinitely	long	swap	period.
That	means	that	if	the	font	ever	finally	loads,	even	if	it’s	10	minutes	later,	the	fallback	font	that	was	used
in	its	place	will	be	replaced	with	the	loaded	font.

swap	is	similar,	except	it	doesn’t	hold	the	space	open	for	longer	than	a	fraction	of	a	second	(100
milliseconds	is	the	recommendation).	A	fallback	font	is	then	used,	and	is	replaced	with	the	intended	font
whenever	it	finally	loads.

fallback	gives	the	same	brief	block	window	that	swap	does,	and	then	enters	a	short	period	in	which
the	fallback	font	can	be	replaced	by	the	intended	font.	If	that	short	period	(three	seconds	is	recommended)
is	exceeded,	then	the	fallback	font	is	used	indefinitely,	and	the	user	agent	may	cancel	the	download	of	the
intended	font	since	there	will	never	be	a	swap.

optional	is	the	most	stringent	of	them	all:	if	the	font	isn’t	immediately	available	at	first	paint,	then	it
goes	straight	to	the	fallback	font	and	skips	right	over	the	block	and	swap	periods	to	sit	in	the	failure
period	for	the	rest	of	the	page’s	life.

Combining	Descriptors
Something	that	might	not	be	immediately	obvious	is	that	you	can	supply	multiple	descriptors	in	order	to
assign	specific	faces	for	specific	property	combinations.	For	example,	you	can	assign	one	face	to	bold
text,	another	to	italic	text,	and	a	third	to	text	that	is	both	bold	and	italic.

This	is	actually	implicit	in	the	fact	that	any	undeclared	descriptor	is	assigned	its	default	value.	Let’s

consider	a	basic	set	of	three	face	assignments,	using	both	descriptors	we’ve	covered	and	a	few	we’ll	get
to	in	a	bit:

@font-face	{

				font-family:	"Switzera";

				font-weight:	normal;

				font-style:	normal;

				font-stretch:	normal;

				src:	url("SwitzeraADF-Regular.otf")	format("opentype");

}

@font-face	{

				font-family:	"Switzera";

				font-weight:	500;

				font-style:	normal;

				font-stretch:	normal;

				src:	url("SwitzeraADF-Bold.otf")	format("opentype");

}

@font-face	{

				font-family:	"Switzera";

				font-weight:	normal;

				font-style:	italic;

				font-stretch:	normal;

				src:	url("SwitzeraADF-Italic.otf")	format("opentype");

}

You	may	have	noticed	that	we’ve	explicitly	declared	some	descriptors	with	their	default	values,	even
though	we	didn’t	need	to.	The	previous	example	is	exactly	the	same	as	a	set	of	three	rules	in	which	we
remove	every	descriptor	that	shows	a	value	of	normal:

@font-face	{

			font-family:	"Switzera";

			src:	url("SwitzeraADF-Regular.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	500;

			src:	url("SwitzeraADF-Bold.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-style:	italic;

			src:	url("SwitzeraADF-Italic.otf")	format("opentype");

}

In	all	three	rules,	there	is	no	font-stretching	beyond	the	default	normal	amount,	and	the	values	of	font-
weight	and	font-style	vary	by	which	face	is	being	assigned.	So	what	if	we	want	to	assign	a
specific	face	to	unstretched	text	that’s	both	bold	and	italic?

@font-face	{

			font-family:	"Switzera";

			font-weight:	bold;

			font-style:	italic;

			font-stretch:	normal;

			src:	url("SwitzeraADF-BoldItalic.otf")	format("opentype");

}

And	then	what	about	bold,	italic,	condensed	text?

@font-face	{

			font-family:	"Switzera";

			font-weight:	bold;

			font-style:	italic;

			font-stretch:	condensed;

			src:	url("SwitzeraADF-BoldCondItalic.otf")	format("opentype");

}

How	about	normal-weight,	italic,	condensed	text?

@font-face	{

			font-family:	"Switzera";

			font-weight:	normal;

			font-style:	italic;

			font-stretch:	condensed;

			src:	url("SwitzeraADF-CondItalic.otf")	format("opentype");

}

We	could	keep	this	up	for	quite	a	while,	but	let’s	stop	there.	If	we	take	all	those	rules	and	strip	out
anything	with	a	normal	value,	we	end	up	with	the	following	result,	illustrated	in	Figure	10-3:

@font-face	{

			font-family:	"Switzera";

			src:	url("SwitzeraADF-Regular.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	bold;

			src:	url("SwitzeraADF-Bold.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-style:	italic;

			src:	url("SwitzeraADF-Italic.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	bold;

			font-style:	italic;

			src:	url("SwitzeraADF-BoldItalic.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	bold;

			font-stretch:	condensed;

			src:	url("SwitzeraADF-BoldCond.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-style:	italic;

			font-stretch:	condensed;

			src:	url("SwitzeraADF-CondItalic.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	bold;

			font-style:	italic;

			font-stretch:	condensed;

			src:	url("SwitzeraADF-BoldCondItalic.otf")	format("opentype");

}

Figure	10-3.	Employing	a	variety	of	faces

If	you	declare	html	{	+font-family:	switzera;},	you	don’t	have	to	declare	the	font	family
again	for	additional	selectors	that	use	switzera,	as	the	browser	will	use	the	correct	font	file	for	your
bold,	italic,	stretched,	and	normal	text	depending	on	what	your	selector	specific	values	for	the	font-
weight,	font-style,	and	font-stretch	property	values	are.

The	point	is,	we	can	have	a	specific	font	file	for	every	weight,	style	and	stretch.	The	ability	to	declare	all
the	variations	within	a	few	@font-face	rules	with	a	single	font-family	name	ensures	cohesive
typeface	design	and	avoids	font	synthesis	even	when	using	non-variable	fonts.	Declaring	all	the	variations
of	a	font	via	@font-face,	with	the	same	font-family	descriptor	name,	reduces	font-family
property	overrides,	reducing	the	chance	of	other	developers	on	your	team	using	the	wrong	font	file	for	a
specific	selector.

As	you	can	see,	when	using	standard	fonts,	there	are	a	lot	of	possible	combinations	just	for	those	three
descriptors—consider	that	there	are	10	possible	values	for	font-stretch—but	you’ll	likely	never
have	to	run	through	them	all.	In	fact,	most	font	families	don’t	have	as	many	faces	as	SwitzeraADF	offers
(24	at	last	count),	so	there	wouldn’t	be	much	point	in	writing	out	all	the	possibilities.	Nevertheless,	the
options	are	there,	and	in	some	cases	you	may	find	that	you	need	to	assign,	say,	a	specific	face	for	bold
condensed	text	so	that	the	user	agent	doesn’t	try	to	compute	them	for	you.	Or	else	use	a	variable	font	that
has	weight	and	condensing	axes.

Now	that	we’ve	covered	@font-face	and	provided	an	overview	of	a	few	descriptors,	let’s	get	back	to
properties.

Font	Weights
Most	of	us	are	used	to	normal	and	bold	text,	at	the	very	least,	which	are	sort	of	the	two	most	basic	font
weights	available.	CSS	gives	you	a	lot	more	control	over	font	weights	with	the	property	font-weight.

FONT-WEIGHT

Values normal	|	bold	|	bolder	|	lighter	|	<number>

Initial	value normal

Applies	to All	elements

Computed	value One	of	the	numeric	values	(100,	etc.),	or	one	of	the	numeric	values	plus	one	of	the	relative	values	(bolder	or	
lighter)

@font-face	
equivalent

font-weight

Variable	axis "wght"

Inherited Yes

Animatable No

The	<number>	value	can	be	from	1	to	1000,	inclusive,	where	1	is	the	lightest	and	1000	is	the	heaviest
possible	weight.	Unless	you	are	using	variable	fonts,	discussed	later,	there	are	almost	always	limited
weights	available	for	a	font	family	(sometimes	there	is	only	a	single	weight).

Generally	speaking,	the	heavier	a	font	weight	becomes,	the	darker	and	“more	bold”	a	font	appears.	There
are	a	great	many	ways	to	label	a	heavy	font	face.	For	example,	the	font	family	known	as	SwitzeraADF	has
a	number	of	variants,	such	as	SwitzeraADF	Bold,	SwitzeraADF	Extra	Bold,	SwitzeraADF	Light,	and
SwitzeraADF	Regular.	All	of	these	use	the	same	basic	font	shapes,	but	each	has	a	different	weight.

If	the	specified	weight	doesn’t	exist,	a	nearby	weight	is	used.	Table	10-4	lists	the	numbers	used	for	each
of	the	commonly	accepted	font	weight	labels,	as	defined	in	the	"wght"	variation	axis.	If	a	font	has	only
two	weights	corresponding	to	400	and	700	(normal	and	bold),	then	any	number	value	for	font-
weight	will	be	mapped	to	the	closest	value.	Thus,	any	font-weight	value	from	1	through	550	will
be	mapped	to	400,	and	any	value	greater	than	550	up	through	1000	will	be	mapped	to	700.

Table	10-4.	Weight	mappings

Value Mapping

1 Lowest	valid	value

100 Thin

200 Extra	Light	(Ultra	Light)

300 Light

400 Normal

500 Medium

600 Semi	Bold	(Demi	Bold)

700 Bold

800 Extra	Bold	(Ultra	Bold)

900 Black	(Heavy)

950 Extra	Black	(Ultra	Black)

1000 Highest	valid	value

Let’s	say	that	you	want	to	use	SwitzeraADF	for	a	document,	but	you’d	like	to	make	use	of	all	those
different	heaviness	levels.	If	your	user	has	all	the	font	files	locally	on	their	machine	and	you	didn’t	use
@font-face	to	rename	all	the	options	to	“Switzera”,	you	could	refer	to	them	directly	through	the
font-family	property…	but	you	really	shouldn’t	have	to	do	that.	It’s	no	fun	having	to	write	a
stylesheet	like	this:

h1	{font-family:	'SwitzeraADF	Extra	Bold',	sans-serif;}

h2	{font-family:	'SwitzeraADF	Bold',	sans-serif;}

h3	{font-family:	'SwitzeraADF	Bold',	sans-serif;}

h4,	p	{font-family:	'SwitzeraADF	Regular',	sans-serif;}

small	{font-family:	'SwitzeraADF	Light',	sans-serif;}

That’s	pretty	tedious.	This	is	a	perfect	example	of	why	specifying	a	single	font	family	for	the	whole
document	and	then	assigning	different	weights	to	various	elements	by	using	@font-face	is	so
powerful:	you	can	include	several	@font-face	declarations,	each	with	the	same	font-family
name,	but	with	various	values	for	the	font-weight	descriptors.	Then	you	can	use	different	font	files
with	fairly	simple	font-weight	declarations:

strong	{font-weight:	bold;}

b	{font-weight:	bolder;}

The	first	declaration	says	the	strong	element	should	be	displayed	using	a	bold	font	face;	or,	to	put	it
another	way,	a	font	face	that	is	heavier	than	the	normal	font	face.	The	second	declaration	says	b	should

use	a	font	face	that	is	the	inherited	font-weight	value	plus	100.

What’s	really	happening	behind	the	scenes	is	that	heavier	faces	of	the	font	are	used	for	displaying
strong	and	b	elements.	Thus,	if	you	have	a	paragraph	displayed	using	Times,	and	part	of	it	is	bold,	then
there	are	really	two	faces	of	the	same	font	in	use:	Times	and	TimesBold.	The	regular	text	is	displayed
using	Times,	and	the	bold	and	bolder	text	are	displayed	using	TimesBold.

If	the	font	doesn’t	have	a	bold	face	version,	it	may	be	synthesized	by	the	browser,	creating	a	“faux”	bold.
(To	prevent	this,	use	font-synthesis	property,	which	is	described	later.)

How	Weights	Work
To	understand	how	a	user	agent	determines	the	heaviness,	or	weight,	of	a	given	font	variant	(not	to
mention	how	weight	is	inherited),	it’s	easiest	to	start	by	talking	about	the	values	1	through	1000
inclusive,	specifically	the	values	divisible	by	100,	100	through	900.	These	number	values	were	defined
to	map	to	a	relatively	common	feature	of	font	design	in	which	a	font	is	given	nine	levels	of	weight.	If	a
non-variable	font	family	has	faces	for	all	nine	weight	levels	available,	then	the	numbers	are	mapped
directly	to	the	predefined	levels,	with	100	as	the	lightest	variant	of	the	font	and	900	as	the	heaviest.

In	fact,	there	is	no	intrinsic	weight	in	these	numbers.	The	CSS	specification	says	only	that	each	number
corresponds	to	a	weight	at	least	as	heavy	as	the	number	that	precedes	it.	Thus,	100,	200,	300,	and	400
might	all	map	to	a	single	relatively	lightweight	variant;	500	and	600	could	correspond	to	a	single
medium-heavy	font	variant;	and	700,	800,	and	900	could	all	produce	the	same	very	heavy	font	variant.
As	long	as	no	number	corresponds	to	a	variant	that	is	lighter	than	the	variant	assigned	to	the	previous
lower	number,	everything	will	be	all	right.

When	it	comes	to	non-variable	fonts,	these	numbers	are	defined	to	be	equivalent	to	certain	common
variant	names.	400	is	defined	to	be	equivalent	to	normal,	and	700	corresponds	to	bold.

A	user	agent	has	to	do	some	calculations	if	there	are	fewer	than	nine	weights	in	a	given	font	family.	In	this
case,	it	must	fill	in	the	gaps	in	a	predetermined	way:

If	the	value	500	is	unassigned,	it	is	given	the	same	font	weight	as	that	assigned	to	400.

If	300	is	unassigned,	it	is	given	the	next	variant	lighter	than	400.	If	no	lighter	variant	is	available,
300	is	assigned	the	same	variant	as	400.	In	this	case,	it	will	usually	be	“Normal”	or	“Medium.”
This	method	is	also	used	for	200	and	100.

If	600	is	unassigned,	it	is	given	the	next	variant	darker	than	that	assigned	for	500.	If	no	darker
variant	is	available,	600	is	assigned	the	same	variant	as	500.	This	method	is	also	used	for	700,
800,	and	900.

To	illustrate	this	weighting	scheme	more	clearly,	let’s	look	at	a	couple	examples	of	font	weight
assignment.	In	the	first	example,	assume	that	the	font	family	“Karrank%”	is	an	OpenType	font,	so	it	has
nine	weights	already	defined.	In	this	case,	the	numbers	are	assigned	to	each	level,	and	the	keywords
normal	and	bold	are	assigned	to	the	numbers	400	and	700,	respectively.

In	our	second	example,	consider	the	font	family	SwitzeraADF.	Hypothetically,	its	variants	might	be

assigned	numeric	values	for	font-weight,	as	shown	in	Table	10-5.

Table	10-5.	Hypothetical	weight	assignments	for	a	
specific	font	family

Font	face Assigned	keyword Assigned	number(s)

SwitzeraADF	Light 100	through	300

SwitzeraADF	Regular normal 400

SwitzeraADF	Medium 500

SwitzeraADF	Bold bold 600	through	700

SwitzeraADF	Extra	Bold 800	through	900

The	first	three	number	values	are	assigned	to	the	lightest	weight.	The	“Regular”	face	gets	the	keyword
normal	and	the	number	weight	400.	Since	there	is	a	“Medium”	font,	it’s	assigned	to	the	number	500.
There	is	nothing	to	assign	to	600,	so	it’s	mapped	to	the	“Bold”	font	face,	which	is	also	the	variant	to
which	700	and	bold	are	assigned.	Finally,	800	and	900	are	assigned	to	the	“Black”	and	“UltraBlack”
variants,	respectively.	Note	that	this	last	assignment	would	happen	only	if	those	faces	had	the	top	two
weight	levels	already	assigned.	Otherwise,	the	user	agent	might	ignore	them	and	assign	800	and	900	to
the	“Bold”	face	instead,	or	it	might	assign	them	both	to	one	or	the	other	of	the	“Black”	variants.

font-weight	is	inherited,	so	if	you	set	a	paragraph	to	be	bold:

p.one	{font-weight:	bold;}

Then	all	of	its	children	will	inherit	that	boldness,	as	we	see	in	Figure	10-4.

Figure	10-4.	Inherited	font-weight

This	isn’t	unusual,	but	the	situation	gets	interesting	when	you	use	the	last	two	values	we	have	to	discuss:
bolder	and	lighter.	In	general	terms,	these	keywords	have	the	effect	you’d	anticipate:	they	make	text
more	or	less	bold	compared	to	its	parent’s	font	weight.	How	they	do	so	is	slightly	complicated.	First,	let’s
consider	bolder.

If	you	set	an	element	to	have	a	weight	of	bolder	or	lighter,	then	the	user	agent	first	must	determine
what	font-weight	value	was	inherited	from	the	parent	element.	Once	it	has	that	number	(say,	400),	it
then	changes	the	value	as	shown	in	Table	10-6.

Table	10-6.	bolder	and	lighter	weight	
mappings

Inherited	value bolder lighter

value	<	100 400 No	change

100	≤	value	<	350 400 100

350	≤	value	<	550 700 100

550	≤	value	<	750 900 400

750	≤	value	<	900 900 700

900	≤	value No	change 700

Thus,	you	might	encounter	the	following	situations,	illustrated	in	Figure	10-5:

p	{font-weight:	normal;}

p	em	{font-weight:	bolder;}		/*	inherited	value	'400',	evaluates	to	'700'	*/

h1	{font-weight:	bold;}

h1	b	{font-weight:	bolder;}		/*	inherited	value	'700',	evaluates	to	'900'	*/

div	{font-weight:	100;}

div	strong	{font-weight:	bolder;}	/*	inherited	value	'100',	evaluates	to	'400'	*/

Figure	10-5.	Text	trying	to	be	bolder

In	the	first	example,	the	user	agent	moves	up	from	400	to	700.	In	the	second	example,	h1	text	is	already
set	to	bold,	which	equates	to	700.	If	there	is	no	bolder	face	available,	then	the	user	agent	sets	the	weight
of	b	text	within	an	h1	to	900,	since	that	is	the	next	step	up	from	700.	Since	900	is	assigned	to	the	same
font	face	as	700,	there	is	no	visible	difference	between	normal	h1	text	and	bold	h1	text,	but	the	weight
values	are	different	nonetheless.

As	you	might	expect,	lighter	works	in	much	the	same	way,	except	it	causes	the	user	agent	to	move
down	the	weight	scale	instead	of	up.

The	font-weight	descriptor
With	the	font-weight	descriptor,	authors	can	assign	faces	of	varying	weights	to	the	weighting	levels
permitted	by	the	font-weight	property.	The	allowable	values	are	different	for	the	descriptor,	which

supports	auto,	normal,	bold,	or	one	to	two	numeric	values	as	a	range.	Neither	lighter	nor
bolder	are	supported.

For	example,	the	following	rules	explicitly	assign	five	faces	to	six	different	font-weight	values:

@font-face	{

			font-family:	"Switzera";

			font-weight:	1	250;

			src:	url("f/SwitzeraADF-Light.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	normal;

			src:	url("f/SwitzeraADF-Regular.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	500	600;

			src:	url("f/SwitzeraADF-DemiBold.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	bold;

			src:	url("f/SwitzeraADF-Bold.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-weight:	800	1000;

			src:	url("f/SwitzeraADF-ExtraBold.otf")	format("opentype");

}

With	these	faces	assigned,	the	author	now	has	a	number	of	weighting	levels	available	for	their	use,	as
illustrated	in	Figure	10-6:

h1,	h2,	h3,	h4	{font-family:	SwitzeraADF,	Helvetica,	sans-serif;}

h1	{font-size:	225%;	font-weight:	900;}

h2	{font-size:	180%;	font-weight:	700;}

h3	{font-size:	150%;	font-weight:	500;}

h4	{font-size:	125%;	font-weight:	300;}

Figure	10-6.	Using	declared	font-weight	faces

In	any	given	situation,	the	user	agent	picks	which	face	to	use	depending	on	the	exact	value	of	a	font-

weight	property,	using	the	resolution	algorithm	detailed	in	the	earlier	section,	“How	Weights	Work”.
While	the	font-weight	property	has	numerous	keyword	values,	the	font-weight	descriptor	only
accepts	normal	and	bold	as	keywords,	and	any	number	between	1	and	1000	inclusive.

Font	Size
While	size	doesn’t	have	a	@font-face	descriptor,	we	need	to	understand	the	font-size	property	to
better	understand	some	of	the	descriptors	to	come,	so	we’ll	explore	it	now.	The	methods	for	determining
font	size	are	both	very	familiar	and	very	different.

FONT-SIZE

Values xx-small	|	x-small	|	small	|	medium	|	large	|	x-large	|	xx-large	|	xxx-large	|	smaller	|	l
arger	|	<length>	|	<percentage>

Initial	value medium

Applies	to All	elements

Percentages Calculated	with	respect	to	the	parent	element’s	font	size

Computed	value An	absolute	length

Inherited Yes

Animatable Yes	(numeric	keywords	only)

What	can	be	a	real	head-scratcher	at	first	is	that	different	fonts	declared	to	be	the	same	size	may	not
appear	to	be	the	same	size.	This	is	because	the	actual	relation	of	the	font-size	property	to	what	you
see	rendered	is	determined	by	the	font’s	designer.	This	relationship	is	set	as	an	em	square	(some	call	it	an
em	box)	within	the	font	itself.	This	em	square	(and	thus	the	font	size)	doesn’t	have	to	refer	to	any
boundaries	established	by	the	characters	in	a	font.	Instead,	it	refers	to	the	distance	between	baselines
when	the	font	is	set	without	any	extra	leading	(line-height	in	CSS).

The	effect	of	font-size	is	to	provide	a	size	for	the	em	box	of	a	given	font.	This	does	not	guarantee	that
any	of	the	actual	displayed	characters	will	be	this	size.	It	is	quite	possible	for	fonts	to	have	characters	that
are	taller	than	the	default	distance	between	baselines.	For	that	matter,	a	font	might	be	defined	such	that	all
of	its	characters	are	smaller	than	its	em	square,	as	many	fonts	do.	Some	hypothetical	examples	are	shown
in	Figure	10-7.

Figure	10-7.	Font	characters	and	em	squares

Absolute	Sizes
Having	established	all	that,	we	turn	now	to	the	absolute-size	keywords.	There	are	seven	absolute-size
values	for	font-size:	xx-small,	x-small,	small,	medium,	large,	x-large,	xx-large,
and	the	relatively	new	xxx-large.	These	are	not	defined	precisely,	but	instead	are	defined	relative	to
each	other,	as	Figure	10-8	demonstrates:

p.one	{font-size:	xx-small;}

p.two	{font-size:	x-small;}

p.three	{font-size:	small;}

p.four	{font-size:	medium;}

p.five	{font-size:	large;}

p.six	{font-size:	x-large;}

p.seven	{font-size:	xx-large;}

p.eight	{font-size:	xxx-large;}

Figure	10-8.	Absolute	font	sizes

In	the	CSS1	specification,	the	difference	(or	scaling	factor)	between	one	absolute	size	and	the	next	was
1.5	going	up	the	ladder,	or	0.66	going	down.	This	was	determined	to	be	too	large	a	scaling	factor.	In
CSS2,	the	suggested	scaling	factor	for	computer	screen	between	adjacent	indexes	was	1.2.	This	didn’t
resolve	all	the	issues,	though,	as	it	created	issues	for	the	small	sizes.

The	CSS	Fonts	Level	4	specification	doesn’t	have	a	one-size-fits-all	scaling	factor.	Rather,	each	absolute-
size	keyword	value	has	a	size-specific	scaling	factor	based	on	the	value	of	medium.	small	is	listed	as
eight-ninths	the	size	of	medium,	while	xx-small	is	three-fifths.	In	any	case,	the	scaling	factors	are
guidelines,	and	user	agents	are	free	to	alter	them	for	any	reason.

Table	10-7.	font-size	mappings

CSS	absolute-
size	values xx-small x-small small medium large x-large

Scaling	factor 3/5 3/4 8/9 1 6/5 3/2

Sizes	at	medium==
16px

9px 10px 13px 16px 18px 24px

HTML	heading	
equivalent

h6 - h5 h4 h3 h2

Note	that	we’ve	set	the	default	size,	medium,	explicitly	to	16px.	The	default	font-size	value	is	the
same,	medium,	for	all	generic	font	families,	but	the	medium	keyword	may	have	different	definitions
based	on	operating	system	or	browser	user	settings.	For	example,	in	many	browsers,	serif	and	sans-serif
fonts	have	medium	equal	to	16px,	but	monospace	set	to	13px.

WARNING
As	of	late	2022,	the	xxx-large	keyword	was	not	supported	by	Safari	or	Opera,	either	on	desktop	or	mobile.

Relative	Sizes
In	a	fashion	very	similar	to	the	font-weight	keywords	bolder	and	lighter,	the	property	font-
size	has	relative-size	keywords	called	larger	and	smaller.	Much	as	with	relative	font	weights,
these	keywords	cause	the	computed	value	of	font-size	to	move	up	and	down	a	scale	of	size	values.

The	larger	and	smaller	keywords	are	fairly	straightforward:	they	cause	the	size	of	an	element	to	be
shifted	up	or	down	the	absolute-size	scale,	relative	to	their	parent	element:

p	{font-size:	medium;}

strong,	em	{font-size:	larger;}

<p>This	paragraph	element	contains	a	strong-emphasis	element

which	itself	contains	an	emphasis	element	that	also	contains

a	strong	element.</p>

<p>	medium	large		x-large	xx-large		

				</p>

Unlike	the	relative	values	for	weight,	the	relative-size	values	are	not	necessarily	constrained	to	the	limits
of	the	absolute-size	range.	Thus,	a	font’s	size	can	be	pushed	beyond	the	sizes	for	xx-small	and	xxx-
large.	If	the	parent	element	font-size	is	the	largest	or	smallest	absolute	value,	the	browser	will	use	a
scaling	factor	between	1.2	and	1.5	to	create	an	even	smaller	or	larger	font	size.	For	example:

h1	{font-size:	xxx-large;}

em	{font-size:	larger;}

<h1>A	Heading	with	Emphasis	added</h1>

<p>This	paragraph	has	some	emphasis	as	well.</p>

Figure	10-9.	Relative	font	sizing	at	the	edges	of	the	absolute	sizes

As	you	can	see	in	Figure	10-9,	the	emphasized	text	in	the	h1	element	is	slightly	larger	than	xxx-large.
The	amount	of	scaling	is	left	up	to	the	user	agent,	with	a	scaling	factor	in	the	range	of	1.2	to	1.5	being

preferred,	but	not	required.	The	em	text	in	the	paragraph	is	shifted	one	slot	up	140%.

WARNING
User	agents	are	not	required	to	increase	or	decrease	font	size	beyond	the	limits	of	the	absolute-size	keywords,	but	they	may	do	so	anyway.
Also,	while	it	is	technically	possible	to	declare	smaller	than	xx-small,	small	text	can	be	very	difficult	to	read	on-screen,	leading	to
content	being	not	accessible	to	users.	Use	very	small	text	sparingly,	and	with	a	great	deal	of	caution.

Percentages	and	Sizes
In	a	way,	percentage	values	are	very	similar	to	the	relative-size	keywords.	A	percentage	value	is	always
computed	in	terms	of	whatever	size	is	inherited	from	an	element’s	parent.	Unlike	the	size	keywords
previously	discussed,	percentages	permit	much	finer	control	over	the	computed	font	size.	Consider	the
following	example,	illustrated	in	Figure	10-10:

body	{font-size:	15px;}

p	{font-size:	12px;}

em	{font-size:	120%;}

strong	{font-size:	135%;}

small,	.fnote	{font-size:	70%;}

<body>

<p>This	paragraph	contains	both	emphasis	and	strong

emphasis,	both	of	which	are	larger	than	their	parent	element.

The	<small>small	text</small>,	on	the	other	hand,	is	smaller	by	a	quarter.</p>

<p	class="fnote">This	is	a	'footnote'	and	is	smaller	than	regular	text.</p>

<p>	12px		14.4px		12px		16.2px		12px

<small>	9px	</small>	12px	</p>

<p	class="fnote">	10.5px	</p>

</body>

Figure	10-10.	Throwing	percentages	into	the	mix

In	this	example,	the	exact	pixel	size	values	are	shown.	These	are	the	values	calculated	by	the	browser,
regardless	of	the	actual	displayed	size	of	the	characters	onscreen,	which	may	have	been	rounded	to	the
nearest	whole	number	of	pixels.

When	using	em	measurements,	the	same	principles	apply	as	with	percentages,	such	as	the	inheritance	of
computed	sizes	and	so	forth.	CSS	defines	the	length	value	em	to	be	equivalent	to	percentage	values,	in	the
sense	that	1em	is	the	same	as	100%	when	sizing	fonts.	Thus,	the	following	would	yield	identical	results,
assuming	that	both	paragraphs	have	the	same	parent	element:

p.one	{font-size:	166%;}

p.two	{font-size:	1.66em;}

As	with	the	relative-size	keywords,	percentages	are	effectively	cumulative.	Thus,	the	following	markup	is
displayed	as	shown	in	Figure	10-11:

p	{font-size:	12px;}

em	{font-size:	120%;}

strong	{font-size:	135%;}

<p>This	paragraph	contains	bothemphasis	and	strong

emphasis,	both	of	which	are	larger	than	the	paragraph	text.	</p>

<p>12px	14.4px		19.44px		12px</p>

Figure	10-11.	The	issues	of	inheritance

The	size	value	for	the	strong	element	shown	in	Figure	10-11	is	computed	as	follows:

12	px	×	120%	=	14.4	px	+	14.4	px	×	135%	=	19.44	px

The	problem	of	runaway	scaling	can	go	the	other	direction,	too.	Imagine	the	effect	of	the	following	rule	on
a	nested	list	item	if	we	have	lists	nested	four	levels	deep:

ul	{font-size:	80%;}

The	unordered	list	nested	four	levels	deep	would	have	a	computed	font-size	value	40.96	percent	the
size	of	the	parent	of	the	top-level	list.	Every	nested	list	would	have	a	font	size	80	percent	as	big	as	its
parent	list,	causing	each	level	to	become	harder	and	harder	to	read.

