OREILLY"

CSS |

The Definitive Guide

Visual Styling for the Web

Early

Reledse

RAW &
UNEDITED

Eric A. Meyer
& Estelle Weyl

CSS: The Definitive Guide

FIFTH EDITION

Visual Styling for the Web

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official release
of these titles.

Eric A. Meyer and Estelle Weyl

CSS: The Definitive Guide

by Eric A. Meyer and Estelle Weyl

Copyright © 2023 Eric Meyer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Rita Fernando
Production Editor: Elizabeth Faerm
Interior Designer: David Futato
Cover Designer: Karen Montgomery

[lustrator: Kate Dullea

May 2000: First Edition
March 2004: Second Edition
November 2006: Third Edition
November 2017: Fourth Edition
Revision History for the Fifth Edition
e 2022-07-25: First Release
e 2(022-08-25: Second Release
e 2022-11-22: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449393199 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. CSS: The Definitive Guide, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449393199

licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-11755-9
[TO COME]

Chapter 1. CSS Fundamentals

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official release
of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active
later on.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at rfernando@oreilly.com.

Cascading Style Sheets (CSS) is a powerful programming language that transforms the presentation of a
document or a collection of documents, and it has spread to nearly every corner of the web as well as
many ostensibly non-web environments. For example, embedded-device displays often use CSS to style
their user interfaces, many RSS clients let you apply CSS to feeds and feed entries, and some instant
message clients use CSS to format chat windows. Aspects of CSS can be found in the syntax used by
JavaScript frameworks, and even in JavaScript itself. It’s everywhere!

A Brief History of (Web) Style

CSS was first proposed in 1994, just as the web was beginning to really catch on. At the time, browsers
gave all sorts of styling power to the user—the presentation preferences in Mosaic, for example,
permitted font family, size, and color to be defined by the user on a per-element basis. None of this was
available to document authors; all they could do was mark a piece of content as a paragraph, as a heading
of some level, as preformatted text, or one of a dozen other element types. If a user configured their
browser to make all level-one headings tiny and pink and all level-six headings huge and red, well, that
was their lookout.

It was into this milieu that CSS was introduced. Its goal was to provide a simple, declarative styling
language that was flexible for authors and, most importantly, provided styling power to authors and users
alike. By means of the “cascade,” these styles could be combined and prioritized so that both authors and
readers had a say—though readers always had the last say.

Work quickly advanced, and by late 1996, CSS1 was finished. While the newly established CSS Working
Group moved forward with CSS2, browsers struggled to implement CSS1 in an interoperable way.
Although each piece of CSS was fairly simple on its own, the combination of those pieces created some
surprisingly complex behaviors. There were also some unfortunate missteps in early implementations,
such as the infamous discrepancy in box model implementations. These problems threatened to derail
CSS altogether, but fortunately some clever proposals were implemented, and browsers began to
harmonize. Within a few years, thanks to increasing interoperability and high-profile developments such

mailto:rfernando@oreilly.com

as the CSS-based redesign of Wired magazine and the CSS Zen Garden, CSS began to catch on.

Before all that happened, though, the CSS Working Group had finalized the CSS2 specification in early
1998. Once CSS2 was finished, work immediately began on CSS3, as well as a clarified version of CSS2
called CSS2.1. In keeping with the spirit of the times, CSS3 was constructed as a series of (theoretically)
standalone modules instead of a single monolithic specification. This approach reflected the then-active
XHTML specification, which was split into modules for similar reasons.

The rationale for modularizing CSS3 was that each module could be worked on at its own pace, and
particularly critical (or popular) modules could be advanced along the W3C’s progress track without
being held up by others. Indeed, this has turned out to be the case. By early 2012, three CSS3 modules
(along with CSS1 and CSS 2.1) had reached full Recommendation status—CSS Color Level 3, CSS
Namespaces, and Selectors Level 3. At that same time, seven modules were at Candidate
Recommendation status, and several dozen others were in various stages of Working Draft-ness. Under
the old approach, colors, selectors, and namespaces would have had to wait for every other part of the
specification to be done or cut before they could be part of a completed specification. Thanks to
modularization, they didn’t have to wait.