Automatically	Adjusting	Size
Two	of	the	main	factors	that	influence	a	font’s	legibility	are	its	size	and	its	x-height,	which	is	the	height	of
a	lowercase	“x”	character	in	the	font.	The	number	that	results	from	dividing	the	x-height	by	the	font-
size	is	referred	to	as	the	aspect	value.	Fonts	with	higher	aspect	values	tend	to	be	legible	as	the	font’s
size	is	reduced;	conversely,	fonts	with	low	aspect	values	become	illegible	more	quickly.	CSS	provides	a
way	to	deal	with	shifts	in	aspect	values	between	font	families,	as	well	as	ways	to	use	different	metrics	to
compute	an	aspect	value,	with	the	property	font-size-adjust.

FONT-SIZE-ADJUST

Values [ex-height	|	cap-height	|	ch-width	|	ic-width	|	ic-height]?	[from-font	|	<number>]	|	
none	|	auto

Initial	value none

Applies	to All	elements

@font-face	
equivalent

size-adjust

Inherited Yes

Animatable Yes

The	goal	of	this	property	is	to	preserve	legibility	when	the	font	used	is	not	the	author’s	first	choice.
Because	of	the	differences	in	font	appearance,	while	one	font	may	be	legible	at	a	certain	size,	another	font
at	the	same	size	is	difficult	or	impossible	to	read.

The	property	value	can	be	none,	from-font,	or	a	number.	The	number	specified	should	generally	be
the	aspect	value	(the	ratio	of	a	given	font	metric	to	font	size)	of	the	first-choice	font-family.	In	order	to
pick	the	font	metric	used	to	compute	the	aspect	ratio,	you	can	add	a	keyword	specifying	it.	If	not	included,
it	defaults	to	ex-height,	which	normalizes	the	aspect	value	of	the	fonts	using	the	x-height	divided	by
the	font	size.

The	other	possibilities	for	the	font	metric	keyword	are:

cap-height

Use	the	cap-height	(height	of	capital	letters)	of	the	font.

ch-width

Use	the	horizontal	pitch	(also	the	width	of	1ch)	of	the	font.

ic-width

Use	the	width	of	the	font	using	the	CJK	water	ideograph,	“”	(U+6C34),	of	the	font.

ic-height

Use	the	height	of	the	ideograph	“”	(U+6C34),	of	the	font.

Declaring	font-size-adjust:	none	will	suppress	any	adjustment	of	font	sizes.	This	is	the	default
state.

The	from-font	keyword	directs	the	user	agent	to	use	the	built-in	value	of	the	specified	font	metric
from	the	first	available	font,	rather	than	requiring	the	author	to	figure	out	what	that	value	is	and	write	it

explicitly.	Thus,	writing	font-size-adjust:	cap-height	from-font	will	automatically	set
an	aspect	value	by	dividing	the	cap-height	by	the	em-square	height.

A	good	example	is	to	compare	the	common	fonts	Verdana	and	Times.	Consider	Figure	10-12	and	the
following	markup,	which	shows	both	fonts	at	a	font-size	of	10px:

p	{font-size:	10px;}

p.cl1	{font-family:	Verdana,	sans-serif;}

p.cl2	{font-family:	Times,	serif;	}

Figure	10-12.	Comparing	Verdana	and	Times

The	text	in	Times	is	much	harder	to	read	than	the	Verdana	text.	This	is	partly	due	to	the	limitations	of
pixel-based	display,	but	it	is	also	because	Times	becomes	harder	to	read	at	smaller	font	sizes.

As	it	turns	out,	the	ratio	of	x-height	to	character	size	in	Verdana	is	0.58,	whereas	in	Times	it	is	0.46.	What
you	can	do	to	make	these	font	faces	look	more	consistent	with	each	other	is	declare	the	aspect	value	of
Verdana,	and	have	the	user	agent	adjust	the	size	of	the	text	that’s	actually	used.	This	is	accomplished	using
the	formula:

Declared	font-size	×	
(font-size-adjust	value	÷	aspect	
value	of	available	font)	=	Adjusted	font-size

So,	in	a	situation	where	Times	is	used	instead	of	Verdana,	the	adjustment	is	as	follows:

10px	×	(0.58	÷	0.46)	=	12.6px

which	leads	to	the	result	shown	in	Figure	10-13:

p	{font:	10px	Verdana,	sans-serif;	font-size-adjust:	ex-height	0.58;}

p.cl2	{font-family:	Times,	serif;	}

Figure	10-13.	Adjusting	Times

The	catch	is	that	for	a	user	agent	to	intelligently	make	size	adjustments,	it	first	has	to	know	the	aspect
value	of	the	fonts	you	specify.	User	agents	that	support	@font-face	will	be	able	to	pull	that
information	directly	from	the	font	file,	assuming	the	files	contain	the	information—any	professionally-
produced	font	should,	but	there’s	no	guarantee.	If	a	font	file	doesn’t	contain	the	aspect	value,	a	user	agent
may	try	to	compute	it;	but	again,	there’s	no	guarantee	that	they	will	or	even	can.

If	the	user	agent	can’t	find	or	figure	out	aspect	values	on	its	own,	the	auto	value	for	font-size-
adjust	is	a	way	of	getting	the	desired	effect	even	if	you	don’t	know	the	actual	aspect	value	of	your	first-
choice	font.	For	example,	assuming	that	the	user	agent	can	determine	that	the	aspect	value	of	Verdana	is
0.58,	then	the	following	will	have	the	same	result	as	that	shown	in	Figure	10-13:

p	{font:	10px	Verdana,	sans-serif;	font-size-adjust:	auto;}

p.cl2	{font-family:	Times,	serif;	}

WARNING
As	of	late	2022,	the	only	user	agent	line	to	support	font-size-adjust	was	the	Gecko	(Firefox)	family.

Understanding	font	size	adjustment	comes	in	handy	when	considering	the	size-adjust	font	descriptor.
The	size-adjust	font	descriptor	behaves	in	a	similar	fashion	to	the	font-size-adjust	property,
though	it’s	restricted	to	comparing	only	x-	heights	instead	of	the	range	of	font	metrics	available	for
font-size-adjust.

SIZE-ADJUST	DESCRIPTOR

Values <percentage>

Initial	value 100%

The	font-size-adjust	property	is	a	rare	case	where	the	property	and	descriptor	names	are	not	the
same:	The	descriptor	is	size-adjust.	The	value	is	any	positive	percentage	value	(from	zero	to
infinity)	by	which	you	want	the	fallback	font	scaled	so	it	better	matches	the	primary	font	selected.	That
percentage	is	used	as	a	multiplier	for	the	glyph	outline	sizes	and	other	metrics	of	the	font.

@font-face	{

		font-family:	myPreferredFont;

		src:	url("longLoadingFont.otf");

}

@font-face	{

		font-family:	myFallBackFont;

		src:	local(aLocalFont);

		size-adjust:	87.3%;

}

WARNING
As	of	late	2022,	the	only	user	agent	line	that	did	not	support	the	size-adjust	descriptor	was	the	WebKit	(Safari)	family.

Font	Style
font-style	sounds	very	simple:	you	can	choose	between	three	values,	and	optionally	provide	an
angle	for	oblique	text	if	you’re	using	it.

FONT-STYLE

Values italic	|[oblique	<angle>?]	|	normal

Initial	value normal

Applies	to All	elements

Computed	value As	specified

@font-face	equivalent font-style

Variable	axis "slnt"	(slant)	or	"ital"	(italic)

Inherited Yes

Animatable Yes	for	variable	fonts	that	define	a	ranged	axis	for	italic	or	oblique;	otherwise	no

The	default	value	of	font-style	is	normal.	This	value	refers	to	upright	text,	which	is	best
described	as	text	that	is	not	italic	or	otherwise	slanted.	For	instance,	the	vast	majority	of	text	in	this	book
is	upright.

Italic	font	faces	are	usually	a	bit	cursive	in	appearance,	and	generally	use	less	horizontal	space	than	the
normal	version	of	the	same	font.	In	standard	fonts,	italic	text	is	a	separate	font	face,	with	small	changes
made	to	the	structure	of	each	letter	to	account	for	the	altered	appearance.	This	is	especially	true	of	serif
fonts	where,	in	addition	to	the	fact	that	the	text	characters	“lean,”	the	serifs	may	be	altered.	Font	faces
with	labels	like	“Italic,”	“Cursive,”	and	“Kursiv”	are	usually	mapped	to	the	italic	keyword.

Oblique	text,	on	the	other	hand,	is	a	slanted	version	of	the	normal,	upright	text.	Oblique	text	is	generally
not	altered	from	the	upright	text	other	than	being	given	a	slope.	If	a	font	has	oblique	versions,	they	are
often	in	faces	with	labels	such	as	“Oblique,”	“Slanted,”	and	“Incline.”

When	fonts	don’t	have	italic	or	oblique	versions,	the	browser	can	simulate	italic	and	oblique	fonts	by
artificially	sloping	the	glyphs	of	the	regular	face.	(To	prevent	this	from	happening,	use	font-
synthesis:	none,	covered	later	in	the	chapter.)

Italic	and	oblique	text	at	the	same	angle	are	not	the	same:	italic	is	stylized	and	usually	obsessively
designed,	and	oblique	is	merely	slanted.	By	default,	if	oblique	is	declared	without	an	angle,	an	value
of	14deg	is	used.

When	oblique	is	given	an	angle,	such	as	font-style:	oblique	25deg,	the	browser	selects	the
face	classified	as	oblique,	if	available.	If	one	or	more	oblique	faces	are	available	in	the	chosen	font
family,	the	one	most	closely	matching	the	specified	angle	by	the	font-style	descriptor	is	chosen.	If	no

oblique	faces	are	available,	the	browser	may	synthesize	an	oblique	version	of	the	font	by	slanting	a
normal	face	by	the	specified	angle.

Unless	further	limited	by	the	font	or	the	descriptor,	the	oblique	angle	specified	must	be	between	90deg
and	-90deg,	inclusive.	If	the	given	value	is	outside	those	limits,	the	declaration	is	ignored.	Positive
values	are	slanted	toward	the	end	(inline-end)	of	the	line,	while	negative	values	are	slanted	towards	the
beginning	(inline-start)	of	the	line.

To	visualize	the	difference	between	italic	and	oblique	text,	it’s	easiest	to	refer	to	Figure	10-14,	which
illustrates	the	differences.

Figure	10-14.	Italic	and	oblique	text	in	detail

For	TrueType	or	OpenType	variable	fonts,	the	“slnt”	variation	axis	is	used	to	implement	varying	slant
angles	for	oblique,	and	the	“ital”	variation	axis	with	a	value	of	1	is	used	to	implement	italic	values.	See

font-variation-settings,	later	in	the	chapter,	for	more	details.

If	you	want	to	make	sure	that	a	document	uses	italic	text	in	familiar	ways,	you	could	write	a	stylesheet	like
this:

p	{font-style:	normal;}

em,	i	{font-style:	italic;}

These	styles	would	make	paragraphs	use	an	upright	font,	as	usual,	and	cause	the	em	and	i	elements	to	use
an	italic	font,	also	as	usual.	On	the	other	hand,	you	might	decide	that	there	should	be	a	subtle	difference
between	em	and	i:

p	{font-style:	normal;}

em	{font-style:	oblique;}

i	{font-style:	italic;}

b	{font-style:	oblique	-8deg;}

If	you	look	closely	at	Figure	10-15,	you’ll	see	there	is	no	apparent	difference	between	the	em	and	i
elements.	In	practice,	not	every	font	is	so	sophisticated	as	to	have	both	an	italic	face	and	an	oblique	face,
and	even	fewer	web	browsers	are	sophisticated	enough	to	tell	the	difference	when	both	faces	do	exist.

Figure	10-15.	More	font	styles

The	equivalent	font-variation-settings	setting	for	italic	is	"ital".	For	the	oblique
<angle>	value,	the	equivalent	is	"slnt",	which	is	used	to	vary	between	upright	and	slanted	text.
Just	like	with	font-style,	the	slant	axis	is	interpreted	as	the	angle	of	slant	in	counter-clockwise
degrees	from	upright:	inline-start-leaning	oblique	design	will	have	a	negative	slant	value,	whereas	inline-
end-leaning	needs	a	positive	value.

The	font-style	descriptor
As	a	descriptor,	font-style	lets	an	author	link	specific	faces	to	specific	font-style	values.

Values normal	|	italic	|	oblique	<angle>{0,2}

Initial	value auto

For	example,	we	might	want	to	assign	very	particular	faces	of	Switzera	to	the	various	kinds	of	font-
style	property	values.	Given	the	following,	the	result	would	be	to	render	h2	and	h3	elements	using
“SwitzeraADF-Italic”	instead	of	“SwitzeraADF-Regular,”	as	illustrated	in	Figure	10-16:

@font-face	{

			font-family:	"Switzera";

			font-style:	normal;

			src:	url("SwitzeraADF-Regular.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-style:	italic;

			src:	url("SwitzeraADF-Italic.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-style:	oblique;

			src:	url("SwitzeraADF-Italic.otf")	format("opentype");

}

h1,	h2,	h3	{font-family:	SwitzeraADF,	Helvetica,	sans-serif;}

h1	{font-size:	225%;}

h2	{font-size:	180%;	font-style:	italic;}

h3	{font-size:	150%;	font-style:	oblique;}

Figure	10-16.	Using	declared	font-style	faces

Ideally,	if	there	were	a	SwitzeraADF	face	with	an	oblique	typeface,	a	page	author	could	point	to	it	instead
of	the	italic	variant.	There	isn’t	such	a	face,	though,	so	the	author	mapped	the	italic	face	to	both	the
italic	and	oblique	values.	As	with	font-weight,	the	font-style	descriptor	can	take	all	of
the	values	of	the	font-style	property	except	for	inherit.

Oblique	text	changes	the	angle	of	letterforms	without	performing	any	kind	of	character	substitution.	Any
variable	font	that	supports	oblique	text	also	supports	normal	or	upright	text:	upright	text	is	oblique	text	at
a	0deg	angle.	For	example:

@font-face	{

		font-family:	"varFont";

		src:	url("aVariableFont.woff2")	format("woff2-variations");

		font-weight:	1	1000;

		font-stretch:	75%	100%;

		font-style:	oblique	0deg	20deg;

		font-display:	swap;

}

body	{	font-family:	varFont,	sans-serif;	font-style:	oblique	0deg;	}

em	{	font-style:	oblique	14deg;	}

The	angle	given	in	the	CSS	value	oblique	3deg	is	a	clockwise	slant	of	3	degrees.	Positive	angles	are
clockwise	slants,	whereas	negative	angles	are	counter-clockwise	slants.	If	no	angle	is	included,	it	is	the
same	as	writing	oblique	14deg.	The	degree	angle	can	be	any	value	between	-90deg	and	90deg,
inclusive.

Font	Stretching
In	some	font	families,	there	are	a	number	of	variant	faces	that	have	wider	or	narrower	letterforms.	These
often	take	names	like	“Condensed,”	“Wide,”	“Ultra	Expanded,”	and	so	on.	The	utility	of	such	variants	is
that	a	designer	can	use	a	single	font	family	while	also	having	skinny	and	fat	variants.	CSS	provides	a
property	that	allows	an	author	to	select	among	such	variants,	when	they	exist,	without	having	to	explicitly
define	them	in	font-family	declarations.	It	does	this	via	the	somewhat	misleadingly	named	font-
stretch.

FONT-STRETCH

Values normal	|	ultra-condensed	|	extra-condensed	|	condensed	|	semi-condensed	|	semi-expa
nded	|	expanded	|	extra-expanded	|	ultra-expanded	|	<percentage>

Initial	value normal

Applies	to All	elements

@font-face	
equivalent

font-stretch

Variable	axis "wdth"

Inherited Yes

Animatable Yes	in	a	variable	font	that	defines	a	stretch	axis;	otherwise	no

You	might	expect	from	the	property	name	that	font-stretch	will	stretch	or	squeeze	a	font	like
saltwater	taffy,	but	that’s	actually	not	the	case.	This	property	instead	behaves	very	much	like	the	absolute-
size	keywords	(e.g.,	xx-large)	for	the	font-size	property.	You	can	set	a	percentage	between	50%

and	200%	inclusive,	or	use	a	range	of	keyword	values	that	have	defined	percentage	equivalents.
Table	10-8	shows	the	mapping	between	keyword	values	and	numeric	percentages.

Table	10-8.	percent	equivalents	
for	font-stretch	keyword	values

Keyword Percentage

ultra-condensed 50%

extra-condensed 62.5%

condensed 75%

semi-condensed 87.5%

normal 100%

semi-expanded 112.5%

expanded 125%

extra-expanded 150%

ultra-expanded 200%

For	example,	an	author	might	decide	to	stress	the	text	in	a	strongly	emphasized	element	by	changing	the
font	characters	to	a	wider	face	than	their	parent	element’s	font	characters.

The	catch	is	that	this	property	only	works	if	the	font	family	in	use	actually	has	wider	and	narrower	faces,
which	mostly	only	come	with	very	expensive	traditional	fonts.	(They’re	much	more	widely	available	in
variable	fonts.)

For	example,	consider	the	very	common	font	Verdana,	which	has	only	one	width	face;	this	is	equivalent	to
font-stretch:	normal.	Declaring	the	following	will	have	no	effect	on	the	width	of	the	displayed
text:

body	{font-family:	Verdana;}

strong	{font-stretch:	extra-expanded;}

footer	{font-stretch:	extra-condensed;}

All	of	the	text	will	be	at	Verdana’s	usual	width.	However,	if	the	font	family	is	changed	to	one	that	has	a
number	of	width	faces,	such	as	Futura,	then	things	will	be	different,	as	shown	in	Figure	10-17:

body	{font-family:	Verdana;}

strong	{font-stretch:	extra-expanded;}

footer	{font-stretch:	extra-condensed;}

Figure	10-17.	Stretching	font	characters

For	variable	fonts	that	support	the	"wdth"	axis,	set	the	width	in	font-variation-settings	to	a
value	greater	than	0.	This	controls	the	glyph	width	or	stroke	thickness,	depending	on	the	font	design.

The	font-stretch	Descriptor
Much	as	with	the	font-weight	descriptor,	the	font-stretch	descriptor	allows	authors	to
explicitly	assign	faces	of	varying	widths	to	the	width	values	permitted	in	the	font-stretch	property.
For	example,	the	following	rules	explicitly	assign	three	faces	to	the	most	directly	analogous	font-
stretch	values:

@font-face	{

			font-family:	"Switzera";

			font-stretch:	normal;

			src:	url("SwitzeraADF-Regular.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-stretch:	condensed;

			src:	url("SwitzeraADF-Cond.otf")	format("opentype");

}

@font-face	{

			font-family:	"Switzera";

			font-stretch:	expanded;

			src:	url("SwitzeraADF-Ext.otf")	format("opentype");

}

In	a	parallel	to	what	you	saw	in	previous	sections,	you	can	call	on	these	different	width	faces	through	the
font-stretch	property,	as	illustrated	in	Figure	10-18:

h1,	h2,	h3	{font-family:	SwitzeraADF,	Helvetica,	sans-serif;}

h1	{font-size:	225%;}

h2	{font-size:	180%;	font-stretch:	condensed;}

h3	{font-size:	150%;	font-stretch:	expanded;}

Figure	10-18.	Using	declared	font-stretch	faces

If	you	use	a	variable	font	that	contains	the	full	spectrum	of	font	stretch	sizing,	you	can	import	a	single	font
file	with	@font-face,	then	use	it	for	all	of	your	text	font-stretch	requirements.	This	produces	the	same
degree	of	horizontal	stretching	as	shown	in	Figure	10-18,	albeit	with	a	different	font:

@font-face	{

		font-family:	'League	Mono	Var';

		src:	url('LeagueMonoVariable.woff2')	format('woff2');

		font-weight:	100	900;

		font-stretch:	50%	200%;

		font-display:	swap;

}

h1,	h2,	h3	{font-family:	"League	Mono	Var",	Helvetica,	sans-serif;}

h2	{font-size:	180%;	font-stretch:	75%;}

h3	{font-size:	150%;	font-stretch:	125%;}

The	font-stretch	descriptor	can	take	all	of	the	values	of	the	font-stretch	property	except	for
inherit.

If	you	do	want	to	use	a	different	font	for	your	variable	fonts	depending	on	whether	the	text	is	extended	or
condensed,	use	the	"wdth"	value	in	the	comma	separated	value	of	the	@font-face	font-
variation-settings	descriptor,	as	in	the	following	example:

@font-face	{

		font-family:	'League	Mono	Var';

		src:	url('LeagueMonoVariable.woff2')	format('woff2');

		font-weight:	100	900;

		font-stretch:	50%	200%;

}

strong	{

		font-family:	LeagueMono;

		font-variation-settings:	"wdth"	100;

}

Font	Synthesis
It	is	sometimes	the	case	that	a	given	font	family	will	lack	alternate	faces	for	things	like	bold	or	italic	text
or	small	capital	letters.	In	such	situations,	the	user	agent	may	attempt	to	synthesize	a	face	from	the	faces	it
has	available,	but	this	can	lead	to	unattractive	letterforms.	To	address	this,	CSS	offers	font-
synthesis,	which	lets	authors	say	how	much	synthesis	they	will	or	won’t	permit	in	the	rendering	of	a
page.	This	doesn’t	have	a	@font-face	descriptor,	but	it	has	bearing	on	all	the	font	variants	to	follow,
so	we’re	dealing	with	it	now.

FONT-SYNTHESIS

Values none	|	weight	|	style	|	small-caps

Initial	value weight	style

Applies	to All	elements

Inherited Yes

Animatable No

In	many	user	agents,	a	font	family	that	has	no	bold	face	can	have	one	computed	for	it.	This	might	be	done
by	adding	pixels	to	either	side	of	each	character	glyph,	for	example.	While	this	might	seem	useful,	it	can
lead	to	results	that	are	visually	unappealing,	especially	at	smaller	font	sizes.	This	is	why	most	font
families	actually	have	bold	faces	included:	the	font’s	designer	wanted	to	make	sure	that	bolded	text	in	that
font	looked	good.

Similarly,	a	font	family	that	lacks	an	italic	face	can	have	one	synthesized	by	simply	slanting	the	characters
in	the	normal	face.	This	tends	to	look	even	worse	than	synthesized	bold	faces,	particularly	when	it	comes
to	serif	fonts.	Compare	the	difference	between	the	actual	italic	face	included	in	Georgia	and	a	synthesized
italic	version	of	Georgia	(which	we’re	calling	“oblique”	here),	illustrated	in	Figure	10-19.

Figure	10-19.	Synthesized	versus	designed	italics

In	supporting	user	agents,	declaring	font-synthesis:	none	blocks	the	user	agent	from	doing	any
such	synthesis	for	the	affected	elements.	You	can	block	it	for	the	whole	document	with	html	{font-
synthesis:	none;},	for	example.	The	downside	is	that	any	attempts	to	create	variant	text	using	a
font	that	doesn’t	offer	the	appropriate	faces	will	stay	the	normal	face,	instead	of	even	approximating	what
was	intended.	The	upside	is	that	you	don’t	have	to	worry	about	a	user	agent	trying	to	synthesize	those
variants	and	doing	a	poor	job	of	it.

Font	Variants
Beyond	font	weights,	font	styles,	and	so	forth,	there	are	font	variants.	These	are	embedded	within	a	font
face	and	can	cover	things	like	various	styles	of	historical	ligatures,	small-caps	presentation,	ways	of
presenting	fractions,	the	spacing	of	numbers,	whether	zeroes	get	slashes	through	them,	and	much	more.
CSS	lets	authors	invoke	these	variants,	when	they	exist,	through	shorthand	property	font-variant.

FONT-VARIANT

Values [<font-variant-caps>	ǁ	<font-variant-numeric>	ǁ	<font-variant-alternates>	ǁ	<font-variant-ligatures>	ǁ	
<font-variant-east-asian>]	|	normal	|	none

Initial	value normal

Applies	to All	elements

Computed	value As	specified

@font-face	
equivalent

font-variant

Inherited Yes

Animatable No

This	property	is	a	shorthand	for	five	separate	properties,	which	we’ll	get	to	in	just	a	moment.	The	most
common	values	you’ll	find	in	the	wild	are	the	default	of	normal,	which	describes	ordinary	text,	and
small-caps,	which	is	a	value	that’s	existed	since	CSS1.

First,	however,	let’s	cover	the	two	values	that’s	don’t	correspond	to	other	properties.

none

Disables	all	variants	of	any	kind	by	setting	font-feature-ligatures	to	none	and	all	the
other	font	variant	properties	to	normal.

normal

Disables	most	variants	by	setting	all	the	font	variant	properties,	including	font-feature-
ligatures,	to	normal.

Understanding	the	variant	aspect	of	small-caps	might	help	explain	the	idea	of	variants,	making	all	the
other	properties	easier	to	understand.	small-caps	call	for	the	use	of	small-caps	(font-feature-
settings:	"smcp").	Instead	of	upper-	and	lowercase	letters,	a	small-caps	font	employs	capital
letters	of	different	sizes.	Thus,	you	might	see	something	like	that	shown	in	Figure	10-20:

h1	{font-variant:	small-caps;}

h1	code,	p	{font-variant:	normal;}

<h1>The	Uses	of	<code>font-variant</code></h1>

<p>

The	property	<code>font-variant</code>	is	very	interesting...

</p>

Figure	10-20.	The	small-caps	value	in	use

As	you	may	notice,	in	the	display	of	the	h1	element,	there	is	a	larger	capital	letter	wherever	an	uppercase
letter	appears	in	the	source	and	a	small	capital	letter	wherever	there	is	a	lowercase	letter	in	the	source.
This	is	very	similar	to	text-transform:	uppercase,	with	the	only	real	difference	being	that,
here,	the	capital	letters	are	of	different	sizes.	However,	the	reason	that	small-caps	is	declared	using	a
font	property	is	that	some	fonts	have	a	specific	small-caps	face,	which	a	font	property	is	used	to	select.

What	happens	if	no	font	face	variant,	such	as	small-caps,	exists?	There	are	two	options	provided	in	the
specification.	The	first	is	for	the	user	agent	to	create	a	small-caps	face	by	scaling	capital	letters	on	its
own.	The	second	is	to	make	all	letters	uppercase	and	the	same	size,	exactly	as	if	the	declaration	text-
transform:	uppercase	had	been	used	instead.	This	is	not	an	ideal	solution,	but	it	is	permitted.

WARNING
Bear	in	mind	that	not	every	font	supports	every	variant.	For	example,	most	Latin	fonts	won’t	support	any	of	the	East	Asian	variants;	for
another,	not	every	font	will	include	support	for,	say,	some	of	the	numeric	and	ligature	variants.	Many	fonts	will	support	none	of	the	variants.

To	find	out	what	a	given	font	supports,	you	have	to	consult	its	documentation,	or	else	do	a	lot	of	testing	if	no	documentation	is	available.
Most	commercial	fonts	do	come	with	documentation,	and	most	free	fonts	don’t.	Fortunately,	some	browser	developer	tools	(not	including
Chromium	browsers,	as	of	late	2022)	have	a	tab	that	provides	information	about	font	variants	and	feature	settings.

Capital	font	variants
In	addition	to	the	small-caps	value	we	just	discussed,	there	are	a	number	of	other	capital-text
variants.	These	are	addressed	via	the	property	font-variant-caps.

FONT-VARIANT-CAPS

Values normal	|	small-caps	|	all-small-caps	|	petite-caps	|	all-petite-caps	|	titling-cap
s	|	unicase

Initial	value normal

Applies	to All	elements

Computed	value specified	keyword

@font-face	
equivalent

font-variant

Inherited Yes

Animatable No

The	default	value	is	normal,	which	means	no	capital-letter	variant	is	used.	From	there,	we	have	the
following	options:

small-caps

Renders	all	of	the	letters	using	capital	letters.	The	capital	letters	for	characters	that	are	uppercase	in
the	source	text	are	the	same	height	as	uppercase	letters.	Characters	which	are	lowercase	in	the	text	are
rendered	as	smaller	capitals,	usually	a	bit	taller	than	the	font’s	x-height.

all-small-caps

The	same	as	small-caps,	except	all	letters	are	rendered	as	smaller	capitals,	even	those	that	are
uppercase	in	the	source	text.

petite-caps

Similar	to	small-caps,	except	the	capitals	used	for	lowercase	letters	are	equal	in	height	to,	or
even	a	bit	shorter	than,	the	font’s	x-height.	If	there	is	no	petite-caps	variant	for	the	font,	the	result	is
likely	to	be	the	same	as	for	small-caps.

all-petite-caps

The	same	as	petite-caps,	except	all	letters	are	rendered	as	smaller	capitals,	even	those	that	are
uppercase	in	the	source	text.

titling-caps

In	cases	where	there	are	multiple	uppercase	letters	in	a	row,	alternate	capital	forms	are	used	to	keep
the	letters	from	appearing	too	visually	strong.	Usually	these	are	thinner	versions	of	the	normal	capitals
in	the	font.

unicase

The	text	is	rendered	using	a	mixture	of	capital	and	non-capital	letterforms,	usually	all	the	same	height.
This	can	vary	widely	even	among	the	few	fonts	that	offer	this	variant.