The flip side of that advantage is that it’s hard to speak of a single “CSS3 specification.” There isn’t any
such thing, nor can there be. Even if every other CSS module had reached level 3 by, say, late 2016 (they
didn’t), there was already a Selectors Level 4 in process. Would we then speak of it as CSS4? What
about all the “CSS3” features still coming into play? Or Grid Layout, which had not then even reached
Level 1? That’s why this book is a definitive guide for “CSS” as a whole — because there really is no
such thing as CSS3.

So while we can’t really point to a single tome and say, “There is CSS3,” we can talk of features by the
module name under which they are introduced. The flexibility permitted by modules more than makes up
for the semantic awkwardness they sometimes create. (If you want something approximating a single
monolithic specification, the CSS Working Group publishes yearly “Snapshot” documents.)

With that established, we’re ready to start understanding CSS. Let’s start by covering the basics of what
goes inside a stylesheet.

Stylesheet Contents

Inside a stylesheet, you’ll find a number of rules which are comprised of selectors and declaration
blocks, the latter of which are made up of one or more declarations that are themselves made up of
property and value combinations. All put together, they look a little something like this:

hi {color: maroon;}
body {background: yellow;}

Styles such as these comprise the bulk of any stylesheet—simple or complex, short or long. But which
parts are which, and what do they represent?

Rule Structure

To illustrate the concept of rules in more detail, let’s break down the structure.

Each rule has two fundamental parts: the selector and the declaration block. The declaration block is
composed of one or more declarations, and each declaration is a pairing of a property and a value.
Every stylesheet is made up of a series of rules. Figure 1-1 shows the parts of a rule.

Selector Declaration ‘ o Declaration

| |
h1 {lcolor: red;| [background: yellow;|}

|
Property Value Property Value
Figure 1-1. The structure of a rule

The selector, shown on the left side of the rule, defines which piece of the document will be selected for
styling. In Figure 1-1, h1 (heading level 1) elements are selected. If the selector were p, then all p
(paragraph) elements would be selected.

The right side of the rule contains the declaration block, which is made up of one or more declarations.
Each declaration is a combination of a CSS property and a value of that property. In Figure 1-1, the
declaration block contains two declarations. The first states that this rule will cause parts of the document
to have a color of red, and the second states that part of the document will have a background of
yellow. So, all of the h1 elements in the document (defined by the selector) will be styled in red text
with a yellow background.

Vendor prefixing

Sometimes you’ll see pieces of CSS with dashes and labels in front of them, like this: -0-border -
image. These are called vendor prefixes, and are a way for browser vendors to mark properties, values,
or other bits of CSS as being experimental or proprietary (or both). As of early 2022, there were a few
vendor prefixes in the wild, with the most common being shown in Table 1-1.

Table 1-1. Some common vendor prefixes

Prefix Vendor

-epub- International Digital Publishing Forum ePub format
-moz- Morzilla-based browsers (e.g., Firefox)

-ms - Microsoft Internet Explorer

-0- Opera-based browsers

-webkit- WebKit-based browsers (e.g., Safari and Chrome)

As Table 1-1 implies, the generally accepted format of a vendor prefix is a dash, a label, and a dash,
although a few prefixes erroneously omit the first dash.

The uses and abuses of vendor prefixes are long, tortuous, and beyond the scope of this book. Suffice to
say that they started out as a way for vendors to test out new features, thus helping speed interoperability
without worrying about being locked into legacy behaviors that were incompatible with other browsers.
This avoided a whole class of problems that nearly strangled CSS in its infancy. Unfortunately, prefixed
properties were then publicly deployed by web authors and ended up causing a whole new class of
problems.

As of early 2022, vendor-prefixed CSS features are nearly non-existent, with old prefixed properties and
values being slowly but steadily removed from browser implementations. It’s quite likely that you’ll
never write prefixed CSS, but you may encounter it in the wild, or inherit it in a legacy codebase. Here’s
an example:

-webkit-transform-origin: 0 0;
-moz-transform-origin: 0 0O;
-o-transform-origin: 0 0;
transform-origin: 0 0;

That’s saying the same thing four times: once each for the WebKit, Mozilla (Firefox), and Opera browser
lines, and then finally the CSS-standard way. Again, this is no longer really necessary. We’re only
including it here to give you an idea of what it might look like, should you come across this in the future.