The	following	code	is	illustrated	in	Figure	10-21.	Note	that	the	values	marked	with	a	dagger	(†)	were
faked	in	one	way	or	another.

.variant1	{font-variant-caps:	small-caps;}

.variant2	{font-variant-caps:	all-small-caps;}

.variant3	{font-variant-caps:	petite-caps;}

.variant4	{font-variant-caps:	all-petite-caps;}

.variant5	{font-variant-caps:	titling-caps;}

.variant6	{font-variant-caps:	unicase;}

Figure	10-21.	Different	types	of	capital	variants

Why	were	some	of	the	examples	in	Figure	10-21	faked?	In	part,	because	finding	a	single	font	that	contains
all	the	capital	variants	is	exceedingly	difficult,	and	it	was	literally	faster	to	fake	some	results	than	dig	up	a
font,	or	set	of	fonts,	that	might	work.

The	other	part	was	to	highlight	that	exact	situation:	most	of	the	time,	you’re	going	to	get	either	a	fallback
(as	from	petite-caps	to	small-caps)	or	no	variant	at	all.	Because	of	this,	make	sure	to	use	the
@font-face	font-variant	descriptor	to	define	what	should	happen.	Otherwise,	if	a	font-
variant-caps	category	variant	is	not	available,	the	browser	will	decide	how	to	render	it.	For
example,	if	petite-caps	is	specified	and	the	font	doesn’t	have	a	petite-caps	face	or	variable	axis
defined,	the	user	agent	may	render	the	text	using	small	capital	glyphs.	If	small	capital	glyphs	are	not
included	in	the	font,	the	browser	may	synthesize	them	by	proportionally	shrinking	uppercase	glyphs.

Alternatively,	you	can	use	{font-synthesis:	none;}	to	prevent	the	browser	from	synthesizing
the	text.	You	can	also	include	{font-synthesis:	small-caps;},	or	omit	font-synthesis
altogether,	to	allow	small-caps	typeface	to	be	synthesized	if	needed.

Fonts	sometimes	include	special	glyphs	for	various	caseless	characters	like	punctuation	marks	to	match
the	cap	variant	text.	The	browser	will	not	synthesize	caseless	characters	on	its	own.

All	the	values	of	font-variant-caps	other	than	normal	have	defined	equivalent	OpenType
features.	These	are	summarized	in	Table	10-9.

Table	10-9.	font-variant-ca
ps	values	and	equivalent	
OpenType	features

Value OpenType	feature

normal n/a

small-caps "smcp"

all-small-caps "c2sc",	"smcp"

petite-caps "pcap"

all-petite-caps "c2pc",	"pcap"

titling-caps "titl"

unicase "unic"

Numeric	font	variants
Many	font	faces	have	a	variety	of	variant	behaviors	for	use	when	rendering	numerals.	When	available,
these	can	be	accessed	via	the	font-variant-numeric	property.	The	various	values	of	this	property
affect	the	usage	of	alternate	glyphs	for	numbers,	fractions,	and	ordinal	markers.

FONT-VARIANT-NUMERIC

Values normal	|	[lining-nums	|	oldstyle-nums]	ǁ	[proportional-nums	|	tabular-nums]	ǁ	[dia
gonal-fractions	|	stacked-fractions]	ǁ	ordinal	ǁ	slashed-zero]

Initial	value normal

Applies	to All	elements

Computed	value specified	keyword

Inherited Yes

Animatable No

The	default	value,	normal,	means	that	nothing	special	will	be	done	when	rendering	numbers.	They’ll
just	appear	the	same	as	they	usually	do	for	the	font	face.	All	the	values	are	demonstrated	in	Figure	10-22,
and	as	before,	the	examples	marked	with	a	dagger	(†)	were	faked	in	one	way	or	another	due	to	fonts
lacking	those	features.

Figure	10-22.	Different	types	of	capital	variants

Perhaps	the	simplest	numeric	variant	is	slashed-zero.	This	causes	the	numeral	0	to	appear	with	a

slash	through	it,	most	likely	on	a	diagonal.	Slashed	zeroes	are	often	the	default	rendering	in	monospace
fonts,	where	distinguishing	zero	from	capital	“O”	can	be	difficult.	In	serif	and	sans-serif	fonts,	they	are
usually	not	the	default	appearance	of	zeroes.	Setting	font-variant-numeric:	slashed-zero
will	bring	out	a	slashed	zero	if	one	is	available.

Speaking	of	diagonal	slashes,	the	value	diagonal-fractions	causes	characters	arranged	as	a
fraction	(e.g.,	“1/2”)	to	be	rendered	as	smaller	numbers,	the	first	raised	up,	separated	by	a	diagonal	slash.
stacked-fractions	renders	the	fraction	as	the	first	number	above	the	second,	and	the	two	separated
by	a	horizontal	slash.

If	the	font	has	features	that	turn	ordinal	labels,	like	the	letters	following	the	numbers	of	1st,	2nd,	3rd,	4th
in	English,	ordinal	enables	the	use	of	those	special	glyphs.	These	will	generally	look	like
superscripted,	smaller	versions	of	the	letters.

Authors	can	affect	the	figures	used	for	numbers	with	lining-nums,	which	sets	all	numbers	on	the
baseline;	and	oldstyle-nums,	which	enables	numbers	like	3,	4,	7,	and	9	to	descend	below	the
baseline.	Georgia	is	a	common	example	of	a	font	that	has	oldstyle	numbers.

You	can	also	influence	the	sizing	of	figures	used	for	numbers.	proportional-nums	enables	the
numbers	to	be	proportional,	as	in	proportional	fonts;	and	tabular-nums	makes	all	numbers	have	the
same	width,	as	in	monospace	fonts.	The	advantage	of	these	values	is	that	you	can,	assuming	there	are
glyphs	to	support	them	in	the	font	face,	get	the	monospace	effect	in	proportional	fonts	without	converting
the	numbers	to	a	monospace	face,	and	similarly	cause	monospace	numbers	to	be	sized	proportionally.

You	can	include	multiple	values,	but	only	one	value	from	each	of	the	numeric-value	sets.

@font-face	{

		font-family:	'mathVariableFont';

		src:	local("math");

		font-feature-settings:	"tnum"	on,	"zero"	on;

}

.number	{

		font-family:	mathVariableFont,	serif;

		font-feature-settings:	"tnum"	on,	"zero"	on;

		font-variant-numeric:	ordinal	slashed-zero	oldstyle-nums	stacked-fractions;

}

All	the	values	of	font-variant-numeric	other	than	normal	have	defined	equivalent	OpenType
features.	These	are	summarized	in	Table	10-10.

Table	10-10.	font-variant-num
eric	values	and	equivalent	
OpenType	features

Value OpenType	feature

normal n/a

ordinal "ordn"

slashed-zero "zero"

lining-nums "lnum"

oldstyle-nums "onum"

proportional-nums "pnum"

tabular-nums "tnum"

diagonal-fractions "frac"

stacked-fractions "afrc"

Ligature	variants
A	ligature	is	a	joining	of	two	(or	more)	characters	into	one	shape.	As	an	example,	two	lowercase	“f”
characters	could	have	their	cross-bars	merged	into	a	single	line	when	the	appear	next	to	each	other,	or	the
crossbar	could	extend	over	a	lowercase	“i”	and	replace	its	usual	dot	in	the	sequence	“fi”.	More
archaically,	a	combination	like	“st”	could	have	a	swash	curve	from	one	to	the	other.	When	available,
these	features	can	be	enabled	or	disabled	with	the	font-variant-ligatures	property.

FONT-VARIANT-LIGATURES

Values normal	|		none	|		[[common-ligatures	|		no-common-ligatures]	ǁ	[discretionary-liga
tures	|	no-discretionary-ligatures]	ǁ	[historical-ligatures	|	no-historical-lig
atures]	ǁ	[contextual	|		no-contextual]]

Initial	value normal

Applies	to All	elements

Computed	value specified	keyword

Inherited Yes

Animatable No

The	values	have	the	following	effects:

common-ligatures

Enables	the	use	of	common	ligatures,	such	as	those	combining	“f”	or	“t”	with	letters	that	follow	them.
In	French,	the	sequence	“oe”	is	more	usually	rendered	using	the	ligature	“œ”.	Browsers	usually	have
these	enabled	by	default,	so	if	you	want	to	disable	them,	use	no-common-ligatures	instead.

discretionary-ligatures

Enables	the	use	of	special	ligatures	created	by	font	designers	which	are	unusual	or	otherwise	not
regarded	as	common.

historical-ligatures

Enables	the	use	of	historical	ligatures,	which	are	generally	those	found	in	the	typography	of	centuries
past	but	are	not	used	today.	For	example,	the	German	the	“tz”	digraph	used	to	be	rendered	as	“”.

contextual-ligatures

Enables	the	use	of	ligatures	that	appear	based	on	context,	such	as	a	cursive	font	enabling	connecting
curves	from	one	letter	to	the	next	depending	on	not	just	the	character	that	follows,	but	possibly	also
what	characters	came	before.	These	are	also	sometimes	used	in	programming	fonts,	where	sequences
like	“!=”	may	be	rendered	as	“≠”	instead.

no-common-ligatures

Explicitly	disables	the	use	of	common	ligatures.

no-discretionary-ligatures

Explicitly	disables	the	use	of	discretionary	ligatures.

no-historical-ligatures

Explicitly	disables	the	use	of	historical	ligatures.

no-contextual-ligatures

Explicitly	disables	the	use	of	contextual	ligatures.

The	default	value,	normal,	turns	off	all	these	ligatures	except	common	ligatures,	which	are	enabled	by
default.	This	is	especially	relevant	because	font-variant:	normal	turns	off	all	the	font-
variant-ligatures	except	the	common	ones,	whereas	font-variant:	none	turns	them	all	off
including	common	ligatures.

Table	10-11.	font-variant-ligatures	values	
and	equivalent	OpenType	features

Value OpenType	feature

common-ligatures "clig"	on,	"liga"	on

discretionary-ligatures "dlig"	on

historical-ligatures "hlig"	on

contextual-ligatures "calt"	on

no-common-ligatures "clig"	off,	"liga"	off

no-discretionary-ligatures "dlig"	off

no-historical-ligatures "hlig"	off

no-contextual-ligatures "calt"	off

Less	likely	to	be	used	or	supported	by	browsers	are	the	font-variant-alternates	and	font-
variant-east-asian	properties.

Alternate	variants
For	any	given	character,	a	font	may	include	alternate	glyphs	in	addition	to	the	default	glyph	for	that
character.	The	font-variant-alternates	property	affects	the	usage	of	those	alternate	glyphs.

FONT-VARIANT-ALTERNATES

Values normal	|	[historical-forms	ǁ	stylistic()	ǁ	historical-forms	ǁ	styleset()	ǁ	character-variant()	ǁ	swash()	ǁ	
ornaments()	ǁ	annotation()]

Initial	value normal

Applies	to All	elements

Computed	value as	specified

Inherited Yes

Animatable Discrete

The	default	value,	normal,	means	don’t	use	any	alternate	variants.	The	historical-forms
keyword	enables	historical	forms;	that	is,	glyphs	that	were	common	in	the	past	but	not	today.	All	the	other
values	are	functions.

These	alternate	glyphs	may	be	referenced	by	alternative	names	defined	in	@font-feature-values.

With	@font-feature-values,	you	can	define	a	common	name	for	the	font-variant-
alternates	function	values	to	activate	OpenType	features.

The	@font-feature-values	at-rule	may	be	used	either	at	the	top	level	of	your	CSS	or	inside	any
CSS	conditional-group	at-rule.

Table	10-12.	font-variant-alte
rnates	values	and	equivalent	
OpenType	features

Value OpenType	feature

annotation() "nalt"

character-variant() "cvXY"

historical-forms "hist"

ornaments() "ornm"

styleset() "ssXY"

stylistic() "salt"

swash() "swsh",	"cswh"

In	the	Table	10-12,	XY	is	replaced	by	a	number	representing	the	feature	set.	With	OpenType	fonts	and
font-feature-settings,	some	features	are	already	defined.	For	example,	the	opentype	equivalent
of	the	styleset()	function	is	"ssXY".	As	of	late	2022,	ss01	through	ss20	are	currently	defined.
Values	higher	than	99	are	allowed,	but	they	don’t	map	to	any	OpenType	values	and	will	be	ignored.

There	is	also	an	at-rule	version	of	font-variant-alternates	called	@font-feature-
values,	which	allows	authors	to	define	labels	for	alternate	values	of	font-variant-
alternates	using	at-rules	of	their	own.	The	following	two	styles	(taken	from	the	CSS	specification)
demonstrate	how	to	label	the	numeric	values	of	the	swash	alternate,	and	then	use	them	later	in	font-
variant-alternates:

@font-feature-values	Noble	Script	{	@swash	{	swishy:	1;	flowing:	2;	}	}

p	{

		font-family:	Noble	Script;

		font-variant-alternates:	swash(flowing);	/*	use	swash	alternate	#2	*/

}

Without	the	presence	of	the	@font-feature-values	at-rule,	the	paragraph	styles	would	have	to	say
font-variant-alternates:	swash(2)	instead	of	using	flowing	for	the	value	of	the	swash
function.

WARNING
As	of	late	2022,	while	all	browsers	support	font-variant	and	its	associated	subproperties,	only	Firefox	and	Safari	have	font-
variant-alternates	and	@font-feature-values	support.	You	can	more	reliably	set	these	variants	using	the	font-
feature-settings	property.

East	Asian	font	variants
The	values	of	the	font-variant-east-asian	property	allow	for	controlling	glyph	substitution	and
sizing	in	East	Asian	text.

FONT-VARIANT-EAST-ASIAN

Values normal	|	[[jis78	|	jis83	|	jis90	|	jis04	|	simplified	|	traditional]		ǁ	[full-width	|	pro
portional-width]	ǁ	ruby]

Initial	value normal

Applies	to All	elements

Computed	value specified	keyword

Inherited Yes

Animatable No

The	assorted	JIS	variants	reflect	the	glyph	forms	defined	in	different	Japanese	national	standards.	Fonts
generally	include	glyphs	defined	by	the	most	recent	national	standard.	JIS	values	allow	for	the	inclusion
of	older	Japanese	glyph	variations	when	such	variants	are	needed,	such	as	when	reproducing	historical
documents.

Similarly,	the	simplified	and	traditional	values	allow	control	over	the	glyph	forms	for
characters	which	have	been	simplified	over	time	but	for	which	the	older,	traditional	form	is	still	used	in
some	contexts.

The	ruby	value	enables	display	of	Ruby	variant	glyphs.	Ruby	text	is	generally	smaller	than	the
associated	body	text.	This	property	value	allows	font	designers	to	include	glyphs	better	suited	for	smaller
typography	than	scaled-down	versions	of	the	default	glyphs	would	be.	Only	glyph	selection	is	affected;
there	is	no	associated	font	scaling.

Font	variant	position
Compared	to	the	previous	variants,	font-variant-position	is	fairly	straightforward.	It’s	strange,
then,	that	it’s	so	poorly	supported.

FONT-VARIANT-POSITION

Values normal	|	sub	|	super

Initial	value normal

Applies	to All	elements

Computed	value specified	keyword

Inherited Yes

Animatable No

This	property	can	be	used	to	enable	specialized	variant	glyphs	that	are	meant	solely	for	superscripted	and
subscripted	text.	As	it	says	in	the	CSS	specification,	these	glyphs	are:

…designed	within	the	same	em-box	as	default	glyphs	and	are	intended	to	be	laid	out	on	the	same
baseline	as	the	default	glyphs,	with	no	resizing	or	repositioning	of	the	baseline.	They	are	explicitly
designed	to	match	the	surrounding	text	and	to	be	more	readable	without	affecting	the	line	height.

—https://www.w3.org/TR/css-fonts-4/#font-variant-position-prop

This	is	in	contrast	to	what	happens	with	super-	and	subscripted	text	in	fonts	that	lack	such	alternates,
which	is	usually	just	smaller	text	that’s	been	shifted	up	or	down	from	the	baseline.	This	sort	of	synthesis
of	super-	and	subscripted	text	often	leads	to	line-height	increases,	which	variant	glyphs	are	generally
designed	to	prevent.

Font	Feature	Settings
Throughout	this	chapter	we’ve	discussed	font	features,	but	have	yet	to	cover	the	font-feature-
settings	property	or	descriptor.	In	a	manner	similar	to	font-variant,	font-feature-
settings	allows	authors	to	exercise	low-level	control	over	which	OpenType	font	features	are
available	for	use.

FONT-FEATURE-SETTINGS

Values normal	|	<feature-tag-value>#

Initial	value normal

The	font-feature-settings	property	controls	advanced	typographic	features	in	OpenType	fonts,
as	opposed	to	font-variation-settings	property,	which	provides	low-level	control	over
variable	font	characteristics.

You	can	list	one	or	more	comma-separated	OpenType	features,	as	defined	by	the	OpenType	specification.
For	example,	enabling	common	ligatures,	small	caps,	and	slashed	zeroes	would	look	something	like	this:

font-feature-settings:	"liga"	on,	"smcp"	on,	"zero"	on;

The	exact	format	of	a	<feature-tag-value>	value	is:

<feature-tag-value>

<string>	[<integer>	|	on	|	off]?

For	many	features,	the	only	permitted	integer	values	are	0	and	1,	which	are	equivalent	to	off	and	on
(and	vice	versa).	There	are	some	features	that	allow	a	range	of	numbers,	however,	in	which	case	values
greater	than	1	both	enable	the	feature	and	define	the	feature’s	selection	index.	If	a	feature	is	listed	but	no
number	is	provided,	1	(on)	is	assumed.	Thus,	the	following	descriptors	are	all	equivalent:

font-feature-settings:	"liga";					/*	1	is	assumed	*/

font-feature-settings:	"liga"	1;			/*	1	is	declared	*/

font-feature-settings:	"liga"	on;		/*	on	=	1	*/

Remember	that	all	<string>	values	must	be	quoted.	Thus,	the	first	of	the	following	descriptors	will	be
recognized,	but	the	second	will	be	ignored:

font-feature-settings:	"liga",	dlig;

/*	common	ligatures	are	enabled;	we	wanted	discretionary	ligatures,	but	forgot

			quotes,	so	they	are	not	enabled	*/

A	further	restriction	is	that	OpenType	requires	that	all	feature	tags	be	four	ASCII	characters	long.	Any
feature	name	longer	or	shorter,	or	that	uses	non-ASCII	characters,	is	invalid	and	will	be	ignored.	(This
isn’t	something	you	personally	need	to	worry	about	unless	you’re	using	a	font	that	has	it	own	made-up
feature	names	and	the	font’s	creator	didn’t	follow	the	naming	rules.)

By	default,	OpenType	fonts	always	have	the	following	features	enabled	unless	the	author	explicitly
disables	them	via	font-feature-settings	or	font-variant:

"calt"

Contextual	alternates

"ccmp"

Composed	characters

"clig"

Contextual	ligatures

"liga"

Standard	ligatures

"locl"

Localized	forms

"mark"

Mark	to	base	positioning

"mkmk"

Mark	to	mark	positioning

"rlig"

Required	ligatures

Additionally,	other	features	may	be	enabled	by	default	in	specific	situations,	such	as	vertical	alternatives
("vert")	for	vertical	runs	of	text.

The	OpenType	font-feature-setting	values	we’ve	discussed	so	far	are	all	listed	in	this	table	of
OpenType	codes,	along	with	a	few	others	we	didn’t	touch	on	for	lack	of	support:

Table	10-13.	OpenType	values

Code Meaning Long	hand

"afrc" Alternative	fractions stacked-fractions

"c2pc" Petite	capitals petite-caps

"c2sc" Small	capitals	from	capitals all-small-caps

"calt" Contextual	alternates contextual

"case" Case-sensitive	forms

"clig" Common	ligatures common-ligatures

"cswh" Swash	function swash()

"cv01" Character	variants	(01-99) character-variant()

"dnom" Denominators

"frac" Fractions diagonal-fractions

"fwid" Full	width	variants full-width

"hist" Enable	historical	forms historical-forms

"liga" Standard	ligatures common-ligatures

"lnum" Lining	figures lining-nums

"locl" Localized	forms

"numr" Numerators

"nalt" Annotation	function annotation()

"onum" Oldstyle	figures oldstyle-nums

"ordn" Ordinal	markers ordinal

"ornm" Ornaments	(function) ornaments()

"pcap" Petite	capitals petite-caps

"pnum" Proportional	figures

"pwid" Proportionally-spaced	variants proportional-width

"ruby" Ruby ruby

"salt" Stylistic	function stylistic()

"sinf" Scientific	inferiors

"smcp" Small	capitals small-caps

"smpl" Simplified	forms simplified

"ss01" Stylistic	set	1	(numero	correct) styleset()

"ss07" Stylistic	set	(1-20) styleset()

"subs" Subscript

"sups" Superscript

"swsh" Swash	function swash()

"titl" Titling	capitals titling-caps

"tnum" Tabular	figures tabular-nums

"trad" Traditional	forms traditional

"unic" Unicase unicase

"zero" Slashed	zero slashed-zero

The	complete	list	of	standard	OpenType	feature	names	can	be	found	at
microsoft.com/typography/otspec/featurelist.htm.

That	said,	font-feature-settings	is	a	low-level	feature	designed	to	handle	special	cases	where
no	other	way	exists	to	enable	or	access	an	OpenType	font	feature.	It’s	also	the	case	that	you	have	to	list	all
of	the	feature	settings	you	want	to	use	in	a	single	property	value.	Whenever	possible,	use	the	font-
variant	shorthand	property	or	one	of	the	six	associated	longhand	properties	including	font-
variant-ligatures,	font-variant-caps,	font-variant-east-asian,	font-

http://microsoft.com/typography/otspec/featurelist.htm

variant-alternates,	and	font-variant-numeric.

The	font-feature-settings	Descriptor
The	font-feature-settings	descriptor	lets	you	decide	which	of	an	OpenType	font	face’s	settings
can	or	cannot	be	used,	specified	as	a	space-separated	list.

Now,	hold	up	a	second—isn’t	that	almost	exactly	what	we	did	with	font-variant	just	a	few
paragraphs	ago?	Yes!	The	font-variant	descriptor	covers	nearly	everything	font-feature-
settings	does,	plus	a	little	more	besides.	It	just	does	so	in	a	more	CSS-like	way,	with	value	names
instead	of	cryptic	OpenType	identifiers	and	Boolean	toggles.	Because	of	this,	the	CSS	specification
explicitly	encourages	authors	to	use	font-variant	instead	of	font-feature-settings,	except
in	those	cases	where	there’s	a	font	feature	that	the	value	list	of	font-variant	doesn’t	include.

Keep	in	mind	that	this	descriptor	merely	makes	features	available	for	use	(or	suppresses	their	use).	It
does	not	actually	turn	them	on	for	the	display	of	text;	for	that,	see	the	section	on	the	font-feature-
settings	property.

Just	as	with	the	font-variant	descriptor,	the	font-feature-settings	descriptor	defines
which	font	features	are	enabled	(or	disabled)	for	the	font	face	being	declared	in	the	@font-face	rule.
For	example,	given	the	following,	Switzera	will	have	alternative	fractions	and	small-caps	disabled,	even
if	such	features	exist	in	SwitzeraADF:

@font-face	{

		font-family:	"Switzera";

		font-weight:	normal;

		src:	url("SwitzeraADF-Regular.otf")	format("opentype");

		font-feature-settings:	"afrc"	off,	"smcp"	off;

}

The	font-feature-settings	descriptor	can	take	all	of	the	values	of	the	font-feature-
settings	property	except	for	inherit.

Font-variation-settings
The	font-variation-settings	property	provides	low-level	control	over	variable	font
characteristics,	by	specifying	a	four	letter	axis	name	along	with	a	value.

Values normal	|	[<string>	<number>]#

Initial	value normal

Applies	to All	elements

Computed	value as	specified

Inherited Yes

Animatable Yes

There	are	five	registered	axes.	We	have	covered	almost	all	of	them:

Table	10-14.	Font	variation	axes

Axis Property Property	value

"wght" font-weight 1	–	1000

"slnt" font-style oblique		/	oblique	<angle>

"ital" font-style italic

"opsz" font-optical-sizing

"wdth" font-stretch

We	used	the	term	“registered	axes”	because	font	developers	are	not	limited	to	weight,	width,	optical	size,
slant	and	italics:	They	can	create	custom	axes,	and	“register”	them	by	giving	them	a	four-letter	label.	The
simplest	way	to	know	if	a	font	has	such	axes	is	to	look	at	the	font’s	documentation;	otherwise,	you	have	to
know	how	to	dig	into	the	internals	of	a	font’s	file(s)	to	find	out.	These	axes	can	control	any	aspect	of	the
font’s	appearance,	such	as	the	size	of	the	dot	on	lowercase	i	and	j.	Creating	custom	axes	is	beyond	the
scope	of	this	book,	but	calling	on	them	where	they	exist	is	not.

Because	these	axes	are	string	values,	they	have	to	be	quoted	and	they	are	case	sensitive,	always
lowercase.	Imagine	a	font	where	the	size	of	the	dots	(which	are	properly	called	diacritic	marks	or	just
diacritics)	over	lowercase	i	and	j	can	be	changed	by	way	of	an	axis	called	DCSZ	(for	“diacritic	size”).
Furthermore,	this	axis	has	been	defined	by	the	font’s	designer	to	allow	values	from	1	to	10.	The	diacritic
size	could	be	maximzed	as	follows:

p	{font-family:	DotFont,	Helvetica,	serif;	font-variation-settings:	"DCSZ"	10;}

The	font-variation-settings	descriptor	is	the	same	as	the	property.	Instead	of	declaring	each
registered	axis	separately,	they	are	declared	on	one	line,	comma	separated.

@font-face	{

		font-family:	'LeagueMono';

		src:	url('LeagueMonoVariable.woff2')	format('woff2');

		font-weight:	100	900;

		font-stretch:	50%	200%;

		font-variation-settings:	'wght'	100	900,	'wdth'	50	200;

		font-display:	swap;

}

TIP
Although	you	can	set	the	weight,	style,	and	so	forth	of	a	given	font	using	font-variation-settings,	it	is	recommended	that	you
use	the	more	widely-supported	and	human-readable	properties	font-weight,	font-style,	and	so	forth	instead.

font-optical-sizing
Text	rendered	at	different	sizes	often	benefits	from	slightly	different	visual	representations.	For	example,
to	aid	reading	at	small	text	sizes,	glyphs	have	less	detail	and	strokes	are	often	thicker	with	larger	serifs.
Larger	text	can	have	more	features	and	a	greater	contrast	between	thicker	and	thinner	strokes.	The
property	font-optical-sizing	allows	authors	to	enable	or	disable	this	feature	of	variable	fonts.

Values auto	|	none

Initial	value auto

Applies	to All	elements	and	text

Computed	value as	specified

Varable	font	axis "opsz"

Inherited Yes

Animatable Discrete

By	default,	auto,	browsers	can	modify	the	shape	of	glyphs	based	on	font-size	and	pixel	density.	The
none	value	tells	the	browser	to	not	do	this.

TIP
In	fonts	that	support	it,	optical	sizing	is	usually	defined	as	a	range	of	numbers.	If	you	want	to	explicitly	change	the	optical	sizing	of	a	given
element’s	font	to	be	a	specific	number,	perhaps	to	make	text	sturdier	or	more	delicate	than	it	would	be	by	default,	use	the	font-
variation-settings	property	and	give	it	a	value	something	like	'opsz'	10	(where	10	can	be	any	number	in	the	optical-sizing
range).

Override	descriptors
This	brings	us	to	the	last	three	@font-face	descriptors	that	we	have	yet	to	discuss.	There	are	three
descriptors	that	enable	override	setting	for	font	families,	ascent-override,	descent-
override,	and	line-gap-override,	which	define	the	ascent,	descent,	and	line	gap	metrics,
respectively.	All	three	descriptors	take	the	same	values:	normal	or	a	<percentage>.

ascent-override,	descent-override,	line-gap-override	descriptors

Values normal	|	<percentage>

Initial	value normal

The	goal	of	these	descriptors	is	to	help	fallback	fonts	better	match	a	primary	font	by	overriding	the
metrics	of	the	fallback	font	to	better	match	those	of	the	primary	font.

The	ascent	metric	is	the	distance	above	the	baseline	used	to	lay	out	line	boxes;	that	is,	the	distance	from
the	baseline	to	the	top	of	the	em	box.	The	descent	metric	is	the	distance	below	the	baseline	used	to	lay	out
line	boxes;	that	is,	the	distance	from	the	baseline	to	the	bottom	of	the	em	box.	The	line-gap	metric	is	the
font’s	recommended	distance	between	adjacent	lines	of	text,	which	is	sometimes	called	external	leading.

Here’s	an	example	of	a	hypothetical	font	and	its	ascent,	descent,	and	line-gap	override	descriptors:

@font-face	{

		font-family:	"PreferredFont";

		src:	url("PreferredFont.woff");

}

@font-face	{

		font-family:	FallbackFont;

		src:	local(FallbackFont);

		ascent-override:	110%;

		descent-override:	95%;

		line-gap-override:	105%;

}

This	will	direct	the	browser	to	alter	the	ascent	and	descent	heights	by	110%	and	95%	respectively,	and
increase	the	line-gap	to	105%	the	distance	in	the	fallback	font.

Font	Kerning
A	font	property	that	doesn’t	have	a	descriptor	equivalent	is	font-kerning.	Some	fonts	contain	data
regarding	how	characters	should	be	spaced	relative	to	each	other,	known	as	kerning.	Kerning	can	make
character	spacing	more	visually	appealing	and	pleasant	to	read.

Kerning	space	varies	depending	on	how	characters	are	combined;	for	example,	the	character	pair	oc	may

have	a	different	spacing	than	the	pair	ox.	Similarly,	AB	and	AW	may	have	different	separation	distances,	to
the	point	that	in	some	fonts,	the	top-right	tip	of	the	W	is	actually	placed	to	the	left	of	the	bottom-right	tip	of
the	A.	This	kerning	data	can	be	explicitly	called	for	or	suppressed	using	the	property	font-kerning.

FONT-KERNING

Values auto	|	normal	|	none

Initial	value auto

Applies	to All	elements

Inherited Yes

Animatable No

The	value	none	is	pretty	simple:	it	tells	the	user	agent	to	ignore	any	kerning	information	in	the	font.
normal	tells	the	user	agent	to	kern	the	text	normally;	that	is,	according	to	the	kerning	data	contained	in
the	font.	auto	tells	the	user	agent	to	do	whatever	it	thinks	best,	possibly	depending	on	the	type	of	font	in
use.	The	OpenType	specification,	for	example,	recommends	(but	does	not	require)	that	kerning	be	applied
whenever	the	font	supports	it.	Furthermore,	as	per	the	CSS	specification:

…[browsers]	may	synthetically	support	the	kern	feature	with	fonts	that	contain	kerning	data	in	the
form	of	a	kern	table	but	lack	kern	feature	support	in	the	GPOS	table.

—https://www.w3.org/TR/css-fonts-4/#font-kerning-prop

Which	means,	in	effect,	that	if	there	is	kerning	information	built	into	the	font,	browsers	are	allowed	to
enforce	it	even	if	the	font	lacks	an	explicit	enabling	of	kerning	via	a	feature	table.

NOTE
Note	that	if	the	property	letter-spacing	(see	Chapter	11)	is	applied	to	kerned	text,	the	kerning	is	done	first	and	then	the	letters’
spacing	is	adjusted	according	to	the	value	of	letter-spacing,	not	the	other	way	around.

The	font	Property
All	of	the	properties	discussed	thus	far	are	very	sophisticated,	but	writing	them	all	out	could	get	a	little
tedious:

h1	{font-family:	Verdana,	Helvetica,	Arial,	sans-serif;	font-size:	30px;

				font-weight:	900;	font-style:	italic;	font-variant-caps:	small-caps;}

h2	{font-family:	Verdana,	Helvetica,	Arial,	sans-serif;	font-size:	24px;

				font-weight:	bold;	font-style:	italic;	font-variant-caps:	normal;}

Some	of	this	problem	could	be	solved	by	grouping	selectors,	but	wouldn’t	it	be	easier	to	combine

everything	into	a	single	property?	Enter	font,	which	is	a	shorthand	property	encompassing	most	(not
quite	all)	the	other	font	properties,	and	a	little	more	besides.

FONT

Values [[<font-style>	ǁ	[normal	|	small-caps]	ǁ	<font-weight>	#&8214;	<font_stretch_css3>]?	<font-size>	
[/	<line-height>]?	<font-family>]	|	caption	|	icon	|	menu	|	message-box	|	small-caption	|	sta
tus-bar

Initial	value Refer	to	individual	properties

Applies	to All	elements

Percentages Calculated	with	respect	to	the	parent	element	for	<font-size>	and	with	respect	to	the	element’s	<font-size>	for	
<line-height>

Computed	value See	individual	properties	(font-style,	etc.)

Inherited Yes

Animatable Refer	to	individual	properties

Note See	the	next	section	for	an	explanation	of	<font_stretch_css3>

Generally	speaking,	a	font	declaration	can	have	any	one	value	from	each	of	the	listed	font	properties,	or
else	a	system	font	value	(described	in	“Using	System	Fonts”).	Therefore,	the	preceding	example	could	be
shortened	as	follows	(and	have	exactly	the	same	effect,	as	illustrated	by	Figure	10-23):

h1	{font:	italic	900	small-caps	30px	Verdana,	Helvetica,	Arial,	sans-serif;}

h2	{font:	bold	normal	italic	24px	Verdana,	Helvetica,	Arial,	sans-serif;}

Figure	10-23.	Typical	font	rules

We	say	that	the	styles	“could	be”	shortened	in	this	way	because	there	are	a	few	other	possibilities,	thanks
to	the	relatively	loose	way	in	which	font	can	be	written.	If	you	look	closely	at	the	preceding	example,
you’ll	see	that	the	first	three	values	don’t	occur	in	the	same	order.	In	the	h1	rule,	the	first	three	values	are
the	values	for	font-style,	font-weight,	and	font-variant,	in	that	order.	In	the	second,
they’re	ordered	font-weight,	font-variant,	and	font-style.	There	is	nothing	wrong	here
because	these	three	can	be	written	in	any	order.	Furthermore,	if	any	of	them	has	a	value	of	normal,	that
can	be	left	out	altogether.	Therefore,	the	following	rules	are	equivalent	to	the	previous	example:

h1	{font:	italic	900	small-caps	30px	Verdana,	Helvetica,	Arial,	sans-serif;}

h2	{font:	bold	italic	24px	Verdana,	Helvetica,	Arial,	sans-serif;}

In	this	example,	the	value	of	normal	was	left	out	of	the	h2	rule,	but	the	effect	is	exactly	the	same	as	in
the	preceding	example.

It’s	important	to	realize,	however,	that	this	free-for-all	situation	applies	only	to	the	first	three	values	of
font.	The	last	two	are	much	stricter	in	their	behavior.	Not	only	must	font-size	and	font-family
appear	in	that	order	as	the	last	two	values	in	the	declaration,	but	both	must	always	be	present	in	a	font
declaration.	Period,	end	of	story.	If	either	is	left	out,	then	the	entire	rule	will	be	invalidated	and	will	be
ignored	completely	by	a	user	agent.	Thus,	the	following	rules	will	get	you	the	result	shown	in	Figure	10-
24:

h1	{font:	normal	normal	italic	30px	sans-serif;}			/*	no	problem	here	*/

h2	{font:	1.5em	sans-serif;}			/*	also	fine;	omitted	values	set	to	'normal'	*/

h3	{font:	sans-serif;}					/*	INVALID--no	'font-size'	provided	*/

h4	{font:	lighter	14px;}			/*	INVALID--no	'font-family'	provided	*/

Figure	10-24.	The	necessity	of	both	size	and	family

Font	Property	Limitations
Because	the	font	property	has	been	part	of	CSS	since	the	very	beginning,	and	because	so	many
properties	dealing	with	all	the	variants	that	came	later,	there	are	some	limitations	to	the	font	property
when	it	comes	to	font	variations.

First,	it’s	important	to	remember	that	when	using	the	font	shorthand	property,	the	following	properties
are	all	set	to	their	default	values	even	though	they	cannot	be	represented	in	font:

font-feature-settings

font-kerning

font-language-override

font-optical-sizing

font-palette

font-size-adjust

font-variant-alternates

font-variant-caps	(unless	small-caps	is	included	in	the	font	value)

font-variant-east-asian

font-variant-ligatures

font-variant-numeric

font-variation-settings

Second,	and	following	on	the	note	in	the	previous	list,	there	are	only	two	variation	values	permitted:
small-caps	and	normal.	The	numeric,	ligature,	alternate,	East	Asian,	and	many	of	the	caps	variants
cannot	be	set	via	the	font	property.	If	you	want,	for	example,	to	use	small	caps	and	slashed	zeroes	in
your	top-level	headings,	you	would	need	to	write	something	like:

h1	{font:	bold	small-caps	3em/1.1	Helvetica,	sans-serif;

				font-variant-numeric:	slashed-zero;

Third,	another	property	value	that	suffers	from	the	weight	of	history	is	font	stretching.	As	we	discussed
earlier	in	the	chapter,	font-stretch	allows	authors	to	choose	from	a	number	of	keywords	or	to	set	a
percentage	in	the	rage	of	50%	to	200%	(inclusive).	The	keywords	may	be	used	in	font,	but	the
percentage	value	may	not.

Adding	the	Line	Height
It	is	also	possible	to	set	the	value	of	the	property	line-height	using	font,	despite	the	fact	that
line-height	is	a	text	property	(not	covered	in	this	chapter),	not	a	font	property.	It’s	done	as	a	sort	of
addition	to	the	font-size	value,	separated	from	it	by	a	forward	slash	(/):

body	{font-size:	12px;}

h2	{font:	bold	italic	200%/1.2	Verdana,	Helvetica,	Arial,	sans-serif;}

These	rules,	demonstrated	in	Figure	10-25,	set	all	h2	elements	to	be	bold	and	italic	(using	face	for	one	of
the	sans-serif	font	families),	set	the	font-size	to	24px	(twice	the	body’s	size),	and	set	the	line-
height	to	28.8px.

Figure	10-25.	Adding	line	height	to	the	mix

This	addition	of	a	value	for	line-height	is	entirely	optional,	just	as	the	first	three	font	values	are.
If	you	do	include	a	line-height,	remember	that	the	font-size	always	comes	before	line-
height,	never	after,	and	the	two	are	always	separated	by	a	slash.

WARNING
This	may	seem	repetitive,	but	it’s	one	of	the	most	common	errors	made	by	CSS	authors,	so	we	can’t	say	it	enough:	the	required	values	for
font	are	font-size	and	font-family,	in	that	order.	Everything	else	is	strictly	optional.

Using	Shorthands	Properly
It	is	important	to	remember	that	font,	being	a	shorthand	property,	can	act	in	unexpected	ways	if	you	are
careless	with	its	use.	Consider	the	following	rules,	which	are	illustrated	in	Figure	10-26:

h1,	h2,	h3	{font:	italic	small-caps	250%	sans-serif;}

h2	{font:	200%	sans-serif;}

h3	{font-size:	150%;}

<h1>This	is	an	h1	element</h1>

<h2>This	is	an	h2	element</h2>

<h3>This	is	an	h3	element</h3>

Figure	10-26.	Shorthand	changes

Did	you	notice	that	the	h2	element	is	neither	italicized	nor	small-capped,	and	that	none	of	the	elements
are	bold?	This	is	the	correct	behavior.	When	the	shorthand	property	font	is	used,	any	omitted	values	are
reset	to	their	defaults.	Thus,	the	previous	example	could	be	written	as	follows	and	still	be	exactly
equivalent:

h1,	h2,	h3	{font:	italic	normal	small-caps	250%	sans-serif;}

h2	{font:	normal	normal	normal	200%	sans-serif;}

h3	{font-size:	150%;}

This	sets	the	h2	element’s	font	style	and	variant	to	normal,	and	the	font-weight	of	all	three
elements	to	normal.	This	is	the	expected	behavior	of	shorthand	properties.	The	h3	does	not	suffer	the
same	fate	as	the	h2	because	you	used	the	property	font-size,	which	is	not	a	shorthand	property	and
therefore	affects	only	its	own	value.

Using	System	Fonts
In	situations	where	you	want	to	make	a	web	page	blend	in	with	the	user’s	operating	system,	the	system
font	values	of	font	come	in	handy.	These	are	used	to	take	the	font	size,	family,	weight,	style,	and	variant

of	elements	of	the	operating	system,	and	apply	them	to	an	element.	The	values	are	as	follows:

caption

Used	for	captioned	controls,	such	as	buttons

icon

Used	to	label	icons

menu

Used	in	menus—that	is,	drop-down	menus	and	menu	lists

message-box

Used	in	dialog	boxes

small-caption

Used	for	labeling	small	controls

status-bar

Used	in	window	status	bars

For	example,	you	might	want	to	set	the	font	of	a	button	to	be	the	same	as	that	of	the	buttons	found	in	the
operating	system.	For	example:

button	{font:	caption;}

With	these	values,	it	is	possible	to	create	web-based	applications	that	look	very	much	like	applications
native	to	the	user’s	operating	system.

Note	that	system	fonts	may	only	be	set	as	a	whole;	that	is,	the	font	family,	size,	weight,	style,	etc.,	are	all
set	together.	Therefore,	the	button	text	from	our	previous	example	will	look	exactly	the	same	as	button	text
in	the	operating	system,	whether	or	not	the	size	matches	any	of	the	content	around	the	button.	You	can,
however,	alter	the	individual	values	once	the	system	font	has	been	set.	Thus,	the	following	rule	will	make
sure	the	button’s	font	is	the	same	size	as	its	parent	element’s	font:

button	{font:	caption;	font-size:	1em;}

If	you	call	for	a	system	font	and	no	such	font	exists	on	the	user’s	machine,	the	user	agent	may	try	to	find	an
approximation,	such	as	reducing	the	size	of	the	caption	font	to	arrive	at	the	small-caption	font.	If
no	such	approximation	is	possible,	then	the	user	agent	should	use	a	default	font	of	its	own.	If	it	can	find	a
system	font	but	can’t	read	all	of	its	values,	then	it	should	use	the	default	value.	For	example,	a	user	agent
may	be	able	to	find	a	status-bar	font	but	not	get	any	information	about	whether	the	font	is	small-caps.
In	that	case,	the	user	agent	will	use	the	value	normal	for	the	small-caps	property.

Font	Matching
As	we’ve	seen,	CSS	allows	for	the	matching	of	font	families,	weights,	and	variants.	This	is	all
accomplished	through	font	matching,	which	is	a	vaguely	complicated	procedure.	Understanding	it	is
important	for	authors	who	want	to	help	user	agents	make	good	font	selections	when	displaying	their
documents.	We	left	it	for	the	end	of	the	chapter	because	it’s	not	really	necessary	to	understand	how	the
font	properties	work,	and	some	readers	will	probably	want	to	skip	this	part.	If	you’re	still	interested,
here’s	how	font	matching	works:

1.	 The	user	agent	creates,	or	otherwise	accesses,	a	database	of	font	properties.	This	database	lists	the
various	CSS	properties	of	all	of	the	fonts	to	which	the	user	agent	has	access.	Typically,	this	will	be
all	fonts	installed	on	the	machine,	although	there	could	be	others	(for	example,	the	user	agent	could
have	its	own	built-in	fonts).	If	the	user	agent	encounters	two	identical	fonts,	it	will	just	ignore	one	of
them.

2.	 The	user	agent	takes	apart	an	element	to	which	font	properties	have	been	applied	and	constructs	a
list	of	font	properties	necessary	for	the	display	of	that	element.	Based	on	that	list,	the	user	agent
makes	an	initial	choice	of	a	font	family	to	use	in	displaying	the	element.	If	there	is	a	complete	match,
then	the	user	agent	can	use	that	font.	Otherwise,	it	needs	to	do	a	little	more	work.

3.	 A	font	is	first	matched	against	the	font-stretch	property.

4.	 A	font	is	next	matched	against	the	font-style	property.	The	keyword	italic	is	matched	by	any
font	that	is	labeled	as	either	“italic”	or	“oblique.”	If	neither	is	available,	then	the	match	fails.

5.	 The	next	match	is	to	font-weight,	which	can	never	fail	thanks	to	the	way	font-weight	is
handled	in	CSS	(explained	in	the	earlier	section,	“How	Weights	Work”).

6.	 Then,	font-size	is	tackled.	This	must	be	matched	within	a	certain	tolerance,	but	that	tolerance	is
defined	by	the	user	agent.	Thus,	one	user	agent	might	allow	matching	within	a	20	percent	margin	of
error,	whereas	another	might	allow	only	10	percent	differences	between	the	size	specified	and	the
size	that	is	actually	used.

7.	 If	there	was	no	font	match	in	Step	2,	the	user	agent	looks	for	alternate	fonts	within	the	same	font
family.	If	it	finds	any,	then	it	repeats	Step	2	for	that	font.

8.	 Assuming	a	generic	match	has	been	found,	but	it	doesn’t	contain	everything	needed	to	display	a	given
element—the	font	is	missing	the	copyright	symbol,	for	instance—then	the	user	agent	goes	back	to
Step	3,	which	entails	a	search	for	another	alternate	font	and	another	trip	through	Step	2.

9.	 Finally,	if	no	match	has	been	made	and	all	alternate	fonts	have	been	tried,	then	the	user	agent	selects
the	default	font	for	the	given	generic	font	family	and	does	the	best	it	can	to	display	the	element
correctly.

Furthermore,	the	user	agent	does	the	following	to	resolve	handling	of	font	variants	and	features:

1.	 First,	check	for	font	features	enabled	by	default,	including	features	required	for	a	given	script.	The
core	set	of	default-enabled	features	is	"calt",	"ccmp",	"clig",	"liga",	"locl",	"mark",

"mkmk",	and	"rlig".

2.	 Then,	if	the	font	is	defined	via	an	@font-face	rule,	check	for	the	features	implied	by	the	font-
variant	descriptor	in	the	@font-face	rule.	Then	check	for	the	font	features	implied	by	the
font-feature-settings	descriptor	in	the	@font-face	rule.

3.	 Then	check	feature	settings	determined	by	properties	other	than	font-variant	or	font-
feature-settings.	(For	example,	setting	a	non-default	value	for	the	letter-spacing
property	will	disable	ligatures.)

4.	 Then	check	for	features	implied	by	the	value	of	the	font-variant	property,	the	related	font-
variant	subproperties	(e.g.,	font-variant-ligatures),	and	any	other	property	that	may
call	for	the	use	of	OpenType	features	(e.g.,	font-kerning).

5.	 Finally,	check	for	the	features	implied	by	the	value	of	font-feature-settings	property.

The	whole	process	is	long	and	tedious,	but	it	helps	to	understand	how	user	agents	pick	the	fonts	they	do.
For	example,	you	might	specify	the	use	of	Times	or	any	other	serif	font	in	a	document:

body	{font-family:	Times,	serif;}

For	each	element,	the	user	agent	should	examine	the	characters	in	that	element	and	determine	whether
Times	can	provide	characters	to	match.	In	most	cases,	it	can	do	so	with	no	problem.	Assume,	however,
that	a	Chinese	character	has	been	placed	in	the	middle	of	a	paragraph.	Times	has	nothing	that	can	match
this	character,	so	the	user	agent	has	to	work	around	the	character	or	look	for	another	font	that	can	fulfill
the	needs	of	displaying	that	element.	Any	Western	font	is	highly	unlikely	to	contain	Chinese	characters,	but
should	one	exist	(let’s	call	it	AsiaTimes),	the	user	agent	could	use	it	in	the	display	of	that	one	element—or
simply	for	the	single	character.	Thus,	the	whole	paragraph	might	be	displayed	using	AsiaTimes,	or
everything	in	the	paragraph	might	be	in	Times	except	for	the	single	Chinese	character,	which	is	displayed
in	AsiaTimes.

Summary
From	what	was	initially	a	very	simplistic	set	of	font	properties,	CSS	has	grown	to	allow	fine-grained	and
wide-ranging	influence	over	how	fonts	are	displayed	on	the	web.	From	custom	fonts	downloaded	over	the
web	to	custom-built	families	assembled	out	of	a	variety	of	individual	faces,	authors	may	be	fairly	said	to
overflow	with	font	power.

The	typographic	options	available	to	authors	today	are	far	stronger	than	ever,	but	always	remember:	you
must	use	this	power	wisely.	While	you	can	have	17	different	fonts	in	use	on	your	site,	that	definitely
doesn’t	mean	that	you	should.	Quite	aside	from	the	aesthetic	difficulties	this	could	present	for	your	users,
it	would	also	make	the	total	page	weight	much,	much	higher	than	it	needs	to	be.	As	with	any	other	aspect
of	web	design,	authors	are	advised	to	use	their	power	wisely,	not	wildly.

Chapter	11.	Text	Properties

A	NOTE	FOR	EARLY	RELEASE	READERS
With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	authors’	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

This	will	be	the	14th	chapter	of	the	final	book.	Please	note	that	the	GitHub	repo	will	be	made	active
later	on.

If	you	have	comments	about	how	we	might	improve	the	content	and/or	examples	in	this	book,	or	if	you
notice	missing	material	within	this	chapter,	please	reach	out	to	the	editor	at	rfernando@oreilly.com.

Because	text	is	so	important,	there	are	many	CSS	properties	that	affect	it	in	one	way	or	another.	But	didn’t
we	just	cover	that	in	Chapter	10?	Not	exactly:	we	only	covered	fonts	—	the	importing	and	usage	of	type
faces.	Text	styles	are	different.

Okay,	so	what	is	the	difference	between	text	and	fonts?	At	the	simplest	level,	text	is	the	content,	and	fonts
are	used	to	display	that	content.	Fonts	provide	the	shape	for	the	letters.	Text	is	the	styling	around	those
shapes.	Using	text	properties,	you	can	affect	the	position	of	text	in	relation	to	the	rest	of	the	line,
superscript	it,	underline	it,	and	change	the	capitalization.	You	can	affect	the	size,	color,	and	placement	of
text	decorations.

Indentation	and	Inline	Alignment
Let’s	start	with	a	discussion	of	how	you	can	affect	the	inline	positioning	of	text	within	a	line.	Think	of
these	basic	actions	as	the	same	types	of	steps	you	might	take	to	create	a	newsletter	or	write	a	report.

Originally,	CSS	was	written	on	concepts	of	“horizontal”	and	“vertical.”	To	better	support	all	languages
and	writing	directions,	CSS	now	uses	the	terms	“block	direction”	and	“inline	direction.”	If	your	primary
language	is	Western-derived,	then	you’re	accustomed	to	a	block	direction	of	top	to	bottom,	and	an	inline
direction	of	left	to	right.

The	block	direction	is	the	direction	in	which	block	elements	are	placed	by	default	in	the	current	writing
mode.	In	English,	for	example,	the	block	direction	is	top	to	bottom,	or	vertical,	as	one	paragraph	(or	other
text	element)	is	placed	beneath	the	one	before.	Some	languages	have	vertical	text,	like	Mongolian.	When
text	is	vertical,	the	block	direction	is	horizontal.

The	inline	direction	is	the	direction	in	which	inline	elements	are	written	within	a	block.	To	again	take
English	as	an	example,	the	inline	direction	is	left	to	right,	or	horizontal.	In	languages	like	Arabic	and
Hebrew,	the	inline	direction	is	right	to	left	instead.	To	re-use	the	example	from	the	last	paragraph,
Mongolian’s	inline	direction	is	top	to	bottom.

mailto:rfernando@oreilly.com

Let’s	reconsider	English	for	a	moment.	A	plain	page	of	English	text,	displayed	on	a	screen,	has	a	vertical
block	direction	(from	top	to	bottom)	and	a	horizontal	inline	direction	(from	left	to	right).	But	if	the	page	is
rotated	90	degrees	anticlockwise	using	CSS	Transforms,	then	suddenly	the	block	direction	is	horizontal
and	the	inline	direction	is	vertical.	(And	bottom	to	top,	at	that.)

TIP
You	can	still	find	a	lot	of	English-centric	blog	posts	and	other	CSS-related	documentation	on	the	Web	using	the	terms	“vertical”	and
“horizontal”	when	talking	about	writing	directions.	When	you	do,	mentally	translate	them	to	“block”	and	“inline”	as	needed.

Indenting	Text
Most	paper	books	we	read	in	Western	languages	format	paragraphs	of	text	with	the	first	line	indented,	and
no	blank	line	between	paragraphs.	If	you	want	to	recreate	that	look,	CSS	provides	the	property	text-
indent.

TEXT-INDENT

Values [<length>	|	<percentage>]	&&	hanging	&&	each-line

Initial	value 0

Applies	to Block-level	elements

Percentages Refer	to	the	width	of	the	containing	block

Computed	value For	percentage	values,	as	specified;	for	length	values,	the	absolute	length

Inherited Yes

Animatable Yes

Notes hanging	and	each-line	were	still	experimental	as	of	mid-2022

Using	text-indent,	the	first	line	of	any	element	can	be	indented	by	a	given	length,	even	if	that	length
is	negative.	A	common	use	for	this	property	is	to	indent	the	first	line	of	a	paragraph:

p	{text-indent:	3em;}

This	rule	will	cause	the	first	line	of	any	paragraph	to	be	indented	three	ems,	as	shown	in	Figure	11-1.

Figure	11-1.	Text	indenting

In	general,	you	can	apply	text-indent	to	any	element	that	generates	a	block	box,	and	the	indentation
will	occur	along	the	inline	direction.	You	can’t	apply	it	to	inline	elements	or	on	replaced	elements	such	as
images.	However,	if	you	have	an	image	within	the	first	line	of	a	block-level	element,	it	will	be	shifted
over	with	the	rest	of	the	text	in	the	line.

NOTE
If	you	want	to	“indent”	the	first	line	of	an	inline	element,	you	can	create	the	effect	with	left	padding	or	margin.

You	can	also	set	negative	values	for	text-indent	to	create	a	hanging	indent,	where	the	first	line
hangs	out	to	one	side	of	the	rest	of	the	element:

p	{text-indent:	−4em;}

Be	careful	when	setting	a	negative	value	for	text-indent	;	the	first	few	words	may	be	chopped	off	by
the	edge	of	the	browser	window	if	you	aren’t	careful.	To	avoid	display	problems,	we	recommend	you	use
a	margin	or	padding	to	accommodate	the	negative	indentation:

p	{text-indent:	−4em;	padding-left:	4em;}

Any	unit	of	length,	including	percentage	values,	may	be	used	with	text-indent.	In	the	following	case,
the	percentage	refers	to	the	width	of	the	parent	element	of	the	element	being	indented.	In	other	words,	if
you	set	the	indent	value	to	10%,	the	first	line	of	an	affected	element	will	be	indented	by	10	percent	of	its
parent	element’s	width,	as	shown	in	Figure	11-2:

div	{width:	400px;}

p	{text-indent:	10%;}

<div>

<p>This	paragraph	is	contained	inside	a	DIV,	which	is	400px	wide,	so	the

first	line	of	the	paragraph	is	indented	40px	(400	*	10%	=	40).		This	is

because	percentages	are	computed	with	respect	to	the	width	of	the	element.</p>

</div>

Figure	11-2.	Text	indenting	with	percentages

Note	that	because	text-indent	is	inherited,	some	browsers,	like	the	Yandex	browser,	inherit	the
computed	values,	while	Safari,	Firefox,	Edge,	and	Chrome	inherit	the	declared	value.	In	the	following,
both	bits	of	text	will	be	indented	5em	in	Yandex	and	10%	of	the	current	element’s	width	in	other
browsers,	because	the	value	of	5em	is	inherited	by	the	paragraph	from	its	parent	<div>	in	Yandex	and
older	versions	of	WebKit,	whereas	most	evergreen	browsers	inherit	the	declared	value	of	10%.

div#outer	{width:	50em;}

div#inner	{text-indent:	10%;}

p	{width:	20em;}

<div	id="outer">

<div	id="inner">

This	first	line	of	the	DIV	is	indented	by	5em.

<p>

This	paragraph	is	20em	wide,	and	the	first	line	of	the	paragraph

is	indented	5em	in	Webkit	and	2em	elsewhere.		This	is	because

computed	values	for	'text-indent'	are	inherited	in	Webkit,

while	the	declared	values	are	inherited	elsewhere.

</p>

</div>

</div>

Experimental	values
As	of	late	2022,	there	were	two	keywords	being	considered	for	addition	to	text-indent.	They	were:

hanging

Inverts	the	indentation	effect;	that	is,	text-indent:	3em	hanging	would	indent	all	the	lines	of
text	except	the	first	line	of	text.	This	is	similar	to	the	negative-value	indentation	discussed	previously,
but	without	risking	cutting	off	text,	because	instead	of	pulling	the	first	line	out	of	the	content	box,	all
the	lines	but	the	first	are	indented	away	from	the	edge	of	the	content	box.

each-line

Indents	the	first	line	of	the	element	plus	any	line	that	starts	after	a	forced	line	break,	such	as	that
caused	by	a	
,	but	not	lines	that	follow	a	soft	line	break.

When	supported,	either	keyword	can	be	used	in	conjunction	with	a	length	or	percentage,	such	as:

p	{text-indent:	10%	hanging;}

pre	{text-indent:	5ch	each-line;}

Text	Alignment
Even	more	basic	than	text-indent	is	the	property	text-align,	which	affects	how	the	lines	of	text
in	an	element	are	aligned	with	respect	to	one	another.

TEXT-ALIGN

Values start	|	end	|	left	|	right	|	center	|	justify	|	justify-all	|	match-parent

Initial	value start

Applies	to Block-level	elements

Computed	value As	specified,	except	in	the	case	of	match-parent

Inherited Yes

Animatable No

Note justify-all	is	not	supported	as	of	mid-2022

The	quickest	way	to	understand	how	these	values	work	is	to	examine	Figure	11-3,	which	demonstrates	the
most	widely-used	values.	The	values	left,	right,	and	center	cause	the	text	within	elements	to	be
aligned	exactly	as	described	by	these	words	in	horizontal	languages	like	English	or	Arabic,	regardless	of
the	language’s	inline	direction.

Figure	11-3.	Selected	behaviors	of	the	text-align	property

The	default	value	of	text-align	is	start,	which	is	the	equivalent	of	left	in	left-to-right	languages,
and	right	in	right-to-left	languages.	In	vertical	languages.	left	and	right	are	mapped	to	the	start	or
end	edge,	respectively.	This	is	illustrated	in	Figure	11-4.

Figure	11-4.	Left,	right,	and	center	in	vertical	writing	modes

Because	text-align	applies	only	to	block-level	elements,	such	as	paragraphs,	there’s	no	way	to
center	an	anchor	within	its	line	without	aligning	the	rest	of	the	line	(nor	would	you	want	to,	since	that
would	likely	cause	text	overlap).

As	you	may	expect,	center	causes	each	line	of	text	to	be	centered	within	the	element.	If	you’ve	ever
come	across	the	long-ago	deprecated	<CENTER>	element,	you	may	be	tempted	to	believe	that	text-
align:	center	is	the	same.	It	is	actually	quite	different.	<CENTER>	affected	not	only	text,	but	also
centered	whole	elements,	such	as	tables.	text-align	does	not	control	the	alignment	of	elements,	only

their	inline	content.