Whitespace Handling

CSS is basically insensitive to whitespace between rules, and largely insensitive to whitespace within
rules, although there are a few exceptions.

In general, CSS treats whitespace just like HTML does: any sequence of whitespace characters is
collapsed to a single space for parsing purposes. Thus, you can format the hypothetical rainbow rule in
the following ways:

rainbow: infrared red orange vyellow green blue indigo violet wultraviolet;

rainbow:
infrared red orange vyellow green blue indigo violet ultraviolet;

rainbow:
infrared
red
orange
yellow
green
blue
indigo
violet
ultraviolet

4

...as well as any other separation patterns you can think up. The only restriction is that the separating
characters be whitespace: an empty space, a tab, or a newline, alone or in combination, as many as you
like.

Similarly, you can format series of rules with whitespace in any fashion you like. These are just five
examples out of an effectively infinite number of possibilities:

html{color:black;}
body {background: white;}

p {
color: gray;}
h2 {
color : silver ;
}
ol
{
color
silver
}

As you can see from the first rule, whitespace can be largely omitted. Indeed, this is usually the case with
minified CSS, which is CSS that’s had every last possible bit of extraneous whitespace removed, usually
by an automated server-side script of some sort. The rules after the first two use progressively more
extravagant amounts of whitespace until, in the last rule, pretty much everything that can be separated onto
its own line has been.

All of these approaches are valid, so you should pick the formatting that makes the most sense—that is, is
easiest to read—in your eyes, and stick with it.

CSS Comments

CSS does allow for comments. These are very similar to C/C++ comments in that they are surrounded by
/* and */:

/* This is a CSS1 comment */

Comments can span multiple lines, just as in C++:

/* This is a CSS1 comment, and it
can be several lines long without
any problem whatsoever. */

It’s important to remember that CSS comments cannot be nested. So, for example, this would not be
correct:

/* This is a comment, in which we find
another comment, which is WRONG
/* Another comment */
and back to the first comment */

WARNING

One way to create “nested” comments accidentally is to temporarily comment out a large block of a stylesheet that already contains a
comment. Since CSS doesn’t permit nested comments, the “outside” comment will end where the “inside” comment ends.

Unfortunately, there is no “rest of the line” comment pattern such as // or # (the latter of which is
reserved for ID selectors anyway). The only comment pattern in CSS is /* */.
Therefore, if you wish to place comments on the same line as markup, then you need to be careful about
how you place them. For example, this is the correct way to do it:

hi {color: gray;} /* This CSS comment is several lines */
h2 {color: silver;} /* long, but since it is alongside */
p {color: white;} /* actual styles, each line needs to */
pre {color: gray;} /* be wrapped in comment markers. */

Given this example, if each line isn’t marked off, then most of the stylesheet will become part of the
comment and thus will not work:

hi {color: gray;} /* This CSS comment 1is several lines
h2 {color: silver;} long, but since it 1is not wrapped

p {color: white;} in comment markers, the last three
pre {color: gray,} styles are part of the comment. */

In this example, only the first rule (h1 {color: gray; }) will be applied to the document. The rest
of the rules, as part of the comment, are ignored by the browser’s rendering engine.

NOTE

CSS comments are treated by the CSS parser as if they do not exist at all, and so do not count as whitespace for parsing purposes. This
means you can put them into the middle of rules—even right inside declarations!

Markup

There is no markup in stylesheets. This might seem obvious, but you’d be surprised. The one exception is
HTML comment markup, which is permitted inside style elements for historical reasons:

<style><!--

hi {color: maroon;}

body {background: yellow, }
--></style>

That’s it, and even that isn’t recommended any more — the browsers that needed it have faded into near-
oblivion.

Speaking of markup, it’s time to take a very slight detour to talk about the elements that our CSS will be
used to style, and how those can be affected by CSS in the most fundamental ways.

Elements

Elements are the basis of document structure. In HTML, the most common elements are easily
recognizable, such as p, table, span, a, and article. Every single element in a document plays a
part in its presentation.