Start	and	end	alignment
Remembering	that	CSS	was	written	on	concepts	of	“horizontal”	and	“vertical”,	the	initial	default	value
was	originally	“a	nameless	value	that	acts	as	left	if	direction	is	ltr,	right	if	direction	is	rtl	“.	The	default
value	now	has	a	name:	start,	which	is	the	equivalent	of	left	in	left-to-right	(LTR)	languages,	and
right	in	right-to-left	(RTL)	languages.

The	default	value	of	start	means	that	text	is	aligned	to	the	start	edge	of	its	line	box.	In	left-to-right
languages	like	English,	that’s	the	left	edge;	in	right-to-left	languages	such	as	Arabic,	it’s	the	right	edge.	In
vertical	languages,	it	will	be	the	top	or	bottom,	depending	on	the	writing	direction.	The	upshot	is	that	the
default	value	is	much	more	aware	of	the	document’s	language	direction	while	leaving	the	default	behavior
the	same	in	the	vast	majority	of	existing	cases.

In	a	like	manner,	end	aligns	text	with	the	end	edge	of	each	line	box—the	right	edge	in	LTR	languages,	the
left	edge	in	RTL	languages,	and	so	forth.	The	effects	of	these	values	are	shown	in	Figure	11-5.

Figure	11-5.	Start	and	end	alignment

Justified	text
An	often-overlooked	alignment	value	is	justify,	which	raises	some	issues	of	its	own.	In	justified	text,
both	ends	of	a	line	of	text	(except	the	last	line,	which	can	be	set	with	text-align-last)	are	placed
at	the	inner	edges	of	the	parent	element,	as	shown	in	Figure	11-6.	Then,	the	spacing	between	words	and
letters	is	adjusted	so	that	the	words	are	distributed	evenly	throughout	the	line.	Justified	text	is	common	in
the	print	world	(for	example,	in	this	book),	but	under	CSS,	a	few	extra	considerations	come	into	play.

Figure	11-6.	Justified	text

The	user	agent	determines	how	justified	text	should	be	stretched	or	distributed	to	fill	the	space	between
the	left	and	right	edges	of	the	parent.	Some	browsers,	for	example,	might	add	extra	space	only	between
words,	while	others	might	distribute	the	extra	space	between	letters	(although	the	CSS	specification	states
that	“user	agents	may	not	further	increase	or	decrease	the	inter-character	space”	if	the	property	letter-

spacing	has	been	assigned	a	length	value).	Other	user	agents	may	reduce	space	on	some	lines,	thus
mashing	the	text	together	a	bit	more	than	usual.

There	is	also	the	value	justify-all,	which	sets	full	justification	for	both	text-align	and	text-
align-last	(covered	in	an	upcoming	section).

WARNING
As	of	mid-2022,	the	justify-all	value	was	not	supported	by	any	browser,	even	though	nearly	all	of	them	support	text-align:
justify	and	text-align-last:	justify.	This	gap	in	support	remains	a	mystery	as	of	press	time,	but	is	solved	in	most
browsers	with:

.justify-all	{
		text-align:	justify;
		text-align-last:	justify;
		}

Parent	matching
There’s	one	more	value	to	be	covered,	which	is	match-parent.	If	you	declare	text-align:
match-parent,	and	the	inherited	value	of	text-align	is	start	or	end,	then	the	alignment	of	the
match-parent	element	will	be	calculated	with	respect	to	the	parent	element’s	horizontal	or	vertical,
rather	than	inline,	direction.

For	example,	you	could	force	any	English	element’s	text	alignment	to	match	the	alignment	of	a	parent
element,	regardless	of	its	writing	direction,	as	in	the	following	example.

div	{text-align:	start;}

div:lang(en)	{direction:	ltr;}

div:lang(ar)	{direction:	rtl;}

p	{text-align:	match-parent;}

<div	lang="en-US">

Here	is	some	en-US	text.

<p>The	alignment	of	this	paragraph	will	be	to	the	left,	as	with	its	parent.</p>

</div>

<div	lang="ar">

���� 	 �� 	 ��� .

<p>The	alignment	of	this	paragraph	will	be	to	the	right,	as	with	its	parent.</p>

</div>

Aligning	the	Last	Line
There	may	be	times	when	you	want	to	align	the	text	in	the	very	last	line	of	an	element	differently	than	you
did	the	rest	of	the	content.	For	example,	with	text-align:	justify	the	last	line	defaults	to	text-
align:	start.	You	might	ensure	a	left-aligned	last	line	in	an	otherwise	fully	justified	block	of	text,	or
choose	to	swap	from	left	to	center	alignment.	For	those	situations,	there	is	text-align-last.

TEXT-ALIGN-LAST

Values auto	|	start	|	end	|	left	|	right	|	center	|	justify

Initial	value auto

Applies	to Block-level	elements

Computed	value As	specified

Inherited Yes

Animatable No

As	with	text-align,	the	quickest	way	to	understand	how	these	values	work	is	to	examine	Figure	11-7.

Figure	11-7.	Differently	aligned	last	lines

As	the	figure	shows,	the	last	lines	of	the	elements	are	aligned	independently	of	the	rest	of	the	elements,
according	to	the	elements’	text-align-last	values.

A	close	study	of	Figure	11-7	will	reveal	that	there’s	more	at	play	than	just	the	last	lines	of	block-level
elements.	In	fact,	text-align-last	applies	to	any	line	of	text	that	immediately	precedes	a	forced
line	break,	whether	or	not	said	line	break	is	triggered	by	the	end	of	an	element.	Thus,	a	line	break	created

by	a	
	tag	will	make	the	line	of	text	immediately	before	that	break	use	the	value	of	text-align-
last.

There’s	an	interesting	wrinkle	in	text-align-last:	if	the	first	line	of	text	in	an	element	is	also	the
last	line	of	text	in	the	element,	then	the	value	of	text-align-last	takes	precedence	over	the	value	of
text-align.	Thus,	the	following	styles	will	result	in	a	centered	paragraph,	not	a	start-aligned
paragraph:

p	{text-align:	start;	text-align-last:	center;}

<p>A	paragraph.</p>

Word	Spacing
The	word-spacing	property	is	used	to	modify	inter-word	spacing,	accepting	a	positive	or	negative
length.	This	length	is	added	to	the	standard	space	between	words.	Therefore,	the	default	value	of
normal	is	the	same	as	setting	a	value	of	zero	(0).

WORD-SPACING

Values <length>	|	normal

Initial	value normal

Applies	to All	elements

Computed	value For	normal,	the	absolute	length	0	;	otherwise,	the	absolute	length

Inherited Yes

Animatable Yes

If	you	supply	a	positive	length	value,	then	the	space	between	words	will	increase.	Setting	a	negative
value	for	word-spacing	brings	words	closer	together:

p.spread	{word-spacing:	0.5em;}

p.tight	{word-spacing:	-0.5em;}

p.default	{word-spacing:	normal;}

p.zero	{word-spacing:	0;}

<p	class="spread">The	spaces—as	in	those	between	the	“words”—in	this	paragraph

			will	be	increased	by	0.5em.</p>

<p	class="tight">The	spaces—as	in	those	between	the	“words”—in	this	paragraph

			will	be	increased	by	0.5em.</p>

<p	class="default">The	spaces—as	in	those	between	the	“words”—in	this	paragraph

			will	be	neither	increased	nor	decreased.</p>

<p	class="zero">The	spaces—as	in	those	between	the	“words”—in	this	paragraph

			will	be	neither	increased	nor	decreased.</p>

Manipulating	these	settings	has	the	effect	shown	in	Figure	11-8.

Figure	11-8.	Changing	the	space	between	words

In	CSS	terms,	a	“word”	is	any	string	of	non-whitespace	characters	that	is	surrounded	by	whitespace	of
some	kind.	This	means	word-spacing	is	unlikely	to	work	in	any	languages	that	employ	pictographs,	or
non-Roman	writing	styles.	This	is	also	why	the	em	dashes	in	the	previous	example’s	text	don’t	get	space
around	them.	From	the	CSS	point	of	view,	“spaces—as”	is	a	single	word.

Use	caution.	word-spacing	allows	you	to	create	very	unreadable	documents,	as	Figure	11-9
illustrates.

Figure	11-9.	Really	wide	word	spacing

Letter	Spacing
Many	of	the	issues	you	encounter	with	word-spacing	also	occur	with	letter-spacing.	The	only
real	difference	between	the	two	is	that	letter-spacing	modifies	the	space	between	characters	or
letters.

LETTER-SPACING

Values <length>	|	normal

Initial	value normal

Applies	to All	elements

Computed	value For	length	values,	the	absolute	length;	otherwise,	normal

Inherited Yes

Animatable Yes

As	with	the	word-spacing	property,	the	permitted	values	of	letter-spacing	include	any	length,
though	character-relative	lengths	like	em	(rather	than	root-relative	lengths	like	rem)	are	recommended	to
ensure	the	spacing	is	proportional	to	the	font	size.

The	default	keyword	is	normal,	which	has	the	same	effect	as	letter-spacing:	0	.	Any	length
value	you	enter	will	increase	or	decrease	the	space	between	letters	by	that	amount.	Figure	11-10	shows
the	results	of	the	following	markup:

p	{letter-spacing:	0;}				/*		identical	to	'normal'		*/

p.spacious	{letter-spacing:	0.25em;}

p.tight	{letter-spacing:	−0.25em;}

<p>The	letters	in	this	paragraph	are	spaced	as	normal.</p>

<p	class="spacious">The	letters	in	this	paragraph	are	spread	out	a	bit.</p>

<p	class="tight">The	letters	in	this	paragraph	are	a	bit	smashed	together.</p>

Figure	11-10.	Various	kinds	of	letter	spacing

WARNING
If	a	page	uses	fonts	with	features	like	ligatures,	and	those	features	are	enabled,	then	altering	letter	or	word	spacing	can	effectively	disable
them.	That	is	to	say,	browsers	will	not	recalculate	ligatures	or	other	joins	when	letter	spacing	is	altered.

Spacing	and	Alignment
It’s	important	to	remember	that	space	between	words	may	be	altered	by	the	value	of	the	property	text-
align.	If	an	element	is	justified,	the	spaces	between	letters	and	words	may	be	altered	to	fit	the	text	along

the	full	width	of	the	line.	This	may	in	turn	alter	the	spacing	declared	using	word-spacing.

If	a	length	value	is	assigned	to	letter-spacing,	then	it	cannot	be	changed	by	text-align;	but,	if
the	value	of	letter-spacing	is	normal,	then	inter-character	spacing	may	be	changed	to	justify	the
text.	CSS	does	not	specify	how	the	spacing	should	be	calculated,	so	user	agents	use	their	own	algorithms.
To	prevent	text-align	from	altering	letter	spacing	while	keeping	the	default	letter-spacing,	declare
letter-spacing:	0

Note	that	computed	values	are	inherited,	so	child	elements	with	larger	or	smaller	text	will	have	the	same
word	or	letter	spacing	as	their	parent	element.	You	cannot	define	a	scaling	factor	for	word-spacing	or
letter-spacing	to	be	inherited	in	place	of	the	computed	value	(in	contrast	with	line-height).
As	a	result,	you	may	run	into	problems	such	as	those	shown	in	Figure	11-11:

p	{letter-spacing:	0.25em;	font-size:	20px;}

small	{font-size:	50%;}

<p>This	spacious	paragraph	features	<small>tiny	text	that	is	just

as	spacious</small>,	even	though	the	author	probably	wanted	the

spacing	to	be	in	proportion	to	the	size	of	the	text.</p>

Figure	11-11.	Inherited	letter	spacing

As	inherit	inherits	the	ancestor’s	letter-spacing	computed	length,	the	only	way	to	achieve	letter
spacing	that’s	in	proportion	to	the	size	of	the	text	is	to	set	it	explicitly	on	each	element,	as	follows:

p	{letter-spacing:	0.25em;}

small	{font-size:	50%;	letter-spacing:	0.25em;}

And	the	same	goes	for	word	spacing.

Vertical	Alignment
Now	that	we’ve	covered	alignment	along	the	inline	direction,	let’s	move	on	to	the	vertical	alignment	of
inline	elements	along	the	block	direction—things	like	superscripting	and	“vertical	alignment.”	(Vertical
with	respect	to	the	line	of	text,	if	the	text	is	laid	out	horizontally.)	Since	the	construction	of	lines	is	a	very
complex	topic	that	merits	its	own	small	book,	we’ll	just	stick	to	a	quick	overview	here.

The	Height	of	Lines
The	distance	between	lines	can	be	affected	by	changing	the	“height”	of	a	line.	Note	that	“height”	here	is

with	respect	to	the	line	of	text	itself,	assuming	that	the	longer	axis	of	a	line	is	“width,”	even	if	it’s	written
vertically.	The	property	names	we	cover	from	here	will	reveal	a	strong	bias	toward	Western	languages
and	their	writing	directions;	this	is	an	artifact	of	the	early	days	of	CSS,	when	Western	languages	were	the
only	ones	that	could	be	easily	represented.

The	line-height	property	refers	to	the	distance	between	the	baselines	of	lines	of	text	rather	than	the
size	of	the	font,	and	it	determines	the	amount	by	which	the	height	of	each	element’s	box	is	increased	or
decreased.	In	the	most	basic	cases,	specifying	line-height	is	a	way	to	increase	(or	decrease)	the
vertical	space	between	lines	of	text,	but	this	is	a	misleadingly	simple	way	of	looking	at	how	line-
height	works.	line-height	controls	the	leading,	which	is	the	extra	space	between	lines	of	text
above	and	beyond	the	font’s	size.	In	other	words,	the	difference	between	the	value	of	line-height
and	the	size	of	the	font	is	the	leading.

LINE-HEIGHT

Values <number>	|	<length>	|	<percentage>	|	normal

Initial	value normal

Applies	to All	elements	(but	see	text	regarding	replaced	and	block-level	elements)

Percentages Relative	to	the	font	size	of	the	element

Computed	value For	length	and	percentage	values,	the	absolute	value;	otherwise,	as	specified

Inherited Yes

Animatable Yes

When	applied	to	a	block-level	element,	line-height	defines	the	minimum	distance	between	text
baselines	within	that	element.	Note	that	it	defines	a	minimum,	not	an	absolute	value.	Baselines	of	text	can
wind	up	being	pushed	further	apart	than	the	value	of	line-height,	for	example,	if	a	line	contains	an
inline	image	or	form	control	that	is	taller	than	the	declared	line	height.	+line-height`	does	not	affect	layout
for	replaced	elements	like	images,	but	it	still	applies	to	them.

Constructing	a	line
Every	element	in	a	line	of	text	generates	a	content	area,	which	is	determined	by	the	size	of	the	font.	This
content	area,	in	turn,	generates	an	inline	box	that	is,	in	the	absence	of	any	other	factors,	exactly	equal	to
the	content	area.	The	leading	generated	by	line-height	is	one	of	the	factors	that	increases	or
decreases	the	height	of	each	inline	box.

To	determine	the	leading	for	a	given	element,	subtract	the	computed	value	of	font-size	from	the
computed	value	of	line-height.	That	value	is	the	total	amount	of	leading.	And	remember,	it	can	be	a
negative	number.	The	leading	is	then	divided	in	half,	and	each	half-leading	is	applied	to	the	top	and
bottom	of	the	content	area.	The	result	is	the	inline	box	for	that	element.	In	this	way,	each	line	of	text	is

centered	within	the	line-height	as	long	as	the	height	of	the	line	isn’t	forced	beyond	its	minimum	height	by	a
replaced	element	or	other	factor.

As	an	example,	let’s	say	the	font-size	(and	therefore	the	content	area)	is	14	pixels	tall,	and	the
line-height	is	computed	to	18	pixels.	The	difference	(4	pixels)	is	divided	in	half,	and	each	half	is
applied	to	the	top	and	bottom	of	the	content	area.	This	effectively	centers	the	content	by	creating	an	inline
box	that	is	18	pixels	tall,	with	2	extra	pixels	above	and	below	the	content	area.	This	sounds	like	a
roundabout	way	to	describe	how	line-height	works,	but	there	are	excellent	reasons	for	the
description.

Once	all	of	the	inline	boxes	have	been	generated	for	a	given	line	of	content,	they	are	then	considered	in
the	construction	of	the	line	box.	A	line	box	is	exactly	as	tall	as	needed	to	enclose	the	top	of	the	tallest
inline	box	and	the	bottom	of	the	lowest	inline	box.	Figure	11-12	shows	a	diagram	of	this	process.

Figure	11-12.	Line	box	diagram

Assigning	values	to	line-height
Let’s	now	consider	the	possible	values	of	line-height.	If	you	use	the	default	value	of	normal,	the
user	agent	must	calculate	the	space	between	lines.	Values	can	vary	by	user	agent,	but	the	normal	default
is	generally	around	1.2	times	the	size	of	the	font,	which	makes	line	boxes	taller	than	the	value	of	font-
size	for	a	given	element.

Many	values	are	simple	length	measures	(e.g.,	18px	or	2em),	but	<number>	values	with	no	length	unit
are	preferable	in	many	situations.	Be	aware	that	even	if	you	use	a	valid	length	measurement,	such	as	4cm,
the	browser	(or	the	operating	system)	may	be	using	an	incorrect	metric	for	real-world	measurements,	so
the	line	height	may	not	show	up	as	exactly	four	centimeters	on	your	monitor.

WARNING
Be	aware	that	even	if	you	use	a	valid	length	measurement,	such	as	4cm,	the	browser	(or	the	operating	system)	may	be	using	an	incorrect
metric	for	real-world	measurements,	so	the	line	height	may	not	show	up	as	exactly	four	centimeters	on	your	monitor.

em,	ex,	and	percentage	values	are	calculated	with	respect	to	the	font-size	of	the	element.	The	results
of	the	following	CSS	and	HTML	are	shown	in	Figure	11-13:

body	{line-height:	18px;	font-size:	16px;}

p.cl1	{line-height:	1.5em;}

p.cl2	{font-size:	10px;	line-height:	150%;}

p.cl3	{line-height:	0.33in;}

<p>This	paragraph	inherits	a	'line-height'	of	18px	from	the	body,	as	well	as

a	'font-size'	of	16px.</p>

<p	class="cl1">This	paragraph	has	a	'line-height'	of	24px(16	*	1.5),	so

it	will	have	slightly	more	line-height	than	usual.</p>

<p	class="cl2">This	paragraph	has	a	'line-height'	of	15px	(10	*	150%),	so

it	will	have	slightly	more	line-height	than	usual.</p>

<p	class="cl3">This	paragraph	has	a	'line-height'	of	0.33in,	so	it	will	have

slightly	more	line-height	than	usual.</p>

Figure	11-13.	Simple	calculations	with	the	line-height	property

Line-height	and	inheritance
When	the	line-height	is	inherited	by	one	block-level	element	from	another,	things	get	a	bit	trickier.
line-height	values	inherit	from	the	parent	element	as	computed	from	the	parent,	not	the	child.	The
results	of	the	following	markup	are	shown	in	Figure	11-14.	It	probably	wasn’t	what	the	author	had	in
mind:

body	{font-size:	10px;}

div	{line-height:	1em;}		/*	computes	to	'10px'	*/

p	{font-size:	18px;}

<div>

<p>This	paragraph's	'font-size'	is	18px,	but	the	inherited	'line-height'

value	is	only	10px.		This	may	cause	the	lines	of	text	to	overlap	each

other	by	a	small	amount.</p>

</div>

Figure	11-14.	Small	line-height,	large	font-size,	slight	problem

Why	are	the	lines	so	close	together?	Because	the	computed	line-height	value	of	10px	was	inherited
by	the	paragraph	from	its	parent	div+.	One	solution	to	the	small	+line-height
problem	depicted	in	Figure	11-14	is	to	set	an	explicit	line-height	for	every	element,	but	that’s	not
very	practical.	A	better	alternative	is	to	specify	a	number,	which	actually	sets	a	scaling	factor:

body	{font-size:	10px;}

div	{line-height:	1;}

p	{font-size:	18px;}

When	you	specify	a	number	with	no	length	unit,	you	cause	the	scaling	factor	to	be	an	inherited	value
instead	of	a	computed	value.	The	number	will	be	applied	to	the	element	and	all	of	its	child	elements	so
that	each	element	has	a	line-height	calculated	with	respect	to	its	own	font-size	(see	Figure	11-
15):

div	{line-height:	1.5;}

p	{font-size:	18px;}

<div>

<p>This	paragraph's	'font-size'	is	18px,	and	since	the	'line-height'

set	for	the	parent	div	is	1.5,	the	'line-height'	for	this	paragraph

is	27px	(18	*	1.5).</p>

</div>

Figure	11-15.	Using	line-height	factors	to	overcome	inheritance	problems

Now	that	you	have	a	basic	grasp	of	how	lines	are	constructed,	let’s	talk	about	“vertically”	aligning
elements	relative	to	the	line	box—that	is,	displacing	them	along	the	block	direction.

Vertically	Aligning	Text

If	you’ve	ever	used	the	elements	sup	and	sub	(the	superscript	and	subscript	elements),	or	used	the
deprecated	align	attribute	with	an	image,	then	you’ve	done	some	rudimentary	vertical	alignment.

NOTE
Because	of	the	property	name	vertical-align,	this	section	will	use	the	terms	“vertical”	and	“horizontal”	to	refer	to	the	block	and
inline	directions	of	the	text.

VERTICAL-ALIGN

Values baseline	|	sub	|	super	|	top	|	text-top	|	middle	|	bottom	|	text-bottom	|	<length>	|	
<percentage>

Initial	value baseline

Applies	to Inline	elements,	the	pseudo-elements	::first-letter	and	::first-line,	and	table	cells

Percentages Refer	to	the	value	of	line-height	for	the	element

Computed	value For	percentage	and	length	values,	the	absolute	length;	otherwise,	as	specified

Inherited No

Animatable <length>,	<percentage>

Note When	applied	to	table	cells,	only	the	values	baseline+,	+top+,	+middle+,	and	+bottom	are	
recognized

vertical-align	accepts	any	one	of	eight	keywords,	a	percentage	value,	or	a	length	value.	The
keywords	are	a	mix	of	the	familiar	and	unfamiliar:	baseline	(the	default	value),	sub,	super,
bottom,	text-bottom,	middle,	top,	and	text-top.	We’ll	examine	how	each	keyword	works	in
relation	to	inline	elements.

NOTE
Remember:	vertical-align	does	not	affect	the	alignment	of	content	within	a	block-level	element,	just	the	alignment	of	inline	content
within	a	line	of	text	or	a	table	cell.	This	may	change	in	the	future,	but	as	of	mid-2022,	proposals	to	widen	its	scope	have	yet	to	move
forward.

Baseline	alignment
vertical-align:	baseline	forces	the	baseline	of	an	element	to	align	with	the	baseline	of	its
parent.	Browsers,	for	the	most	part,	do	this	anyway,	since	you’d	probably	expect	the	bottoms	of	all	text
elements	in	a	line	to	be	aligned.

If	a	vertically	aligned	element	doesn’t	have	a	baseline—that	is,	if	it’s	an	image,	a	form	input,	or	another
replaced	element—then	the	bottom	of	the	element	is	aligned	with	the	baseline	of	its	parent,	as	Figure	11-
16	shows:

img	{vertical-align:	baseline;}

<p>The	image	found	in	this	paragraph		has	its

bottom	edge	aligned	with	the	baseline	of	the	text	in	the	paragraph.</p>

Figure	11-16.	Baseline	alignment	of	an	image

This	alignment	rule	is	important	because	it	causes	some	web	browsers	to	always	put	a	replaced	element’s
bottom	edge	on	the	baseline,	even	if	there	is	no	other	text	in	the	line.	For	example,	let’s	say	you	have	an
image	in	a	table	cell	all	by	itself.	The	image	may	actually	be	on	a	baseline,	but	in	some	browsers,	the
space	below	the	baseline	causes	a	gap	to	appear	beneath	the	image.	Other	browsers	will	“shrink-wrap”
the	image	with	the	table	cell,	and	no	gap	will	appear.	The	gap	behavior	is	correct,	despite	its	lack	of
appeal	to	most	authors.

NOTE
See	the	deeply	aged	and	yet	somehow	still	relevant	article	“Images,	Tables,	and	Mysterious	Gaps”	(2002)	for	a	more	detailed	explanation	of
gap	behavior	and	ways	to	work	around	it.

Superscripting	and	subscripting
The	declaration	vertical-align:	sub	causes	an	element	to	be	subscripted,	meaning	that	its
baseline	(or	bottom,	if	it’s	a	replaced	element)	is	lowered	with	respect	to	its	parent’s	baseline.	The
specification	doesn’t	define	the	distance	the	element	is	lowered,	so	it	may	vary	depending	on	the	user
agent.

super	is	the	opposite	of	sub	;	it	raises	the	element’s	baseline	(or	bottom	of	a	replaced	element)	with
respect	to	the	parent’s	baseline.	Again,	the	distance	the	text	is	raised	depends	on	the	user	agent.

Note	that	the	values	sub	and	super	do	not	change	the	element’s	font	size,	so	subscripted	or
superscripted	text	will	not	become	smaller	(or	larger).	Instead,	any	text	in	the	sub-	or	superscripted
element	will,	by	default,	be	the	same	size	as	text	in	the	parent	element,	as	illustrated	by	Figure	11-17:

span.raise	{vertical-align:	super;}

span.lower	{vertical-align:	sub;}

<p>This	paragraph	contains	superscripted

and	subscripted	text.</P>

https://meyerweb.com/eric/articles/devedge/img-table-gaps/

Figure	11-17.	Superscript	and	subscript	alignment

NOTE
If	you	wish	to	make	super-	or	subscripted	text	smaller	than	the	text	of	its	parent	element,	you	can	do	so	using	the	font-size	property.

Top	and	bottom	alignment
vertical-align:	top	aligns	the	top	of	the	element’s	inline	box	with	the	top	of	the	line	box.
Similarly,	vertical-align:	bottom	aligns	the	bottom	of	the	element’s	inline	box	with	the	bottom
of	the	line	box.	Thus,	the	following	markup	results	in	Figure	11-18:

.soarer	{vertical-align:	top;}

.feeder	{vertical-align:	bottom;}

<p>And	in	this	paragraph,	as	before,	we	have

first	a		image	and

then	a		image,

and	then	some	text	which	is	not	tall.</p>

<p>This	paragraph,	as	you	can	see,	contains

first	a		image	and

then	a		image,

and	then	some	text	which	is	not	tall.</p>

Figure	11-18.	Top	and	bottom	alignment

The	second	line	of	the	first	paragraph	in	Figure	11-18	contains	two	inline	elements,	whose	top	edges	are
aligned	with	each	other.	They’re	also	well	above	the	baseline	of	the	text.	The	second	paragraph	shows	the
inverted	case:	two	images	whose	bottoms	are	aligned	and	are	well	below	the	baseline	of	their	line.	This
is	because	in	both	cases,	the	sizes	of	the	elements	in	the	line	have	increased	the	line’s	height	beyond	what
the	font’s	size	would	normally	create.

If	you	want	instead	to	align	elements	with	the	top	or	bottom	edge	of	just	the	text	in	the	line,	then	text-
top	and	text-bottom	are	the	values	you	seek.	For	the	purposes	of	these	values,	replaced	elements,

or	any	other	kinds	of	non-text	elements,	are	ignored.	Instead,	a	“default”	text	box	is	considered.	This
default	box	is	derived	from	the	font-size	of	the	parent	element.	The	bottom	of	the	aligned	element’s
inline	box	is	then	aligned	with	the	bottom	of	the	default	text	box.	Thus,	given	the	following	markup,	you
get	a	result	like	the	one	shown	in	Figure	11-19:

img.ttop	{vertical-align:	text-top;}

img.tbot	{vertical-align:	text-bottom;}

<p>Here:	a		tall	image,

and	then	a		image.</p>

<p>Here:	a		tall	image,

and	then	a		image.</p>

Figure	11-19.	Text-top	and	-bottom	alignment

Middle	alignment
Then	there’s	the	value	middle+,	which	is	usually	(but	not	always)	applied	to
images.	It	does	not	have	the	exact	effect	you	might	assume	given	its

name.	+middle	aligns	the	middle	of	an	inline	element’s	box	with	a	point	that	is	0.5ex	above	the
baseline	of	the	parent	element,	where	1ex	is	defined	relative	to	the	font-size	for	the	parent	element.
Figure	11-20	shows	this	in	more	detail.

Figure	11-20.	Precise	detail	of	middle	alignment

Since	most	user	agents	treat	1ex	as	one-half	em,	middle	usually	aligns	the	vertical	midpoint	of	an
element	with	a	point	one-quarter	em	above	the	parent’s	baseline,	though	this	is	not	a	defined	distance	and
so	can	vary	from	one	user	agent	to	another.

Percentages
Percentages	don’t	let	you	simulate	align="middle"	for	images.	Instead,	setting	a	percentage	value
for	vertical-align	raises	or	lowers	the	baseline	of	the	element	(or	the	bottom	edge	of	a	replaced
element)	by	the	amount	declared,	with	respect	to	the	parent’s	baseline.	(The	percentage	you	specify	is
calculated	as	a	percentage	of	line-height	for	the	element,	not	its	parent.)	Positive	percentage	values
raise	the	element,	and	negative	values	lower	it.

Depending	on	how	the	text	is	raised	or	lowered,	it	can	appear	to	be	placed	in	adjacent	lines,	as	shown	in
Figure	11-21,	so	take	care	when	using	percentage	values:

sub	{vertical-align:	−100%;}

sup	{vertical-align:	100%;}

<p>We	can	either	^{soar	to	new	heights}	or,	instead,

_{sink	into	despair...}</p>

Figure	11-21.	Percentages	and	fun	effects

Length	alignment
Finally,	let’s	consider	vertical	alignment	with	a	specific	length.	vertical-align	is	very	basic:	it
shifts	an	element	up	or	down	by	the	declared	distance.	Thus,	vertical-align:	5px;	will	shift	an
element	upward	five	pixels	from	its	unaligned	placement.	Negative	length	values	shift	the	element
downward.

It’s	important	to	realize	that	vertically	aligned	text	does	not	become	part	of	another	line,	nor	does	it
overlap	text	in	other	lines.	Consider	Figure	11-22,	in	which	some	vertically	aligned	text	appears	in	the

middle	of	a	paragraph.

Figure	11-22.	Vertical	alignments	can	cause	lines	to	get	taller

As	you	can	see,	any	vertically	aligned	element	can	affect	the	height	of	the	line.	Recall	the	description	of	a
line	box,	which	is	exactly	as	tall	as	necessary	to	enclose	the	top	of	the	tallest	inline	box	and	the	bottom	of
the	lowest	inline	box.	This	includes	inline	boxes	that	have	been	shifted	up	or	down	by	vertical	alignment.

Text	Transformation
With	the	alignment	properties	covered,	let’s	look	at	ways	to	manipulate	the	capitalization	of	text	using	the
property	text-transform.

TEXT-TRANSFORM

Values uppercase	|	lowercase	|	capitalize	|	full-width	|	full-size-kana	|	none

Initial	value none

Applies	to All	elements

Computed	value As	specified

Inherited Yes

Animatable No

Notes full-width	and	full-size-kana	were	only	supported	in	Firefox	as	of	mid-2022

The	default	value	none	leaves	the	text	alone	and	uses	whatever	capitalization	exists	in	the	source
document.	As	their	names	imply,	uppercase	and	lowercase	convert	text	into	all	upper-	or
lowercase	characters.	full-width	forces	the	writing	of	a	character	inside	a	square,	as	if	on	a
typographical	grid.

WARNING
Accessibility	note:	some	screen	readers	will	read	all-uppercase	text	one	letter	at	a	time,	as	if	spelling	out	an	acronym,	even	if	the	source
text	is	lowercase	or	mixed-case	and	the	uppercasing	is	only	enforced	via	CSS.	For	this	reason,	uppercasing	text	via	CSS	should	be
approached	with	caution.

Finally,	the	capitalize	value	capitalizes	only	the	first	letter	of	each	word	(where	a	“word”	is	defined
as	a	string	of	adjacent	characters	surrounded	by	whitespace).	Figure	11-23	illustrates	each	of	these
settings	in	a	variety	of	ways:

h1	{text-transform:	capitalize;}

strong	{text-transform:	uppercase;}

p.cummings	{text-transform:	lowercase;}

p.full	{text-transform:	full-width;}

p.raw	{text-transform:	none;}

<h1>The	heading-one	at	the	beginninG</h1>

<p>

By	default,	text	is	displayed	in	the	capitalization	it	has	in	the	source

document,	but	it	is	possible	to	change	this	using

the	property	'text-transform'.

</p>

<p	class="cummings">

For	example,	one	could	Create	TEXT	such	as	might	have	been	Written	by

the	late	Poet	E.E.Cummings.

</p>

<p	class="full">

If	you	need	to	align	characters	as	if	in	a	grid,	as	is	often	done	in	CJKV

languages,	you	can	use	'full-width'	to	do	so.

</p>

<p	class="raw">

If	you	feel	the	need	to	Explicitly	Declare	the	transformation	of	text

to	be	'none',	that	can	be	done	as	well.

</p>

Figure	11-23.	Various	kinds	of	text	transformation

NOTE
CJK	stands	for	“Chinese/Japanese/Korean.”	CJK	characters	take	up	the	majority	of	the	entire	Unicode	code	space,	including
approximately	70,000	Han	characters.	You	may	sometimes	come	across	the	abbreviation	CJKV,	which	adds	Vietnamese	to	the	mix.

Different	user	agents	may	have	different	ways	of	deciding	where	words	begin	and,	as	a	result,	which
letters	are	capitalized.	For	example,	the	text	“heading-one”	in	the	h1	element,	shown	in	Figure	11-23,
could	be	rendered	in	one	of	two	ways:	“Heading-one”	or	“Heading-One.”	CSS	does	not	say	which	is
correct,	so	either	is	possible.

You	may	have	also	noticed	that	the	last	letter	in	the	h1	element	in	Figure	11-23	is	still	uppercase.	This	is
correct:	when	applying	a	text-transform	of	capitalize,	CSS	only	requires	user	agents	to	make
sure	the	first	letter	of	each	word	is	capitalized.	They	can	ignore	the	rest	of	the	word.

As	a	property,	text-transform	may	seem	minor,	but	it’s	very	useful	if	you	suddenly	decide	to
capitalize	all	your	h1	elements.	Instead	of	individually	changing	the	content	of	all	your	h1	elements,	you
can	just	use	text-transform	to	make	the	change	for	you:

h1	{text-transform:	uppercase;}

<h1>This	is	an	H1	element</h1>

The	advantages	of	using	text-transform	are	twofold.	First,	you	only	need	to	write	a	single	rule	to
make	this	change,	rather	than	changing	the	h1	itself.	Second,	if	you	decide	later	to	switch	from	all	capitals
back	to	initial	capitals,	the	change	is	even	easier:

h1	{text-transform:	capitalize;}

Remember	that	capitalize	is	a	simple	letter	substitution	at	the	beginning	of	each	“word.”	CSS
doesn’t	check	for	grammar,	so	common	headline-capitalization	conventions,	such	as	leaving	articles	(“a,”
“an,”	“the”)	all	lowercase,	won’t	be	enforced.

Different	languages	have	different	rules	for	which	letters	should	be	capitalized.	The	text-transform
property	takes	into	account	language-specific	case	mappings.

full-width	forces	the	writing	of	a	character	inside	a	square.	Most	characters	you	can	type	on	a
keyboard	come	in	both	normal	width	and	a	full-width,	with	different	Unicode	code	points.	The	full-width
version	is	used	when	full-width	is	set	and	supported	to	mix	them	smoothly	with	Asian	ideographic
characters	allowing	ideograms	and	Latin	scripts	to	be	aligned.

Generally	used	with	<ruby>	annotation	text,	full-size-kana	converts	all	small	Kana	characters	to
the	equivalent	full-size	Kana,	to	compensate	for	legibility	issues	at	the	small	font	sizes	typically	used	in
ruby.

Text	Decoration
Next	we	come	to	the	topic	of	text	decorations,	and	how	we	can	affect	them	with	various	properties.	The
simplest	text	decoration,	and	the	one	that	can	be	controlled	the	most,	is	an	underline.	There	are	also
overlines,	line-throughs,	and	even	the	wavy	underlines	you	see	in	word	processing	programs	to	flag
errors	of	spelling	or	grammar.

We’ll	start	with	the	various	individual	properties,	and	then	tie	it	all	up	with	a	shorthand	property,	text-
decoration,	that	covers	them	all.

Text	decoration	line	placement
With	the	property	text-decoration-line,	it’s	possible	to	set	the	location	of	one	or	more	line
decorations	on	a	run	of	text.	The	most	familiar	decoration	may	be	underlining,	thanks	to	all	the	hyperlinks
out	there,	but	there	are	three	possible	visible	decoration	line	values	(plus	an	unsupported	fourth	that
wouldn’t	draw	a	line	at	all	even	if	it	was	supported).

TEXT-DECORATION-LINE

Values none	|	[underline	ǁ	overline	ǁ	line-through	ǁ	blink]

Initial	value none

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

Notes The	blink	value	is	deprecated,	with	all	browsers	treating	it	as	none	as	of	early	2022

The	values	are	relatively	self-documenting:	underline	places	a	line	under	the	text,	where	“under”
means	“below	the	text	in	the	block	direction.”	overline	is	the	mirror	image,	putting	the	line	above	the
text	in	the	block	direction.	line-through	draws	a	line	through	the	middle	of	the	text.

Let’s	see	what	these	decorations	look	like	in	practice.	The	following	code	is	illustrated	in	Figure	11-24.

p.one	{text-decoration:	underline;}

p.two	{text-decoration:	overline;}

p.three	{text-decoration:	line-through;}

p.four	{text-decoration:	none;}

Figure	11-24.	Various	kinds	of	text	decoration

The	value	none	turns	off	any	decoration	that	might	otherwise	have	been	applied	to	an	element.	For
example,	links	are	usually	underlined	by	default.	If	you	want	to	suppress	the	underlining	of	hyperlinks,
you	can	use	the	following	CSS	rule	to	do	so:

a	{text-decoration:	none;}

If	you	explicitly	turn	off	link	underlining	with	this	sort	of	rule,	the	only	visual	difference	between	the
anchors	and	normal	text	will	be	their	color	(at	least	by	default,	though	there’s	no	ironclad	guarantee	that
there	will	be	a	difference	in	their	colors).	Relying	on	color	alone	as	the	difference	between	regular	text
and	links	within	that	text	is	not	enough	to	differentiate	links	from	the	rest	of	the	text,	negatively	impacting
user	experience	and	making	your	content	inaccessible	to	many	users.

NOTE
Bear	in	mind	that	many	users	will	be	annoyed	when	they	realize	you’ve	turned	off	link	underlining,	especially	within	blocks	of	text.	If	your
links	aren’t	underlined,	users	will	have	a	hard	time	finding	hyperlinks	in	your	documents,	and	finding	them	can	be	next	to	impossible	for
users	with	one	form	or	another	of	color	blindness.

That’s	really	all	there	is	to	text-decoration-line.	The	more	veteran	among	you	may	recognize
this	is	what	text-decoration	itself	used	to	do,	but	times	have	moved	on	and	there’s	much,	much
more	we	can	do	with	decorations	besides	just	place	them,	so	these	values	were	shifted	to	text-
decoration-line.

Setting	text	decoration	color
By	default,	the	color	of	a	text	decoration	will	match	the	color	of	the	text.	If	you	need	to	change	that,	then
text-decoration-color	is	here	to	help.

TEXT-DECORATION-COLOR

Values <color>	|	currentColor

Initial	value currentColor

Applies	to All	elements

Computed	value The	computed	color

Inherited No

Animatable Yes

You	can	use	any	valid	color	value	for	text-decoration-color,	including	the	keyword

currentColor	(which	is	the	default).	Suppose	you	want	to	make	it	clear	that	stricken	text	really	is
stricken.	That	would	go	something	like:

del,	strike,	.removed	{

	 text-decoration-line:	line-through;

	 text-decoration-color:	red;

}

Thus,	not	only	will	the	elements	shown	get	a	line-through	decoration,	but	the	line	will	also	be	colored
red.	The	text	itself	will	not	be	red	unless	you	change	that	as	well	by	using	the	color	property.

NOTE
Remember	to	keep	the	color	contrast	between	decorations	and	the	base	text	sufficiently	high	to	remain	accessible.	It’s	also	generally	a	bad
idea	to	use	color	alone	to	convey	meaning,	as	in	“check	the	links	with	red	underlines	for	more	information!”

Setting	text	decoration	thickness
With	the	property	text-decoration-thickness,	you	can	change	the	stroke	thickness	of	a	text
decoration	from	to	something	beefier,	or	possibly	less	beefy,	than	usual.

TEXT-DECORATION-THICKNESS

Values <length>	|	<percentage>	|	from-font	|	auto

Initial	value auto

Applies	to All	elements

Computed	value As	declared

Percentages Refer	to	the	font-size	of	the	element

Inherited No

Animatable Yes

Notes Was	text-decoration-width	until	a	name	change	in	2019

Supplying	a	length	value	sets	the	thickness	of	the	decoration	to	that	length;	thus,	text-decoration-
thickness:	3px	sets	the	decoration	to	be	three	pixels	thick,	no	matter	how	big	or	small	the	text	itself
might	be.	A	better	approach	is	generally	to	use	an	em-based	value	or	jump	straight	to	using	a	percentage
value,	since	percentages	are	calculated	with	respect	to	the	value	of	1em	for	the	element.	Thus,	text-
decoration-thickness:	10%	would	yield	a	decoration	thickness	of	1.6	pixels	in	a	font	whose
computed	font	size	is	16	pixels,	but	4	pixels	for	a	40-pixel	font	size.	A	few	examples	are	shown	in	the
following	code,	and	illustrated	in	Figure	11-25.

h1,	p	{text-decoration-line:	underline;}

.tiny	{text-decoration-thickness:	1px;}

.embased	{text-decoration-thickness:	0.333em;}

.percent	{text-decoration-thickness:	10%;}

Figure	11-25.	Various	decoration	thicknesses

The	keyword	from-font	is	interesting	because	it	allows	the	browser	to	consult	the	font	file	to	see	if	it
defines	a	preferred	decoration	thickness;	if	it	does,	then	the	browser	uses	that	thickness.	If	the	font	file
doesn’t	recommend	a	thickness,	then	the	browser	falls	back	to	the	auto	behavior,	where	the	browser

picks	whatever	thickness	it	thinks	appropriate,	using	inscrutable	reasoning	known	only	to	itself.

Setting	text	decoration	style
Thus	far,	we’ve	seen	a	lot	of	straight,	single	lines.	If	you’re	yearning	for	something	beyond	that	hidebound
approach,	then	text-decoration-style	provides	a	number	of	alternatives.

TEXT-DECORATION-STYLE

Values solid	|	double	|	dotted	|	dashed	|	wavy

Initial	value solid

Applies	to All	elements

Computed	value As	declared

Inherited No

Animatable No

The	exact	result	will	depend	on	the	value	you	pick	and	the	browser	you	use	to	view	the	results,	but	the
renderings	of	these	decoration	styles	should	be	at	least	similar	to	those	shown	in	Figure	11-26,	which	is
the	output	of	the	following	code.

p	{text-decoration-line:	underline;	text-decoration-thickness:	0.1em;}

p.one	{text-decoration-style:	solid;}

p.two	{text-decoration-style:	double;}

p.three	{text-decoration-style:	dotted;}

p.four	{text-decoration-style:	dashed;}

p.five	{text-decoration-style:	wavy;}

Figure	11-26.	Various	decoration	styles

The	decoration	thickness	was	increased	for	Figure	11-26	in	order	to	make	them	more	legible	—	the
default	sizing	of	decorations	can	make	some	of	the	more	complex	decorations,	like	dotted,	difficult	to	see.

The	text	decoration	shorthand	property
For	those	times	when	you	just	want	to	set	a	text	decoration’s	position,	color,	thickness,	and	style	in	one
handy	declaration,	text-decoration	is	the	way	to	go.

TEXT-DECORATION

Values <text-decoration-line<	ǁ	<text-decoration-style<	ǁ	<text-decoration-color<	ǁ	<text-decoration-thickness<

Initial	value See	individual	properties

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable As	allowed	by	individual	properties

With	the	text-decoration	shorthand	property,	you	can	bring	everything	into	one	place,	like	so:

h2	{text-decoration:	overline	purple	10%;}

a:any-link	{text-decoration:	underline	currentColor	from-font;}

Be	careful,	though:	if	you	have	two	different	decorations	matched	to	the	same	element,	the	value	of	the
rule	that	wins	out	will	completely	replace	the	value	of	the	loser.	Consider:

h2.stricken	{text-decoration:	line-through	wavy;}

h2	{text-decoration:	underline	overline	double;}

Given	these	rules,	any	h2	element	with	a	class	of	stricken	will	have	only	a	wavy	line-through
decoration.	The	doubled	underline	and	overline	decorations	are	lost,	since	shorthand	values	replace	one
another	instead	of	accumulating.

Note	also	that	because	of	the	way	the	decoration	properties	work,	you	can	only	set	the	color	and	style
once	per	element,	even	if	you	have	multiple	decorations.	For	example,	the	following	is	valid,	setting	both
the	under-	and	overlines	to	be	green	and	dotted:

text-decoration:	dotted	green	underline	overline;

If	you	instead	want	the	overline	to	be	a	different	color	than	the	underline,	or	set	each	to	have	its	own	style,
you’d	need	to	apply	each	to	a	separate	element,	something	like	this:

p	{text-decoration:	dotted	green	overline;}

p	>	span:first-child	{text-decoration:	silver	dashed	underline;}

<p>All	this	text	will	have	differing	text	decorations.</p>

Offsetting	underlines
Along	with	all	the	text-decoration	properties,	there’s	a	related	property	that	allows	you	to	change
the	distance	between	an	underline	(and	only	an	underline)	and	the	text	which	that	underline	decorates:
text-underline-offset.

TEXT-UNDERLINE-OFFSET

Values <length>	|	<percentage>	|	auto

Initial	value auto

Applies	to All	elements

Computed	value As	specified

Percentages Refer	to	the	font-size	of	the	element

Inherited No

Animatable Yes

You	might	wish	that,	say,	underlines	on	hyperlinks	were	a	little	further	away	from	the	text’s	baseline,	so
that	they’re	a	little	more	obvious	to	the	user.	Setting	a	length	value	like	3px	will	put	the	underline	three
pixels	below	the	text’s	baseline.	See	Figure	11-27	for	the	results	of	the	following	CSS:

p	{text-decoration-line:	underline;}

p.one	{text-underline-offset:	auto;}

p.two	{text-underline-offset:	2px;}

p.three	{text-underline-offset:	-2px;}

p.four	{text-underline-offset:	0.5em;}

p.five	{text-underline-offset:	15%;}

Figure	11-27.	Various	underline	offsets

As	illustrated	in	Figure	11-27,	the	value	defines	an	offset	from	the	text’s	baseline,	either	positive
(downward	along	the	block	axis)	or	negative	(upward	along	the	block	axis).

As	with	text-decoration-thickness,	percentage	values	for	text-underline-offset	are
calculated	with	respect	to	the	value	of	1em	for	the	element.	Thus,	text-underline-offset:	10%
would	cause	an	offset	of	1.6	pixels	in	a	font	whose	computed	font	size	is	16	pixels.

WARNING
As	of	late	2022,	only	Firefox	supported	percentage	values	for	text-underline-offset,	which	is	odd	given	that	percentage	values
are	a	percent	of	1em	in	the	element’s	font.	The	workaround	is	to	use	em	length	values,	such	as	0.1em	for	10%.

Skipping	Ink
An	unaddressed	aspect	of	the	past	few	sections	has	been:	how	exactly	do	browsers	draw	decorations
over	text,	and	more	precisely,	decide	when	to	“skip	over”	parts	of	the	text?	This	is	known	as	“skipping
ink,”	and	the	approach	a	browser	takes	can	be	altered	with	the	property	text-decoration-skip-
ink.

TEXT-DECORATION-SKIP-INK

Values all	|	none	|	auto

Initial	value auto

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable No

When	ink	skipping	is	turned	on,	the	decoration	is	interrupted	wherever	it	would	cross	over	the	shapes	of
the	text.	Usually,	this	means	a	small	gap	between	the	decoration	and	the	text	glyphs.	See	Figure	11-28	for
a	close-up	illustration	of	the	differences	in	ink-skipping	approaches.

Figure	11-28.	Ink-skipping	approaches

The	three	values	are	defined	as	follows:

1.	 auto	(the	default)	means	that	the	browser	may	interrupt	under-	and	overlines	where	the	line	would
cross	the	text	glyphs,	with	a	little	space	between	the	line	and	the	glyphs.	Furthermore,	browsers
should	consider	the	glyphs	used	for	the	text,	since	some	glyphs	may	call	for	ink	skipping	while
others	may	not.

2.	 all	means	that	browsers	must	interrupt	under-	and	overlines	where	the	line	would	cross	the	text
glyphs,	with	a	little	space	between	the	line	and	the	glyphs.	However,	as	of	mid-2022,	only	Firefox
supported	this	value.

3.	 none	means	the	browser	must	not	interrupt	under-	and	overlines	where	the	line	would	cross	the	text
glyphs,	but	instead	draw	a	continuous	line	even	though	it	may	be	drawn	over	parts	of	the	text	glyphs.

As	shown	in	Figure	11-28,	auto	can	sometimes	mean	differences	depending	on	the	language,	font,	or
based	on	other	factors.	You’re	really	just	telling	the	browser	to	do	whatever	it	thinks	is	best.

NOTE
While	this	property’s	name	begins	with	the	label	text-decoration-,	it	is	not	a	property	covered	by	the	text-decoration
shorthand	property.	That’s	why	it’s	being	discussed	here,	after	the	shorthand,	and	not	before.

Weird	Decorations
Now,	let’s	look	into	the	unusual	side	of	text-decoration.	The	first	oddity	is	that	text-
decoration	is	not	inherited.	No	inheritance	implies	that	any	decoration	lines	drawn	with	the	text—
whether	under,	over,	or	through	it—will	always	be	the	same	color.	This	is	true	even	if	the	descendant
elements	are	a	different	color,	as	depicted	in	Figure	11-29:

p	{text-decoration:	underline;	color:	black;}

strong	{color:	gray;}

<p>This	paragraph,	which	is	black	and	has	a	black	underline,	also	contains

strongly	emphasized	text	which	has	the	black	underline

beneath	it	as	well.</p>

Figure	11-29.	Color	consistency	in	underlines

Why	is	this	so?	Because	the	value	of	text-decoration	is	not	inherited,	the	strong	element
assumes	a	default	value	of	none.	Therefore,	the	strong	element	has	no	underline.	Now,	there	is	very
clearly	a	line	under	the	strong	element,	so	it	seems	silly	to	say	that	it	has	none.	Nevertheless,	it	doesn’t.
What	you	see	under	the	strong	element	is	the	paragraph’s	underline,	which	is	effectively	“spanning”	the

strong	element.	You	can	see	it	more	clearly	if	you	alter	the	styles	for	the	boldface	element,	like	this:

p	{text-decoration:	underline;	color:	black;}

strong	{color:	gray;	text-decoration:	none;}

<p>This	paragraph,	which	is	black	and	has	a	black	underline,	also	contains

strongly	emphasized	text	which	has	the	black	underline	beneath

it	as	well.</p>

The	result	is	identical	to	the	one	shown	in	Figure	11-29,	since	all	you’ve	done	is	to	explicitly	declare
what	was	already	the	case.	In	other	words,	there	is	no	way	to	“turn	off”	the	decoration	generated	by	a
parent	element.

There	is	a	way	to	change	the	color	of	a	decoration	without	violating	the	specification.	As	you’ll	recall,
setting	a	text	decoration	on	an	element	means	that	the	entire	element	has	the	same	color	decoration,	even	if
there	are	child	elements	of	different	colors.	To	match	the	decoration	color	with	an	element,	you	must
explicitly	declare	its	decoration,	as	follows:

p	{text-decoration:	underline;	color:	black;}

strong	{color:	silver;	text-decoration:	underline;}	/*	could	also	use	'inherit'	*/

<p>This	paragraph,	which	is	black	and	has	a	black	underline,	also	contains

strongly	emphasized	text	which	has	the	black	underline

beneath	it	as	well,	but	whose	gray	underline	overlays	the	black	underline

of	its	parent.</p>

In	Figure	11-30,	the	strong	element	is	set	to	be	gray	and	to	have	an	underline.	The	gray	underline
visually	“overwrites”	the	parent’s	black	underline,	so	the	decoration’s	color	matches	the	color	of	the
strong	element.	The	black	underline	is	still	there;	the	grey	underline	is	just	hiding	it.	If	you	move	the
gray	underline	with	text-underline-offset	or	make	the	parent’s	text-decoration-
thickness	wider	than	its	child,	both	underlines	will	be	visible.

Figure	11-30.	Overcoming	the	default	behavior	of	underlines

When	text-decoration	is	combined	with	vertical-align,	even	stranger	things	can	happen.
Figure	11-31	shows	one	of	these	oddities.	Since	the	sup	element	has	no	decoration	of	its	own,	but	it	is
elevated	within	an	overlined	element,	the	overline	should	cut	through	the	middle	of	the	sup	element:

p	{text-decoration:	overline;	font-size:	12pt;}

sup	{vertical-align:	50%;	font-size:	12pt;}

Figure	11-31.	Correct,	although	strange,	decorative	behavior

But	not	all	browsers	do	this.	As	of	mid-2022,	Chrome	would	push	the	overline	up	so	it	is	drawn	across
the	top	of	the	superscript,	whereas	others	would	not.

Text	Rendering
A	recent	addition	to	CSS	is	text-rendering,	which	is	actually	an	SVG	property	that’s	treated	as
CSS	by	supporting	user	agents.	It	lets	authors	indicate	what	the	user	agent	should	prioritize	when
displaying	text.

TEXT-RENDERING

Values auto	|	optimizeSpeed	|	optimizeLegibility	|	geometricPrecision

Initial	value auto

Applies	to All	elements

Inherited Yes

Animatable Yes

The	values	optimizeSpeed	and	optimizeLegibility	indicate	that	drawing	speed	should	be
favored	over	the	use	of	legibility	features	like	kerning	and	ligatures	(for	optimizeSpeed)	or	that	such
legibility	features	should	be	used	even	if	that	slows	down	text	rendering	(for	optimizeLegibility).

The	precise	legibility	features	that	are	used	with	optimizeLegibility	are	not	explicitly	defined,
and	the	text	rendering	often	depends	on	the	operating	system	on	which	the	user	agent	is	running,	so	the
exact	results	may	vary.	Figure	11-32	shows	text	optimized	for	speed,	and	then	optimized	for	legibility.

Figure	11-32.	Different	optimizations

As	you	can	see	in	Figure	11-32,	the	differences	between	the	two	optimizations	are	objectively	rather
small,	but	they	can	have	a	noticeable	impact	on	readability.

NOTE
Some	user	agents	will	always	optimize	for	legibility,	even	when	optimizing	for	speed.	This	is	likely	an	effect	of	rendering	speeds	having
gotten	so	fast	in	the	past	few	years.

The	value	geometricPrecision,	on	the	other	hand,	directs	the	user	agent	to	draw	the	text	as

precisely	as	possible,	such	that	it	could	be	scaled	up	or	down	with	no	loss	of	fidelity.	You	might	think	that
this	is	always	the	case,	but	not	so.	Some	fonts	change	kerning	or	ligature	effects	at	different	text	sizes,	for
example,	providing	more	kerning	space	at	smaller	sizes	and	tightening	up	the	kerning	space	as	the	size	is
increased.	With	geometricPrecision,	those	hints	are	ignored	as	the	text	size	changes.	If	it	helps,
think	of	it	as	the	user	agent	drawing	the	text	as	though	all	the	text	is	a	series	of	SVG	paths,	not	font	glyphs.

Even	by	the	usual	standard	of	web	standards,	the	value	auto	is	pretty	vaguely	defined	in	SVG:

the	user	agent	shall	make	appropriate	tradeoffs	to	balance	speed,	legibility	and	geometric
precision,	but	with	legibility	given	more	importance	than	speed	and	geometric	precision.

That’s	it:	user	agents	get	to	do	what	they	think	is	appropriate,	leaning	towards	legibility.

Text	Shadows
Sometimes,	you	just	really	need	your	text	to	cast	a	shadow,	like	when	text	overlaps	a	multicolored
background.	That’s	where	text-shadow	comes	in.	The	syntax	might	look	a	little	wacky	at	first,	but	it
should	become	clear	enough	with	just	a	little	practice.

TEXT-SHADOW

Values none	|	[<length>	ǁ	<length>	<length>	<color>?]#

Initial	value none

Applies	to All	elements

Inherited No

Animatable Yes

The	default	is	to	not	have	a	drop	shadow	for	text.	Otherwise,	it’s	possible	to	define	one	or	more	shadows.
Each	shadow	is	defined	by	an	optional	color	and	three	length	values,	the	last	of	which	is	also	optional.

The	color	sets	the	shadow’s	color	so	it’s	possible	to	define	green,	purple,	or	even	white	shadows.	If	the
color	is	omitted,	the	shadow	defaults	to	the	color	keyword	currentColor,	making	it	the	same	color	as	the
text	itself.

currentColor	as	a	default	color	may	seem	counter-intuitive,	as	you	might	think	shadows	are	purely
decorative,	but	shadows	can	be	used	to	improve	legibility.	A	small	shadow	can	make	very	thin	text	more
legible.	Defaulting	to	currentColor	allows	adding	thickness	via	a	shadow	that	will	always	match	the
color	of	the	text.

In	addition	to	improving	accessibility	by	making	thin	text	thicker,	shadows	can	also	be	used	to	improve
color	contrast	with	a	multi-colored	background.	For	example,	if	you	have	white	text	on	a	mostly-dark
black	and	white	photo,	adding	a	black	shadow	to	the	white	text	makes	the	edges	of	the	white	text	visible

even	if	the	text	is	laid	over	white	portions	of	the	image.

The	first	two	length	values	determine	the	offset	distance	of	the	shadow	from	the	text;	the	first	is	the
horizontal	offset	and	the	second	is	the	vertical	offset.	To	define	a	solid,	un-blurred	green	shadow	offset
five	pixels	to	the	right	and	half	an	em	down	from	the	text,	as	shown	in	Figure	11-33,	you	could	write
either	of	the	following:

text-shadow:	green	5px	0.5em;

text-shadow:	5px	0.5em	green;

Negative	lengths	cause	the	shadow	to	be	offset	to	the	left	and	upward	from	the	original	text.	The
following,	also	shown	in	Figure	11-33,	places	a	light	blue	shadow	five	pixels	to	the	left	and	half	an	em
above	the	text:

text-shadow:	rgb(128,128,255)	−5px	−0.5em;

Figure	11-33.	Simple	shadows

While	the	offset	may	make	the	text	take	more	visual	space,	shadows	have	no	effect	on	line	height,	and
therefore	no	impact	on	the	box	model.