Replaced and Nonreplaced Elements

Although CSS depends on elements, not all elements are created equally. For example, images and
paragraphs are not the same type of element. In CSS, elements generally take two forms: replaced and
nonreplaced.

Replaced elements

Replaced elements are those where the element’s content is replaced by something that is not directly
represented by document content. Probably the most familiar HTML example is the img element, which
is replaced by an image file external to the document itself. In fact, img has no actual content, as you can
see in this simple example:

This markup fragment contains only an element name and an attribute. The element presents nothing unless
you point it to some external content (in this case, an image file whose location is given by the Src
attribute). If you point to a valid image file, the image will be placed in the document. If not, the browser
will either display nothing or will show a “broken image” placeholder.

Similarly, the input element can also be replaced—by a radio button, checkbox, text input box, or other,
depending on its type.

Nonreplaced elements

The majority of HTML elements are nonreplaced elements. This means that their content is presented by
the user agent (generally a browser) inside a box generated by the element itself. For example,
hi there is a nonreplaced element, and the text “hi there” will be displayed by the
user agent. This is true of paragraphs, headings, table cells, lists, and almost everything else in HTML.

Element Display Roles

CSS has two basic display roles: block formatting context and inline formatting context. There are
many more display types, but these are the most basic, and the types to which most if not all other display
types refer. The block and inline contexts will be familiar to authors who have spent time with HTML
markup and its display in web browsers. The elements are illustrated in Figure 1-2.

T () ement 5.l emen, he ongly emphasizd et e lent
il e e necessany. The oot ot of e elmets s e o
clneat,Theconen e e el v 4 one belong o el e

Figure 1-2. Block- and inline-level elements in an HIML document

_

Block-level elements

By default, block-level elements generate an element box that (by default) fills its parent element’s
content area and cannot have other elements at its sides. In other words, it generates “breaks” before and
after the element box. The most familiar block elements from HTML are p and div. Replaced elements
can be block-level elements, but usually they are not.

In CSS, this is referred to as an element generating a block formatting context. It also means that the
element generates a block outer display type. The parts inside the element may have different display

types.

Inline-level elements

By default, inline-level elements generate an element box within a line of text and do not break up the
flow of that line. The best inline element example is the a element in HTML. Other candidates are
strong and em. These elements do not generate a “break” before or after themselves, so they can
appear within the content of another element without disrupting its display.

In CSS, this is referred to as an element generating an inline formatting context. It also means that the
element generated an inline outer display type. The parts inside the element may have different display
types. (In CSS, there is no restriction on how display roles can be nested within each other.)

To see how this works, let’s consider the CSS property display.

DISPLAY

Values [<display-outside> | <display-inside>]| <display-listitem> | <display-internal> | <display-box> |
<display-legacy>

Definitions See below
Initial value inline
Applies to All elements

Computed value As specified
Inherited No

Animatable No

<display-outside>

block |inline|run-in

<display-inside>

flow|flow-root |table|flex|grid|ruby

<display-listitem>

list-item && <display-outside>? && [flow |flow-root]?

<display-internal >

table-row-group|table-header-group|table-footer-group|table-row|
table-cell |table-column-group|table-column|table-caption|ruby-
base |ruby-text |ruby-base-container |ruby-text-container

<display-box>

contents |none

<display-legacy>

inline-block|inline-list-item|inline-table|inline-flex|inline-
grid

You may have noticed that there are a lot of values here, only two of which we’ve mentioned: block and
inline. Most of these values will be dealt with elsewhere in the book; for example, grid and
inline-grid will be covered in a separate chapter about grid layout, and the table-related values are
all covered in a chapter on CSS table layout.

For now, let’s just concentrate on block and inline. Consider the following markup:

<body>
<p>This is a paragraph with an inline element within it.</p>
</body>

Here we have two elements (body and p) that are generating block formatting contexts, and one element

(em) with an inline formatting context. According to the HTML specification, em can descend from p, but
the reverse is not true. Typically, the HTML hierarchy works out so that inlines descend from blocks, but

not the other way around.

CSS, on the other hand, has no such restrictions. You can leave the markup as it is but change the display
roles of the two elements like this:

p {display: inline;}
em {display: block;}

This causes the elements to generate a block box inside an inline box. This is perfectly legal and violates
no part of CSS.

While changing the display roles of elements can be useful in HTML documents, it becomes downright
critical for XML documents. An XML document is unlikely to have any inherent display roles, so it’s up
to the author to define them. For example, you might wonder how to lay out the following snippet of XML:

<book>

<maintitle>The Victorian Internet</maintitle>

<subtitle>The Remarkable Story of the Telegraph and the Nineteenth Century's On-Line
Pioneers</subtitle>

<author>Tom Standage</author>

<publisher>Bloomsbury Pub Plc USA</publisher>

<pubdate>February 25, 2014</pubdate>

<isbn type="isbn-13">9781620405925</isbn>

<isbn type="ishbn-10">162040592X</isbn>

</book>

Since the default value of display is inline, the content would be rendered as inline text by default,
as illustrated in Figure 1-3. This isn’t a terribly useful display.

'h

The Victorian Internet The Remarkable Story of the Telegraph
and the Nineteenth Century's On-Line Proneers Tom Standage
Bloomsbury Pub Plc USA February 29, 2014 9781620403925
162040592X

Figure 1-3. Default display of an XML document

You can define the basics of the layout with display:

book, maintitle, subtitle, author, isbn {display: block;}
publisher, pubdate {display: inline;}

We’ve now set five of the seven elements to be block and two to be inline. This means each of the block
elements will generate its own block formatting context, and the two inlines will generate their own inline
formatting contexts.

We could take the preceding rules as a starting point, add a few other styles for greater visual impact, and
get the result shown in Figure 1-4.

The Victorian Internet
The Remarkable Story of the Telegraph and the

Ningteenth Century's On-Line Pronegrs

Tom Standage

Bloomsbury Pub Plc USA (February 25, 2014)
[SBN-13 9781620403923

[SBN-10 162040392X

Figure 1-4. Styled display of an XML document

That said, before learning how to write CSS in detail, we need to look at how one can associate CSS with
a document. After all, without tying the two together, there’s no way for the CSS to affect the document.
We’ll explore this in an HTML setting since it’s the most familiar.

Bringing CSS and HTML Together

We’ve mentioned that HTML documents have an inherent structure, and that’s a point worth repeating. In
fact, that’s part of the problem with web pages of old: too many of us forgot that documents are supposed
to have an internal structure, which is altogether different than a visual structure. In our rush to create the
coolest-looking pages on the web, we bent, warped, and generally ignored the idea that pages should
contain information with some structural meaning.

That structure is an inherent part of the relationship between HTML and CSS; without it, there couldn’t be
a relationship at all. To understand it better, let’s look at an example HTML document and break it down
by pieces:

<!DOCTYPE html>
<html>
<head>
<title>Eric's World of Waffles</title>
<meta charset="utf-8">
<link rel="stylesheet" media="screen, print" href="sheetl.css">
<style>
/* These are my styles! Yay! */
@import url(sheet2.css);
</style>
</head>
<body>
<hi>waffles!</h1>
<p style="color: gray;">The most wonderful of all breakfast foods is
the waffle—a ridged and cratered slab of home-cooked, fluffy goodness
that makes every child's heart soar with joy. And they're so easy to make!
Just a simple waffle-maker and some batter, and you're ready for a morning
of aromatic ecstasy!
</p>
</body>
</html>

The result of this markup and the applied styles is shown in Figure 1-5.

The st vonderul of ezt o 5 he watfe~a idge and
e i o home oo,y sodess at s ey chlds et o wi
0. And ey e A o e st sl - ad some e, our
ALY o A ming f aoma s

J

Figure 1-5. A simple document

Now, let’s examine the various ways this document connects to CSS.

The link Tag

First, consider the use of the 1ink tag:

<link rel="stylesheet" href="sheetl.css" media="screen, print">

The 11ink tag’s basic purpose is to allow HTML authors to associate other documents with the document
containing the 11nk tag. CSS uses it to link stylesheets to the document; in Figure 1-6, a stylesheet called
sheet1.css is linked to the document.

These stylesheets, which are not part of the HTML document but are still used by it, are referred to as
external stylesheets. This is because they’re stylesheets that are external to the HTML document. (Go
figure.)