The	optional	third	length	value	defines	a	blur	radius	for	the	shadow.	The	blur	radius	is	defined	as	the
distance	from	the	shadow’s	outline	to	the	edge	of	the	blurring	effect.	A	radius	of	two	pixels	would	result
in	blurring	that	fills	the	space	between	the	shadow’s	outline	and	the	edge	of	the	blurring.	The	exact
blurring	method	is	not	defined,	so	different	user	agents	might	employ	different	effects.	As	an	example,	the
following	styles	are	rendered	as	shown	in	Figure	11-34:

p.cl1	{color:	black;	text-shadow:	gray	2px	2px	4px;}

p.cl2	{color:	white;	text-shadow:	0	0	4px	black;}

p.cl3	{color:	black;

							text-shadow:	1em	0.5em	5px	red,

	 												−0.5em	−1em	hsla(100,75%,25%,0.33);}

Figure	11-34.	Dropping	shadows	all	over

WARNING
Note	that	large	numbers	of	text	shadows,	or	text	shadows	with	very	large	blur	values,	can	create	performance	slowdowns,	particularly
when	animated	in	low-power	and	CPU-constrained	situations	such	as	mobile	devices.	Authors	are	advised	to	test	thoroughly	before
deploying	public	designs	that	use	text	shadows.

Emphasizing	Text
Another	way	to	call	out	text	is	by	adding	emphasis	marks	to	the	text,	where	each	character	is	given	a
mark.	This	is	more	common	in	ideographic	languages	like	Chinese	or	Mongolian,	but	these	marks	can	be
added	to	any	language’s	text	with	CSS.	There	are	three	text	emphasis	properties	similar	to	those	we	saw
for	text	decorations,	and	then	a	shorthand	that	conflates	two	of	them.

Setting	emphasis	style
The	most	important	of	the	three	properties	sets	the	type	of	emphasis	mark,	allowing	you	to	pick	from	a	list
of	common	mark	types,	or	supply	your	own	mark	as	a	text	string.

TEXT-EMPHASIS-STYLE

Values none	|	[[filled	|	open]	ǁ	[dot	|	circle	|	double-circle	|	triangle	|	sesame]]	|	<string>

Initial	value none

Applies	to Text

Computed	value As	declared,	or	none	if	nothing	is	declared

Inherited Yes

Animatable No

Note As	of	mid-2022,	most	browsers	only	supported	this	as	-webkit-text-emphasis-style,	except	Firefox,	
which	only	supported	text-emphasis-style

By	default,	text	has	no	emphasis	marks,	or	none.	Alternatively,	emphasis	marks	can	be	one	of	five
shapes:	dot,	circle,	double-circle,	triangle,	or	sesame.	Those	shapes	can	be	set	as
filled,	which	is	the	default;	or	open,	which	renders	them	as	unfilled	outlines.	These	are	summarized
in	???,	and	examples	are	shown	in	Figure	11-35.

1.	 The	predefined	emphasis	marks

Shape filled open

sesame 	(U+FE45) 	(U+FE46)

dot •	(U+2022) ◦	(U+25E6)

circle ●	(U+25CF) ○	(U+25CB)

double-circle 	(U+25C9) 	(U+25CE)

triangle ▲	(U+25B2) 	(U+25B3)

The	sesame	is	the	most	common	mark	used	in	vertical	writing	modes;	the	circle	is	the	usual	default	in
horizontal	writing	modes.

In	cases	where	the	emphasis	marks	will	not	fit	into	the	current	text	line’s	height,	they	will	cause	the	height
of	that	line	of	text	to	be	increased	until	they	fit	without	overlapping	other	lines.	Unlike	text	decorations
and	text	shadows,	text	emphasis	marks	do	affect	the	line	height.

If	none	of	the	pre-defined	marks	work	in	your	specific	situation,	you	can	supply	your	own	character	as	a
string	(a	single	character	in	single	or	double	quotes).	However,	be	careful:	if	the	string	is	more	than	a
single	character,	it	may	be	reduced	to	the	first	character	in	the	string	by	the	browser.	Thus,	text-
emphasis-style:	'cool'	may	see	the	browser	only	use	the	c	as	a	mark,	as	shown	in	Figure	11-
35.	Furthermore,	the	string	symbols	may	or	may	not	be	rotated	to	match	writing	direction	in	vertical
languages.

Figure	11-35.	Various	emphasis	marks

Some	examples	of	setting	emphasis	marks:

h1	em	{text-emphasis-style:	triangle;}

strong	a:any-link	{text-emphasis-style:	filled	sesame;}

strong.callout	{text-emphasis-style:	open	double-circle;}

A	key	difference	between	text	emphasis	and	text	decoration	is	that	unlike	decoration,	emphasis	is
inherited.	In	other	words,	if	you	set	a	style	of	filled	sesame	on	a	paragraph,	and	that	paragraph	has
child	elements	like	links,	those	child	elements	will	inherit	the	filled	sesame	value.

Another	difference	is	that	every	glyph	(character	or	other	symbol)	gets	its	own	mark,	and	these	marks	are
centered	on	the	glyph.	Thus,	in	proportional	fonts	like	those	seen	in	Figure	11-35,	the	marks	will	have
different	separations	between	them	depending	on	which	two	glyphs	are	next	to	each	other.

The	CSS	specification	recommends	that	emphasis	marks	be	half	the	size	of	the	text’s	font	size,	as	if	they
were	given	font-size:	50%.	They	should	otherwise	use	the	same	text	styles	as	the	text;	thus,	if	the
text	is	boldfaced,	the	emphasis	marks	should	be	as	well.	They	should	also	use	the	text’s	color,	unless

overridden	with	the	next	property	we’ll	cover.

Changing	emphasis	color
If	you	have	a	scenario	where	you	wish	to	have	the	emphasis	marks	be	a	different	color	than	the	text
they’re	marking,	then	text-emphasis-color	is	here	for	you.

TEXT-EMPHASIS-COLOR

Values <color>

Initial	value currentColor

Applies	to Text

Computed	value The	computed	color

Inherited Yes

Animatable No

Note As	of	mid-2022,	most	browsers	only	supported	this	as	-webkit-text-emphasis-color,	except	Firefox,	
which	only	supported	text-emphasis-color

The	default	value,	as	is	often	the	case	with	color-related	properties,	is	currentColor.	That	ensures
emphasis	marks	will	match	the	color	of	the	text	by	default.	To	change	it,	you	can	do	things	like	the
following:

strong	{text-emphasis-style:	filled	triangle;}

p.one	strong	{text-emphasis-color:	gray;}

p.two	strong	{text-emphasis-color:	hsl(0	0%	50%);}

/*	these	will	yield	the	same	visual	result	*/

Placing	emphasis	marks
Thus	far,	we’ve	seen	emphasis	marks	in	specific	positions:	above	each	glyph	in	horizontal	text,	and	to	the
right	of	each	glyph	in	vertical	text.	These	are	the	default	CSS	values,	but	not	always	the	preferred
placement.	text-emphasis-position	allows	you	to	change	where	marks	are	placed.

TEXT-EMPHASIS-POSITION

Values [over	|	under]	&&	[right	|	left]

Initial	value over	right

Applies	to Text

Computed	value As	declared

Inherited Yes

Animatable No

Note As	of	mid-2022,	most	browsers	only	supported	this	in	the	form	-webkit-text-emphasis-position,	
except	Firefox,	which	only	supported	text-emphasis-position

The	values	over	and	under	are	only	applied	when	the	typographic	mode	is	horizontal.	Similarly,
right	and	left	are	only	used	when	the	typographic	mode	is	vertical.

This	can	be	important	in	some	Eastern	languages.	For	example,	Chinese,	Japanese,	Korean,	and
Mongolian	all	prefer	to	have	marks	to	the	right	when	the	text	is	written	vertically.	They	diverge	on
horizontal	text:	Chinese	prefers	marks	below	the	text,	and	the	rest	prefer	above	the	text,	when	it’s
horizontal.	Thus	you	might	write	something	like	this	in	a	style	sheet:

:lang(cn)	{text-emphasis-position:	under	right;}

This	would	override	the	default	over	right	in	cases	where	the	text	is	marked	as	being	Chinese,
applying	under	right	instead.

The	text-emphasis	shorthand
There	is	a	shorthand	for	the	text-emphasis	properties,	but	it	only	brings	together	style	and	color.

TEXT-EMPHASIS

Values <text-emphasis-style>	ǁ	<text-emphasis-color>

Initial	value See	individual	properties

Applies	to Text

Computed	value See	individual	properties

Inherited Yes

Animatable No

Note As	of	mid-2022,	most	browsers	only	supported	this	in	the	form	-webkit-text-emphasis-position,	
except	Firefox,	which	only	supported	text-emphasis-position

The	reason	text-emphasis-position	is	not	included	in	the	text-emphasis	shorthand	is	so
that	it	can	(indeed	must)	be	inherited	separately.	Therefore,	the	style	and	color	of	the	marks	can	be
changed	via	text-emphasis	without	overriding	the	position	in	the	process.

As	stated	earlier,	each	character	or	ideogram	or	other	glyph	—	what	CSS	calls	a	“typographic	character
unit”	—	gets	its	own	emphasis	mark.	That	was	roughly	correct,	but	there	are	exceptions.	The	following
character	units	do	not	get	emphasis	marks:

1.	 Word	separators	such	as	spaces,	or	any	other	Unicode	separator	character.

2.	 Punctuation	characters,	such	as	commas,	full	stops,	and	parentheses.

3.	 Unicode	symbols	corresponding	to	control	codes,	or	any	unassigned	characters.

Text	drawing	order
Browsers	are	supposed	to	use	a	specific	order	to	draw	the	text	decorations,	shadows,	and	emphasis
marks	we’ve	discussed	previously,	along	with	the	text	itself.	These	are	drawn	in	the	following	order,
from	bottom-most	(furthest	away	from	the	user)	to	top-most	(closest	to	the	user):

1.	 Shadows	(text-shadow)

2.	 Underlines	(text-decoration)

3.	 Overlines	(text-decoration)

4.	 The	actual	text

5.	 Emphasis	marks	(text-emphasis)

6.	 Line-through	(text-decoration)

Thus,	the	drop	shadows	of	the	text	are	placed	behind	everything	else.	Underlines	and	overlines	go	behind
the	text.	Emphasis	marks	and	line-throughs	go	on	top	of	the	text.	Note	that	if	you	have	top	text-emphasis
marks	and	an	overline,	the	emphasis	marks	will	be	drawn	on	top	of	the	overline,	obfuscating	the	overline
where	they	overlap.

Handling	Whitespace
Now	that	we’ve	covered	a	variety	of	ways	to	style,	decorate,	and	otherwise	enhance	the	text,	let’s	talk
about	the	property	white-space,	which	affects	the	user	agent’s	handling	of	space,	newline,	and	tab
characters	within	the	document	source.

WHITE-SPACE

Values normal	|	nowrap	|	pre	|	pre-wrap	|	pre-line	|	break-spaces

Initial	value normal

Applies	to All	elements

Computed	value As	declared

Inherited No

Animatable No

By	using	the	white-space	property,	you	can	affect	how	a	browser	treats	the	whitespace	between
words	and	lines	of	text.	To	a	certain	extent,	default	HTML	handling	already	does	this:	it	collapses	any
whitespace	down	to	a	single	space.	So	given	the	following	markup,	the	rendering	in	a	web	browser
would	show	only	one	space	between	each	word	and	ignore	the	line-feed	in	the	elements:

<p>This				paragraph			has					many	spaces								in	it.</p>

You	can	explicitly	set	this	default	behavior	with	the	following	declaration:

p	{white-space:	normal;}

This	rule	tells	the	browser	to	do	as	browsers	have	always	done:	discard	extra	whitespace.	Given	this
value,	line-feed	characters	(carriage	returns)	are	converted	into	spaces,	and	any	sequence	of	more	than
one	space	in	a	row	is	converted	to	a	single	space.

Should	you	set	white-space	to	pre,	however,	the	whitespace	in	an	affected	element	is	treated	as
though	the	elements	were	HTML	pre	elements;	whitespace	is	not	ignored,	as	shown	in	Figure	11-36:

p	{white-space:	pre;}

<p>This				paragraph			has					many

				spaces								in	it.</p>

Figure	11-36.	Honoring	the	spaces	in	markup

With	a	white-space	value	of	pre,	the	browser	will	pay	attention	to	extra	spaces	and	even	carriage
returns.	In	this	respect,	any	element	can	be	made	to	act	like	a	pre	element.

The	opposite	value	is	nowrap,	which	prevents	text	from	wrapping	within	an	element,	except	wherever
you	use	a	br	element.	When	text	can’t	wrap	and	it	gets	too	wide	for	its	container,	a	horizontal	scroll	bar
will	appear	by	default	(this	can	be	changed	using	the	overflow	property).	The	effects	of	the	following
markup	are	shown	in	Figure	11-37:

<p	style="white-space:	nowrap;">This	paragraph	is	not	allowed	to	wrap,

which	means	that	the	only	way	to	end	a	line	is	to	insert	a	line-break

element.		If	no	such	element	is	inserted,	then	the	line	will	go	forever,

forcing	the	user	to	scroll	horizontally	to	read	whatever	can't	be

initially	displayed	
in	the	browser	window.</p>

Figure	11-37.	Suppressing	line	wrapping	with	the	white-space	property

If	an	element	is	set	to	pre-wrap,	then	text	within	that	element	has	whitespace	sequences	preserved,	but
text	lines	are	wrapped	normally.	With	this	value,	generated	line-breaks	as	well	as	those	found	in	the
source	markup	are	both	honored.

pre-line	is	the	opposite	of	pre-wrap	and	causes	whitespace	sequences	to	collapse	as	in	normal	text
but	honors	new	lines.

break-spaces	is	similar	to	pre-wrap,	except	that	all	white	space	is	preserved,	even	at	the	end	of
the	line,	with	a	line	break	opportunity	after	each	white	space	character.	These	spaces	take	up	space	and
do	not	hang,	and	thus	affect	the	box’s	intrinsic	sizes	(min-content	size	and	max-content	size).

Table	11-1	summarizes	the	behaviors	of	the	various	white-space	properties.

Table	11-1.	White-space	properties

Value Whitespace Line	feeds Auto	line	wrapping Trailing	whitespace

pre-line Collapsed Honored Allowed Removed

normal Collapsed Ignored Allowed Removed

nowrap Collapsed Ignored Prevented Removed

pre Preserved Honored Prevented Preserved

pre-wrap Preserved Honored Allowed Hanging

break-spaces Preserved Honored Allowed Wrap

Consider	the	following	markup,	which	has	linefeed	(e.g.,	return)	characters	to	break	lines,	plus	the	end	of
each	line	has	an	extra	several	space	characters	which	aren’t	visible	in	the	markup.	The	results	are
illustrated	in	Figure	11-38:

<p	style="white-space:	pre-wrap;">

This		paragraph						has		a		great			many			s	p	a	c	e	s			within		its	textual

		content,			but	their				preservation					will				not				prevent			line

				wrapping	or	line	breaking.

</p>

<p	style="white-space:	pre-line;">

This		paragraph						has		a		great			many			s	p	a	c	e	s			within		its	textual

		content,			but	their	collapse		will				not				prevent			line

				wrapping	or	line	breaking.

<p	style="white-space:	break-spaces;">

This		paragraph						has		a		great			many			s	p	a	c	e	s			within		its	textual

		content,			but	their	preservation		will				not				prevent			line

				wrapping	or	line	breaking.

</p>

Figure	11-38.	Three	different	ways	to	handle	whitespace

Notice	how	the	third	bit	of	text	has	a	blank	line	between	the	first	and	second	lines	of	text.	This	is	because
a	line-wrap	was	performed	between	two	adjacent	blank	spaces	at	the	end	of	the	line	in	the	source	markup.
This	didn’t	happen	for	pre-wrap	or	pre-line,	because	those	white-space	values	don’t	allow
hanging	space	to	create	line-wrap	opportunities.	break-spaces	does.

White	space	impacts	several	properties,	including	tab-size,	which	has	no	effect	when	the	white-
space	property	value	is	set	to	a	value	in	which	white	space	is	not	maintained;	and	overflow-wrap,
which	only	has	an	effect	when	white-space	allows	wrapping.

Setting	Tab	Sizes
Since	whitespace	is	preserved	in	some	values	of	white-space,	it	stands	to	reason	that	tabs	(i.e.,
Unicode	code	point	0009)	will	be	displayed	as,	well,	tabs.	But	how	many	spaces	should	each	tab	equal?
That’s	where	tab-size	comes	in.

TAB-SIZE

Values <length>	|	<integer>

Initial	value 8

Applies	to Block	elements

Computed	value The	absolute-length	equivalent	of	the	specified	value

Inherited Yes

Animatable Yes

By	default,	when	white	spaces	are	preserved,	as	with	white-space	values	of	pre,	pre-wrap,	and
break-spaces,	any	tab	character	will	be	treated	the	same	as	eight	spaces	in	a	row,	including	any
letter-spacing	and	word-spacing.	You	can	alter	that	by	using	a	different	integer	value.	Thus,
tab-size:	4	will	cause	each	tab	to	be	rendered	as	if	it	were	four	spaces	in	a	row.	Negative	values
are	not	allowed	for	tab-size.

If	a	length	value	is	supplied,	then	each	tab	is	rendered	using	that	length.	For	example,	tab-size:
10px	will	cause	a	sequence	of	three	tabs	to	be	rendered	as	30	pixels	of	whitespace.	Some	effects	of
tab-size	are	illustrated	in	Figure	11-39.

Figure	11-39.	Differing	tab	lengths

Remember	that	tab-size	is	effectively	ignored	when	the	value	of	white-space	causes	whitespace
to	be	collapsed	(see	Table	11-1).	The	value	will	still	be	computed	in	such	cases,	but	there	will	be	no
visible	effect	no	matter	how	many	tabs	appear	in	the	source.

Wrapping	and	Hyphenation
Handling	white	space	is	all	well	and	good,	but	it’s	a	lot	more	common	to	want	to	influence	how	the
visible	characters	are	handled	when	it	comes	to	line-wrapping.	There	are	a	few	properties	that	can
influence	where	line-wrapping	is	allowed,	as	well	as	enabling	hyphenation	support.

Hyphenation
Hyphens	can	be	very	useful	when	there	are	long	words	and	short	line	lengths,	such	as	blog	posts	on
mobile	devices	and	portions	of	The	Economist.	Authors	can	always	insert	their	own	hyphenation	hints
using	the	Unicode	character	U+00AD	SOFT	HYPHEN	(or,	in	HTML,	&shy;),	but	CSS	also
offers	a	way	to	enable	hyphenation	without	littering	up	the	document	with	hints.

HYPHENS

Values manual	|	auto	|	none

Initial	value manual

Applies	to All	elements

Computed	value As	specified

Inherited Yes

Animatable No

With	the	default	value	of	manual,	hyphens	are	only	inserted	where	there	are	manually-inserted
hyphenation	markers	in	the	document,	such	as	U+00AD	or	&shy;.	Otherwise,	no	hyphenation
occurs.	The	value	none,	on	the	other	hand,	suppresses	any	hyphenation,	even	if	manual	break	markers	are
present;	thus,	U+00AD	and	&shy;	are	ignored.

TIP
The	<wbr>	element	does	not	introduce	a	hyphen	at	the	line	break	point.	To	make	a	hyphen	appear	only	at	the	end	of	a	line,	use	the	soft
hyphen	character	entity	()	instead.

The	far	more	interesting	(and	potentially	inconsistent)	value	is	auto,	which	permits	the	browser	to	insert
hyphens	and	break	words	at	“appropriate”	places	inside	words,	even	where	no	manually	inserted
hyphenation	breaks	exist.	But	what	constitutes	a	“word”?	And,	under	what	circumstances	is	it	appropriate
to	hyphenate	a	word?	Both	are	language-dependent.	User	agents	are	supposed	to	prefer	manually	inserted
hyphen	breaks	to	automatically	determined	breaks,	but	there	are	no	guarantees.	An	illustration	of
hyphenation,	or	the	suppression	thereof,	in	the	following	example	is	shown	in	Figure	11-40:

.cl01	{hyphens:	auto;}

.cl02	{hyphens:	manual;}

.cl03	{hyphens:	none;}

<p	class="cl01">Supercalifragilisticexpialidocious

		antidisestablishmentarianism.</p>

<p	class="cl02">Supercalifragilisticexpialidocious

		antidisestablishmentarianism.</p>

<p	class="cl02">Super­cali­fragi­listic­expi­ali­

docious	anti­dis­establish­ment­arian­ism.</p>

<p	class="cl03">Super­cali­fragi­listic­expi­ali­

docious	anti­dis­establish­ment­arian­ism.</p>

Figure	11-40.	Hyphenation	results

Because	hyphenation	is	language-dependent,	and	because	the	CSS	specifications	do	not	define	precise	(or
even	vague)	rules	regarding	how	user	agents	should	carry	out	hyphenation,	it	may	differ	by	browser.

If	you	do	choose	to	hyphenate,	be	careful	about	the	elements	to	which	you	apply	the	hyphenation.
hyphens	is	an	inherited	property,	so	declaring	body	{hyphens:	auto;}	will	apply	hyphenation
to	everything	in	your	document—including	textareas,	code	samples,	block	quotes,	and	so	on.	Blocking
automatic	hyphenation	at	the	level	of	those	elements	is	probably	a	good	idea,	using	rules	something	like
this:

body	{hyphens:	auto;}

code,	var,	kbd,	samp,	tt,	dir,	listing,	plaintext,	xmp,	abbr,	acronym,

blockquote,	q,	textarea,	input,	option	{hyphens:	manual;}

It’s	usually	a	good	idea	to	suppress	hyphenation	in	code	samples	and	code	blocks	is	desirable,	especially
in	languages	that	use	hyphens	in	things	like	property	and	value	names.	(Ahem.)	Similar	logic	holds	for
keyboard	input	text—you	very	likely	don’t	want	a	stray	dash	getting	into	your	Unix	command-line
examples!	And	so	on	down	the	line.	If	you	decide	that	you	want	to	hyphenate	some	of	these	elements,	just
remove	them	from	the	selector.

NOTE
It	is	strongly	advised	to	set	the	lang	attribute	on	HTML	elements	to	enable	hyphenation	support	and	improve	accessibility.	As	of	mid-2022,
hyphens	is	supported	in	Firefox	for	30+	languages,	Safari	supports	many	European	languages,	but	Chrome-related	browsers	only	support
English.

Hyphens	can	be	suppressed	by	the	effects	of	other	properties,	such	as	word-break,	which	affects	how
soft	wrapping	of	text	is	calculated	in	various	languages,	determining	whether	line	breaks	appear	where
text	would	otherwise	overflow	its	content	box.

Word	breaking
When	a	run	of	text	is	too	long	to	fit	into	a	single	line,	it	is	soft	wrapped.	This	is	in	contrast	to	hard	wraps,
which	are	things	like	line-feed	characters	and	
	elements.	Where	the	text	is	soft	wrapped	is
determined	by	the	user	agent,	but	word-break	lets	authors	influence	that	decision-making.

WORD-BREAK

Values normal	|	break-all	|	keep-all	|	break-word

Initial	value normal

Applies	to Text

Computed	value As	specified

Inherited Yes

Animatable No

Note break-word	is	a	legacy	value	and	has	been	deprecated

The	default	value	of	normal	means	that	text	should	be	wrapped	like	it	always	has	been.	In	practical
terms,	this	means	that	text	is	broken	between	words,	though	the	definition	of	a	word	varies	by	language.	In
Latin-derived	languages	like	English,	this	is	almost	always	a	space	between	letter	sequences	(e.g.,
words)	or	at	hyphens.	In	ideographic	languages	like	Japanese,	each	symbol	can	be	a	complete	word,	so
breaks	can	occur	between	any	two	symbols.	In	other	ideographic	languages,	though,	the	soft-wrap	points
may	be	limited	to	appear	between	sequences	of	symbols	that	are	not	space-separated.	Again,	that’s	all	by
default,	and	is	the	way	browsers	have	handled	text	for	years

If	you	apply	the	value	break-all,	then	soft	wrapping	can	(and	will)	occur	between	any	two	characters,
even	if	they	are	in	the	middle	of	a	word.	With	this	value,	no	hyphens	are	shown,	even	if	the	soft	wrapping
occurs	at	a	hyphenation	point	(see	hyphens,	earlier).	Note	that	values	of	the	line-break	property
(described	next)	can	affect	the	behavior	of	break-all	in	ideographic	text.

keep-all,	on	the	other	hand,	suppresses	soft	wrapping	between	characters,	even	in	ideographic

languages	where	each	symbol	is	a	word.	Thus,	in	Japanese,	a	sequence	of	symbols	with	no	whitespace
will	not	be	soft	wrapped,	even	if	this	means	the	text	line	will	exceed	the	length	of	its	element.	(This
behavior	is	similar	to	white-space:	pre.)

Figure	11-41	shows	a	few	examples	of	word-break	values,	and	Table	11-2	summarizes	the	effects	of
each	value.

Figure	11-41.	Altering	word-breaking	behavior

Table	11-2.	Word-breaking	behavior

Value Non-CJK CJK Hyphenation	permitted

normal As	usual As	usual Yes

break-all After	any	character After	any	character No

keep-all As	usual Around	sequences Yes

As	noted	previously,	the	value	break-word	has	been	deprecated,	although	it	supported	by	all	known
browsers	as	of	mid-2022.	When	used,	it	has	the	same	effect	as	{word-break:	normal;
overflow-wrap:	anywhere;},	even	if	overflow-wrap	has	a	different	value.	(We’ll	cover
overflow-wrap	in	an	upcoming	section.)

Line	breaking
If	your	interests	run	to	CJK	text,	then	in	addition	to	word-break	you	will	also	want	to	get	to	know
line-break.

LINE-BREAK

Values auto	|	loose	|	normal	|	strict	|	anywhere

Initial	value auto

Applies	to All	elements

Computed	value As	specified

Inherited Yes

Animatable Yes

As	we	just	saw,	word-break	can	affect	how	lines	of	text	are	soft	wrapped	in	CJK	text.	The	line-
break	property	also	affects	such	soft	wrapping,	specifically	how	wrapping	is	handled	around	CJK-
specific	symbols	and	around	non-CJK	punctuation	(such	as	exclamation	points,	hyphens,	and	ellipses)	that
appears	in	text	declared	to	be	CJK.

In	other	words,	line-break	applies	to	certain	CJK	characters	all	the	time,	regardless	of	the	content’s
declared	language.	If	you	throw	some	CJK	characters	into	a	paragraph	of	English	text,	line-break
will	still	apply	to	them,	but	not	to	anything	else	in	the	text.	Conversely,	if	you	declare	content	to	be	in	a
CJK	language,	line-break	will	continue	to	apply	to	those	CJK	characters	plus	a	number	of	non-CJK
characters	within	the	CJK	text.	These	include	punctuation	marks,	currency	symbols,	and	a	few	other
symbols.

There	is	no	authoritative	list	of	which	characters	are	affected	and	which	are	not,	but	the	specification
provides	a	list	of	recommended	symbols	and	behaviors	around	those	symbols.

The	default	value	auto	allows	user	agents	to	soft	wrap	text	as	they	like,	and	more	importantly	lets	UAs
vary	the	line	breaking	they	do	based	on	the	situation.	For	example,	the	UA	can	use	looser	line-breaking
rules	for	short	lines	of	text	and	stricter	rules	for	long	lines.	In	effect,	auto	allows	the	user	agent	to	switch
between	the	loose,	normal,	and	strict	values	as	needed,	possibly	even	on	a	line-by-line	basis
within	a	single	element.

You	can	perhaps	infer	that	those	other	values	have	the	following	general	meanings:

loose

This	value	imposes	the	“least	restrictive”	rules	for	wrapping	text,	and	is	meant	for	use	when	line
lengths	are	short,	such	as	in	newspapers.

normal

This	value	imposes	the	“most	common”	rules	for	wrapping	text.	What	exactly	“most	common”	means
is	not	precisely	defined,	though	there	is	the	aforementioned	list	of	recommended	behaviors.

strict

http://w3.org/TR/css3-text/#line-break

This	value	imposes	the	“most	stringent”	rules	for	wrapping	text.	Again,	this	is	not	precisely	defined.

anywhere

This	value	creates	a	line-breaking	opportunity	around	every	typographic	unit,	including	white	space
and	punctuation	marks.	A	soft	wrap	can	even	happen	in	the	middle	of	a	word,	and	hyphenation	is	not
applied	in	such	circumstances.

Wrapping	Text
After	all	that	information	about	hyphenation	and	soft	wrapping,	what	happens	when	text	overflows	its
container	anyway?	That’s	what	overflow-wrap	addresses.

Originally	called	word-wrap,	the	overflow-wrap	property	applies	to	inline	elements,	setting
whether	the	browser	should	insert	line	breaks	within	otherwise	unbreakable	strings	in	order	to	prevent
text	from	overflowing	its	line	box.	In	contrast	to	word-break,	overflow-wrap	will	only	create	a
break	if	an	entire	word	cannot	be	placed	on	its	own	line	without	overflowing.

OVERFLOW-WRAP

Values normal	|	break-word	|	anywhere

Initial	value normal

Applies	to All	elements

Computed	value As	specified

Inherited Yes

Animatable Yes

This	property	is	less	straightforward	than	it	first	appears,	because	its	primary	effect	is	to	change	how
word	wrapping	and	minimum-content	sizing	(which	we	haven’t	even	had	a	chance	to	discuss	yet)	interact
in	trying	to	avoid	overflow	at	the	ends	of	text	lines.

NOTE
Note	that	overflow-wrap	can	only	operate	if	the	value	of	white-space	allows	line	wrapping.	If	it	does	not	(e.g.,	with	the	value
pre),	then	overflow-wrap	has	no	effect.

If	the	default	value	of	normal	is	in	effect,	then	wrapping	happens	as	normal;	which	is	to	say,	word
wrapping	between	words	or	as	directed	by	the	language.	If	a	word	is	longer	than	the	width	of	the	element
containing	it,	then	it	will	“spill	out”	of	the	element	box,	just	like	on	the	classic	CSS	IS	AWESOME	coffee
mug.	(Google	it	if	you	haven’t	seen	it	before.	It’s	worth	the	chuckle.)

If	the	value	break-word	is	applied,	then	wrapping	can	happen	in	the	middle	of	words,	with	no	hyphen
placed	at	the	site	of	the	wrapping,	but	this	will	happen	so	that	line	lengths	will	be	as	wide	as	the
element’s	width.	In	other	words,	if	the	width	property	of	the	element	is	given	the	value	min-
content,	the	“minimum	content”	calculations	will	assume	that	content	strings	must	be	as	long	as
possible.

By	contrast,	when	anywhere	is	set,	the	“minimum	content”	calculations	will	take	line-wrapping
opportunities	into	account.	This	means,	in	effect,	that	the	minimum	content	width	will	be	the	width	of	the
widest	character	in	the	element’s	content.	Only	when	two	skinny	characters	are	next	to	each	other	will
they	have	a	chance	to	be	on	the	same	line	together,	and	in	a	monospace	font,	every	line	of	text	will	be	a
single	character.	Figure	11-42	illustrates	the	difference	between	these	three	values.

Figure	11-42.	Overflow	wrapping	for	width:	min-content

If	the	value	of	width	is	something	other	than	min-content,	then	break-word	and	anywhere	will
have	the	same	results.	Really,	the	only	difference	between	the	two	values	is	with	anywhere,	soft	wrap
opportunities	introduced	by	the	word	break	are	considered	when	calculating	min-content	intrinsic	sizes.
With	break-word,	they	are	not	considered.

While	overflow-wrap:	break-word	may	appear	very	similar	to	word-break:	break-all,
they	are	not	the	same	thing.	To	see	why,	compare	the	second	box	in	Figure	11-42	to	the	top	middle	box	in
Figure	11-41.	As	it	shows,	overflow-wrap	only	kicks	in	if	content	actually	overflows;	thus,	when
there	is	an	opportunity	to	use	whitespace	in	the	source	to	wrap	lines,	overflow-wrap	will	take	it.	By
contrast,	word-break:	break-all	will	cause	wrapping	when	content	reaches	the	wrapping	edge,
regardless	of	any	whitespace	that	comes	earlier	in	the	line.

Once	upon	a	time	there	was	a	property	called	word-wrap	that	did	exactly	what	overflow-wrap
does.	The	two	are	so	identical	that	the	specification	explicitly	states	that	user	agents	“must	treat	word-
wrap	as	an	alternate	name	for	the	overflow-wrap	property,	as	if	it	were	a	shorthand	of	overflow-
wrap.”

WARNING
As	of	mid-2022,	WebKit	browsers	did	not	support	the	anywhere	value	for	overflow-wrap.

Writing	Modes
Earlier,	we	discussed	inline	direction,	we	introduced	the	topic	of	reading	direction.	We’ve	already	seen
numerous	benefits	of	including	the	lang	attribute	in	your	HTML,	from	being	able	to	style	based	on
language	selectors,	to	allowing	the	user	agent	to	hyphenate.	Generally,	you	should	let	the	user	agent	handle
the	direction	of	text	based	on	the	laguage	attribute,	but	CSS	does	provide	properties	for	the	rare
occassions	when	an	override	is	necessary.

Setting	Writing	Modes
The	property	used	for	specifying	one	of	five	available	writing	modes	is,	of	all	things,	writing-mode.
This	property	sets	the	block	flow	direction	of	the	element,	which	determines	how	boxes	are	stacked
together.

WRITING-MODE

Values horizontal-tb	|	vertical-rl	|	vertical-lr	|	sideways-rl	|	sideways-lr

Initial	value horizontal-tb

Applies	to All	elements	except	table	row	groups,	table	column	groups,	table	rows,	table	columns,	ruby	base	containers,	and	
ruby	annotation	containers

Computed	value As	specified

Inherited Yes

Animatable Yes

The	default	value,	horizontal-tb	,	means	“a	horizontal	inline	direction,	and	a	top-to-bottom	block
direction.”	This	covers	all	Western	and	some	Middle	Eastern	languages,	which	may	differ	in	the	direction
of	their	horizontal	writing.	The	other	two	values	offer	a	vertical	inline	direction,	and	either	a	right-to-left
or	left-to-right	block	direction.

sideways-rl	and	sideways-lr	take	horizontal	text	and	turn	its	flow	“sideways,”	with	the	direction
the	text	runs	either	going	right	to	left	(for	sidewyas-rl)	or	left	to	right	(for	sideways-lr).	The
difference	between	these	values	and	the	vertical	values	is	that	the	text	is	turned	whichever	way	is
necessary	to	make	the	text	read	naturally.

All	five	values	are	illustrated	in	Figure	11-43.

Figure	11-43.	Writing	modes

Notice	how	the	lines	are	strung	together	in	the	two	vertical-	examples.	If	you	tilt	your	head	to	the

right,	the	text	in	vertical-rl	is	at	least	readable.	The	text	in	vertical-lr,	on	the	other	hand,	is
difficult	to	read	because	it	appears	to	flow	from	bottom	to	top,	at	least	when	arranging	English	text.	This
is	not	a	problem	in	languages	which	actually	use	vertical-lr	flow,	such	as	forms	of	Japanese.

In	vertical	writing	modes,	the	block	direction	is	horizontal,	which	means	vertical	alignment	of	inline
elements	actually	causes	them	to	move	horizontally.	This	is	illustrated	in	Figure	11-44.

Figure	11-44.	Writing	modes	and	“vertical”	alignment

All	the	super-	and	subscript	elements	cause	horizontal	shifts,	both	of	themselves	and	the	placement	of	the
lines	they	occupy,	even	through	the	property	used	to	move	them	is	vertical-align.	As	described
earlier,	the	vertical	displacement	is	with	respect	to	the	line	box,	where	the	box’s	baseline	is	defined	as
horizontal—even	when	it’s	being	drawn	vertically.

Confused?	It’s	OK.	Writing	modes	are	likely	to	confuse	you,	because	it’s	such	a	different	way	of	thinking
and	because	old	assumptions	in	the	CSS	specification	clash	with	the	new	capabilities.	If	there	had	been
vertical	writing	modes	from	the	outset,	vertical-align	would	likely	have	a	different	name
—inline-align	or	something	like	that.	(Maybe	one	day	that	will	happen.)

Changing	Text	Orientation
Once	you’ve	settled	on	a	writing	mode,	you	may	decide	you	want	to	change	the	orientation	of	characters
within	those	lines	of	text.	There	are	many	reasons	you	might	want	to	do	this,	not	least	of	which	are
situations	where	different	writing	systems	are	commingled,	such	as	Japanese	text	with	English	words	or
numbers	mixed	in.	In	these	cases,	text-orientation	is	the	answer.

TEXT-ORIENTATION

Values mixed	|	upright	|	sideways

Initial	value mixed

Applies	to All	elements	except	table	row	groups,	table	rows,	table	column	groups,	and	table	columns

Computed	value As	specified

Inherited Yes

Animatable Yes

The	effect	of	text-orientation	is	to	affect	how	characters	are	oriented.	What	that	means	is	best
illustrated	by	the	following	styles,	rendered	in	Figure	11-45:

.verts	{writing-mode:	vertical-lr;}

#one	{text-orientation:	mixed;}

#two	{text-orientation:	upright;}

#thr	{text-orientation:	sideways;}

Figure	11-45.	Text	orientation

Across	the	top	of	Figure	11-45	is	a	basically	unstyled	paragraph	of	mixed	Japanese	and	English	text.
Below	that,	three	copies	of	that	paragraph,	using	the	writing	mode	vertical-lr	.	In	the	first	of	the

three,	text-orientation:	mixed	,	writes	the	horizontal-script	characters	(the	English)	sideways,
and	the	vertical-script	characters	(the	Japanese)	upright.	In	the	second,	all	characters	are	upright,
including	the	English	characters.	In	the	third,	all	characters	are	sideways,	including	the	Japanese
characters.

WARNING
As	of	mid-2022,	sideways	was	not	supported	by	Chromium	browsers.

Combining	characters
Only	relevant	to	vertical	writing	modes,	the	text-combine-upright	property	enables	displaying	a
supset	of	characters	upright	within	vertical	text.	This	can	be	useful	when	mixing	languages	or	pieces	of
languages,	such	as	embedding	Arabic	numerals	in	CJK	text,	but	may	have	other	applications.

TEXT-COMBINE-UPRIGHT

Values none	|	all	|	[digits	<integer>?]

Initial	value none

Applies	to non-replaced	inline	elements

Computed	value specified	keyword,	plus	integer	if	digits

Inherited Yes

Animatable No

Note For	<integer>	values,	only	the	numbers	2,	3,	and	4	are	valid

Essentially,	this	property	lets	you	say	whether	characters	may	sit	next	to	each	other	horizontally	while
being	part	of	a	vertical	line	of	text.	Your	choices	are	whether	to	allow	this	for	all	characters,	or	only	for	a
few	numeric	digits.

Here’s	how	it	works:	as	a	line	of	vertical	text	is	laid	out,	the	browser	can	consider	whether	the	width	of
two	characters,	sitting	next	to	each	other,	are	less	than	or	equal	to	the	value	of	1em	for	the	text.	If	so,	they
may	be	placed	next	to	each	other,	effectively	putting	two	characters	into	the	space	of	one.	If	not,	the	first
character	is	placed	alone,	and	the	process	continues.

As	of	mid-2022,	this	can	lead	to	characters	being	very,	very	squished.	For	an	example,	consider	the
following	markup	and	CSS:

<div	lang="zh-Hant">

<p> </p>

<p	class="combine"> </p>

<p>117023 </p>

<p	class="combine">117023 </p>

<p	class="combine"> 117 0 23</p>

<p> 117 <span

			class="combine">0 23</p>

</div>

p	{writing-mode:	vertical-rl;}

.combine	{text-combine-upright:	all;}

All	of	the	paragraphs	are	written	using	writing-mode:	vertical-rl,	but	some	are	set	to	text-
combine-upright:	all,	and	others	are	not.	The	last	paragraph	is	not	set	to	all,	but	the	
elements	within	it	have	been.	The	result	is	what’s	shown	in	Figure	11-46.

Figure	11-46.	Various	types	of	upright	combination.

Lest	you	think	a	bug	is	at	work	there,	the	results	were	consistent	across	browsers	(as	of	mid-2022).The
second	and	fourth	columns	have	every	single	character,	whether	Chinese	ideographs	or	Arabic	numerals,
squished	horizontally	to	fit	on	a	single	line.

A	way	around	this	is	to	break	up	the	text	with	child	elements,	as	shown	in	the	fifth	and	sixth	columns.	In
the	first,	numbers	are	surrounded	with		elements,	which	break	up	the	fitting	process.	This	works
as	long	as	no	run	of	text	has	too	many	characters;	beyond	two	or	three	symbols,	and	the	text	becomes
progressively	more	difficult	to	comprehend.

The	sixth	column	shows	a	way	to	hack	around	the	problem:	only	apply	text-combine-upright:
all	to	the		elements,	which	are	already	used	to	wrap	the	Arabic	numerals,	by	giving	each
	a	class	value	of	combine.	In	that	case,	the	.combine	rule	will	only	apply	to	the	
elements,	not	all	the	text	in	the	paragraph.

This	is	what	the	digits	value	is	supposed	to	make	possible	without	the	need	for	all	the	extra	markup.
Theoretically,	you	could	get	the	same	result	as	that	shown	in	the	sixth	column	of	Figure	11-46	by	applying
the	following	CSS	to	the	paragraph	that	has	no		elements	in	it:

p	{writing-mode:	vertical-rl;	text-upright-combine:	digits	4;}

Sadly,	as	of	mid-2022,	no	browser	supported	this	behavior,	unless	you	count	Internet	Explorer	11	using
the	alternate	property	name	-ms-text-combine-horizontal.

Declaring	Direction
Harking	back	to	the	days	of	CSS2,	there	are	a	pair	of	properties	that	can	be	used	to	affect	the	direction	of
text	by	changing	the	inline	baseline	direction:	direction	and	unicode-bidi.	These	should
generally	not	be	used,	but	are	covered	here	in	case	you	come	across	them	in	legacy	code.

WARNING
The	CSS	specification	explicitly	warns	against	using	direction	and	unicode-bidi	in	CSS	when	applied	to	HTML	documents.	To
quote:	“Because	HTML	[user	agents]	can	turn	off	CSS	styling,	we	recommend…	the	HTML	dir	attribute	and	<bdo>	element	to	ensure
correct	bidirectional	layout	in	the	absence	of	a	style	sheet.”	The	properties	are	covered	here	because	they	may	appear	in	legacy
stylesheets.

DIRECTION

Values ltr	|	rtl

Initial	value ltr

Applies	to All	elements

Computed	value As	specified

Inherited Yes

Animatable Yes

The	direction	property	affects	the	writing	direction	of	text	in	a	block-level	element,	the	direction	of
table	column	layout,	the	direction	in	which	content	horizontally	overflows	its	element	box,	and	the
position	of	the	last	line	of	a	fully	justified	element.	For	inline	elements,	direction	applies	only	if	the
property	unicode-bidi	is	set	to	either	embed	or	bidi-override	(See	the	following	description
of	unicode-bidi).

Although	ltr	is	the	default,	it	is	expected	that	if	a	browser	is	displaying	right-to-left	text,	the	value	will
be	changed	to	rtl.	Thus,	a	browser	might	carry	an	internal	rule	stating	something	like	the	following:

*:lang(ar),	*:lang(he)	{direction:	rtl;}

The	real	rule	would	be	longer	and	encompass	all	right-to-left	languages,	not	just	Arabic	and	Hebrew,	but
it	illustrates	the	point.

While	CSS	attempts	to	address	writing	direction,	Unicode	has	a	much	more	robust	method	for	handling
directionality.	With	the	property	unicode-bidi,	CSS	authors	can	take	advantage	of	some	of	Unicode’s
capabilities.

UNICODE-BIDI

Values normal	|	embed	|	bidi-override

Initial	value normal

Applies	to All	elements

Computed	value As	specified

Inherited No

Animatable Yes

Here	we’ll	simply	quote	the	value	descriptions	from	the	CSS	2.1	specification,	which	do	a	good	job	of
capturing	the	essence	of	each	value:

normal

The	element	does	not	open	an	additional	level	of	embedding	with	respect	to	the	bidirectional
algorithm.	For	inline-level	elements,	implicit	reordering	works	across	element	boundaries.

embed

If	the	element	is	inline-level,	this	value	opens	an	additional	level	of	embedding	with	respect	to	the
bidirectional	algorithm.	The	direction	of	this	embedding	level	is	given	by	the	direction	property.
Inside	the	element,	reordering	is	done	implicitly.	This	corresponds	to	adding	a	“left-to-right
embedding”	character	(U+202A;	for	direction:	ltr)	or	a	“right-to-left	embedding”	character
(U+202B;	for	direction:	rtl)	at	the	start	of	the	element	and	a	“pop	directional	formatting”
character	(U+202C)	at	the	end	of	the	element.

bidi-override

This	creates	an	override	for	inline-level	elements.	For	block-level	elements,	this	creates	an	override
for	inline-level	descendants	not	within	another	block.	This	means	that,	inside	the	element,	reordering
is	strictly	in	sequence	according	to	the	direction	property;	the	implicit	part	of	the	bidirectional
algorithm	is	ignored.	This	corresponds	to	adding	a	“left-to-right	override”	character	(U+202D;	for
direction:	ltr)	or	“right-to-left	override”	character	(U+202E;	for	direction:	rtl)	at	the
start	of	the	element	and	a	“pop	directional	formatting”	character	(U+202C)	at	the	end	of	the	element.

Summary
Even	without	altering	the	font	face,	there	are	many	ways	to	change	the	appearance	of	text.	There	are
classic	effects	such	as	underlining,	but	CSS	also	enables	you	to	draw	lines	over	text	or	through	it,	change
the	amount	of	space	between	words	and	letters,	indent	the	first	line	of	a	paragraph	(or	other	block-level
element),	align	text	in	various	ways,	exert	influence	over	the	hyphenation	and	line	breaking	of	text,	and
much	more.	You	can	even	alter	the	amount	of	space	between	lines	of	text.	There	is	also	support	in	CSS	for
languages	other	than	those	that	are	written	left-to-right,	top-to-bottom.	Given	that	so	much	of	the	web	is
text,	the	strength	of	these	properties	makes	a	great	deal	of	sense.

About	the	Authors
Eric	A.	Meyer	has	been	working	with	the	web	since	late	1993	and	is	an	internationally	recognized	expert
on	the	subjects	of	HTML,	CSS,	and	web	standards.	A	widely	read	author,	he	is	also	the	founder	of
Complex	Spiral	Consulting,	which	counts	among	its	clients	America	Online;	Apple	Computer,	Inc.;	Wells
Fargo	Bank;	and	Macromedia,	which	described	Eric	as	“a	critical	partner	in	our	efforts	to	transform
Macromedia	Dreamweaver	MX	2004	into	a	revolutionary	tool	for	CSS-based	design.”

Beginning	in	early	1994,	Eric	was	the	visual	designer	and	campus	web	coordinator	for	the	Case	Western
Reserve	University	website,	where	he	also	authored	a	widely	acclaimed	series	of	three	HTML	tutorials
and	was	project	coordinator	for	the	online	version	of	the	Encyclopedia	of	Cleveland	History	and	the
Dictionary	of	Cleveland	Biography,	the	first	encyclopedia	of	urban	history	published	fully	and	freely	on
the	web.

Author	of	Eric	Meyer	on	CSS	and	More	Eric	Meyer	on	CSS	(New	Riders),	CSS:	The	Definitive	Guide
(O’Reilly),	and	CSS2.0	Programmer’s	Reference	(Osborne/McGraw-Hill),	as	well	as	numerous	articles
for	the	O’Reilly	Network,	Web	Techniques,	and	Web	Review,	Eric	also	created	the	CSS	Browser
Compatibility	Charts	and	coordinated	the	authoring	and	creation	of	the	W3C’s	official	CSS	Test	Suite.	He
has	lectured	to	a	wide	variety	of	organizations,	including	Los	Alamos	National	Laboratory,	the	New	York
Public	Library,	Cornell	University,	and	the	University	of	Northern	Iowa.	Eric	has	also	delivered
addresses	and	technical	presentations	at	numerous	conferences,	among	them	An	Event	Apart	(which	he
cofounded),	the	IW3C2	WWW	series,	Web	Design	World,	CMP,	SXSW,	the	User	Interface	conference
series,	and	The	Other	Dreamweaver	Conference.

In	his	personal	time,	Eric	acts	as	list	chaperone	of	the	highly	active	css-discuss	mailing	list,	which	he
cofounded	with	John	Allsopp	of	Western	Civilisation,	and	which	is	now	supported	by	evolt.org.	Eric
lives	in	Cleveland,	Ohio,	which	is	a	much	nicer	city	than	you’ve	been	led	to	believe.	For	nine	years	he
was	the	host	of	“Your	Father’s	Oldsmobile,”	a	big-band	radio	show	heard	weekly	on	WRUW	91.1	FM	in
Cleveland.

You	can	find	more	detailed	information	on	Eric’s	personal	web	page.
	

How	does	someone	get	to	be	the	author	of	Flexbox	in	CSS,	Transitions	and	Animations	in	CSS,	and
Mobile	HTML5	(O’Reilly),	and	coauthor	of	CSS3	for	the	Real	World	(SitePoint)?	For	Estelle	Weyl,	the
journey	was	not	a	direct	one.	She	started	out	as	an	architect,	used	her	master’s	degree	in	health	and	social
behavior	from	the	Harvard	School	of	Public	Health	to	lead	teen	health	programs,	and	then	began	dabbling
in	website	development.	By	the	time	Y2K	rolled	around,	she	had	become	somewhat	known	as	a	web
standardista	at	http://www.standardista.com.

Today,	she	writes	a	technical	blog	that	pulls	in	millions	of	visitors,	and	speaks	about	CSS3,	HTML5,
JavaScript,	accessibility,	and	mobile	web	development	at	conferences	around	the	world.	In	addition	to
sharing	esoteric	programming	tidbits	with	her	reading	public,	Estelle	has	consulted	for	Kodak	Gallery,
SurveyMonkey,	Visa,	Samsung,	Yahoo!,	and	Apple,	among	others.	She	is	currently	the	Open	Web
Evangelist	for	Instart	Logic,	a	platform	that	helps	make	web	application	delivery	fast	and	secure.

When	not	coding,	she	spends	her	time	doing	construction,	striving	to	remove	the	last	remnants	of
communal	hippiedom	from	her	1960s-throwback	home.	Basically,	it’s	just	one	more	way	Estelle	is

http://www.complexspiral.com
http://bit.ly/css-tdg-3e
http://www.css-discuss.org
http://evolt.org
http://www.meyerweb.com/eric
http://www.standardista.com

working	to	bring	the	world	into	the	21st	century.

	1. CSS Fundamentals
	A Brief History of (Web) Style
	Stylesheet Contents
	Rule Structure
	Vendor prefixing
	Whitespace Handling
	CSS Comments
	Markup

	Elements
	Replaced and Nonreplaced Elements
	Element Display Roles

	Bringing CSS and HTML Together
	The link Tag
	The style Element
	The @import Directive
	HTTP Linking
	Inline Styles

	Summary

	2. Selectors
	Basic Style Rules
	Type Selectors

	Grouping
	Grouping Selectors
	Grouping Declarations
	Grouping Everything

	Class and ID Selectors
	Class Selectors
	Multiple Classes
	ID Selectors
	Deciding Between Class and ID

	Attribute Selectors
	Simple Attribute Selectors
	Selection Based on Exact Attribute Value
	Selection Based on Partial Attribute Values
	The Case Insensitivity Identifier

	Using Document Structure
	Understanding the Parent-Child Relationship
	Descendant Selectors
	Selecting Children
	Selecting Adjacent Sibling Elements
	Selecting Following Siblings

	Summary

	3. Pseudo-Class and -Element Selectors
	Pseudo-Class Selectors
	Combining Pseudo-Classes
	Structural Pseudo-Classes
	Location Pseudo-Classes
	UI-State Pseudo-Classes
	The :lang and :dir Pseudo-Classes
	Logical Pseudo-Classes
	The :has() pseudo-class
	Other pseudo-classes

	Pseudo-Element Selectors
	Styling the First Letter
	Styling the First Line
	Restrictions on ::first-letter and ::first-line
	The Placeholder Text Pseudo-Element
	The Form Button Pseudo-ELement
	Styling (or Creating) Content Before and After Elements
	Highlight pseudo-elements
	The backdrop pseudo-element
	The video-cue pseudo-element

	Shadow Pseudo-classes and -Elements
	Shadow pseudo-classes
	Shadow pseudo-elements

	Summary

	4. Specificity, Inheritance, and the Cascade
	Specificity
	Declarations and Specificity
	Resolving multiple matches
	Zeroed Selector Specificity
	ID and Attribute Selector Specificity
	Importance

	Inheritance
	The Cascade
	Sorting by Importance and Origin
	Sorting by Element Attachment
	Sorting by Cascade Layer
	Sorting by Specificity
	Sorting by Order
	Non-CSS Presentational Hints

	Summary

	5. Values and Units
	Keywords, Strings, and Other Text Values
	Keywords
	The all property
	Strings
	Identifiers
	URLs
	Images

	Numbers and Percentages
	Integers
	Numbers
	Percentages
	Fractions

	Distances
	Absolute Length Units
	Resolution Units
	Relative Length Units
	Root-relative length units

	Function values
	Calculation values
	Maximum Values
	Minimum Values
	Clamping Values
	Attribute Values

	Color
	Named Colors
	Color Keywords
	Colors by RGB and RGBa
	HSL and HSLa colors
	Colors with HWB
	Lab colors
	LCH colors
	Oklab and Oklch
	color()
	Applying Color
	Affecting Form Elements
	Inheriting Color

	Angles
	Time and Frequency
	Ratios
	Position
	Custom Properties
	Custom property fallbacks

	Summary

	6. Basic Visual Formatting
	Basic Boxes
	A Quick Primer
	The Containing Block

	Altering Element Display
	Changing Roles
	Block Boxes

	Logical element sizing
	Content-based sizing values
	Minimum and maximum logical sizing
	Height and Width

	Altering box sizing
	Block-Axis Properties
	Auto block sizing
	Percentage Heights
	Handling Content Overflow
	Negative Margins and Collapsing
	Collapsing Block Axis Margins

	Inline-Axis Formatting
	Inline-axis Properties
	Using auto
	More Than One auto
	Too Many autos
	Negative Margins
	Percentages
	Replaced Elements
	List Items

	Box Sizing With Aspect Ratios
	Inline Formatting
	Line Layout
	Basic Terms and Concepts
	Line Heights
	Inline Nonreplaced Elements
	Building the Boxes
	Vertical Alignment
	Managing the line-height
	Scaling Line Heights
	Adding Box Properties
	Changing Breaking Behavior
	Glyphs Versus Content Area
	Inline Replaced Elements
	Adding Box Properties
	Replaced Elements and the Baseline
	Inline-Block Elements
	Flow Display
	Contents Display
	Other Display Values

	Element Visibility
	Animating visibility

	Summary

	7. Padding, Borders, Outlines, and Margins
	Basic Element Boxes
	Padding
	Replicating Values
	Single-Side Padding
	Logical Padding
	Percentage Values and Padding
	Padding and Inline Elements
	Padding and Replaced Elements

	Borders
	Borders with Style
	Border Widths
	Logical border widths
	Border Colors
	Logical border colors
	Transparent borders
	Single-Side Shorthand Border Properties
	Global Borders
	Borders and Inline Elements
	Rounding Border Corners
	Image Borders

	Outlines
	Outline Styles
	Outline Width
	Outline Color
	How They Are Different

	Margins
	Length Values and Margins
	Percentages and Margins
	Single-Side Margin Properties
	Margin Collapsing
	Negative Margins
	Margins and Inline Elements

	Summary

	8. Backgrounds and Gradients
	Background Colors
	Clipping the Background
	Background Images
	Using an image
	Good background practices
	Background Positioning
	Changing the offset edges
	Changing the Positioning Box
	Background Repeating (or Lack Thereof)
	Repeating and positioning
	Spacing and rounding
	Tiling and clipping
	Getting Attached
	Useful side effects
	Sizing Background Images
	Bringing It All Together
	Multiple Backgrounds
	Using the background shorthand

	Gradients
	Linear Gradients
	Radial Gradients
	Conic Gradients
	Conic color stops
	Manipulating Gradient Images

	Box Shadows
	Summary

	9. Floating and Positioning
	Floating
	Floated Elements
	Floating: The Details
	Applied Behavior
	Floats, Content, and Overlapping

	Clearing
	Positioning
	Types of Positioning
	The Containing Block
	Offset Properties
	Inset Shorthands
	Setting Width and Height
	Limiting Width and Height

	Absolute Positioning
	Containing Blocks and Absolutely Positioned Elements
	Placement and Sizing of Absolutely Positioned Elements
	Auto-edges
	Placing and Sizing Nonreplaced Elements
	Placing and Sizing Replaced Elements
	Placement on the Z-Axis

	Fixed Positioning
	Relative Positioning
	Sticky Positioning
	Summary

	10. Fonts
	Font Families
	Using Generic Font Families

	Using @font-face
	Font-face Descriptors
	Restricting character range
	Font display
	Combining Descriptors

	Font Weights
	Font Size
	Absolute Sizes
	Relative Sizes
	Percentages and Sizes
	Automatically Adjusting Size

	Font Style
	The font-style descriptor

	Font Stretching
	The font-stretch Descriptor

	Font Synthesis
	Font Variants
	Capital font variants
	Numeric font variants
	Ligature variants
	Alternate variants
	East Asian font variants
	Font variant position

	Font Feature Settings
	The font-feature-settings Descriptor

	Font-variation-settings
	font-optical-sizing
	Override descriptors
	Font Kerning
	The font Property
	Font Property Limitations
	Adding the Line Height
	Using Shorthands Properly
	Using System Fonts

	Font Matching
	Summary

	11. Text Properties
	Indentation and Inline Alignment
	Indenting Text
	Text Alignment
	Aligning the Last Line
	Word Spacing
	Letter Spacing
	Spacing and Alignment

	Vertical Alignment
	The Height of Lines
	Vertically Aligning Text

	Text Transformation
	Text Decoration
	Text decoration line placement
	Setting text decoration color
	Setting text decoration thickness
	Setting text decoration style
	The text decoration shorthand property
	Offsetting underlines
	Skipping Ink
	Weird Decorations

	Text Rendering
	Text Shadows
	Emphasizing Text
	Setting emphasis style
	Changing emphasis color
	Placing emphasis marks
	The text-emphasis shorthand
	Text drawing order

	Handling Whitespace
	Setting Tab Sizes

	Wrapping and Hyphenation
	Hyphenation
	Word breaking
	Line breaking
	Wrapping Text

	Writing Modes
	Setting Writing Modes
	Changing Text Orientation
	Combining characters
	Declaring Direction

	Summary

	About the Authors