To successfully load an external stylesheet, 1ink should be placed inside the head element, though it
can also appear inside the body element. This will cause the web browser to locate and load the
stylesheet and use whatever styles it contains to render the HTML document in the manner shown in

Figure 1-6.
Also shown in Figure 1-6 is the loading of the external sheet2.css via an @1mpor t declaration. Imports

must be placed at the beginning of the stylesheet that contains them.

<!DOCTYEE htnl>

il body {background: white; font: medium serif;}

hl {color: blue;]

a:11nk {color: navy; text-decoration: underling;]

p {margin-left: 3¢; margin-right: 10%;}

p:first-line {font-size; 120%; font-weight: bold;
color: hlack;)

p.footnote {font-size: smaller;)

blockquote {font-style: italic;)

blockquote em {font-style: normal;)

pre, code, tt {color: gray; font-famly: monospace;)

Sheet10ss

<head

<titledEric's World of Waffles</titled

<neta charset="ut{-6"
Clink rel="stylesheet" media="screen print’
href="sheet1. css"
(style type="text/css™
[* These are my styles! Yay! ¥
fimport url (sheet2. css) ;
hl {color: silver;}
styled

[head>

<body>

DWiaffles!</hD> hl |

< style="color: qray;">The most wondsrful of font-size: LEen;

all breakfast foods 15 the waffle-a ridged and WRTRULLENG- i S
cratered slab of hone-cooked, fluffy goodness ﬁl:first-let:er |

that makes every child's heart soar with joy. font-size: 125%:

And they're so easy to make! Just a simple

waffle-naker and sone batter, and you're ready

for a morning of aromatic ecstasy! Sheem.css

Ip>
<[hody>
{/htnl>

index.himl

Figure 1-6. A representation of how external stylesheets are applied to documents

And what is the format of an external stylesheet? It’s a list of rules, just like those we saw in the previous
section and in the example HTML document; but in this case, the rules are saved into their own file. Just
remember that no HTML or any other markup language can be included in the stylesheet—only style rules.
Here are the contents of an external stylesheet:

hi {color: red;}

h2 {color: maroon; background: white;}

h3 {color: white; background: black;
font: medium Helvetica;}

That’s all there is to it—no HTML markup or comments at all, just plain-and-simple style declarations.
These are saved into a plain-text file and are usually given an extension of .css, as in sheet1.css.

WARNING

An external stylesheet cannot contain any document markup at all, only CSS rules and CSS comments. The presence of markup in an
external stylesheet can cause some or all of it to be ignored.

Attributes

For the rest of the 11ink tag, the attributes and values are fairly straightforward. rel stands for
“relation,” and in this case, the relation is stylesheet. Note that the rel attribute is required. There
is an optional type attribute whose default value is text/css, so you can include
type="text/css" or leave it out, whichever you prefer.

These attribute values describe the relationship and type of data that will be loaded using the 1ink tag,
That way, the web browser knows that the stylesheet is a CSS stylesheet, a fact that will determine how
the browser will deal with the data it imports. (There may be other style languages used in the future. In
such a future, if you are using a different style language, the type attribute will need to be declared.)

Next, we find the href attribute. The value of this attribute is the URL of your stylesheet. This URL can
be either absolute or relative; that is, either relative to the URL of the document containing the URL, or
else a complete URL that points to a unique location on the web. In our example, the URL is relative. It
just as easily could have been something absolute, like http://meyerweb.com/sheet1.css.

Finally, we have a media attribute. The value of this attribute is one or more media descriptors, which
are rules regarding media types and the features of those media, with each rule separated by a comma.
Thus, for example, you can use a linked stylesheet in both screen and print media:

<link rel="stylesheet" href="visual-sheet.css" media="screen, print">

Media descriptors can get quite complicated, and are explained in detail later in the chapter. For now,
we’ll stick with the basic media types shown. The default value is all, which means the CSS will be
applied in all media.

Note that there can be more than one linked stylesheet associated with a document. In these cases, only
those 1ink tags witha rel of stylesheet will be used in the initial display of the document. Thus, if
you wanted to link two stylesheets named basic.css and splash.css, it would look like this:

<link rel="stylesheet" href="basic.css'">
<link rel="stylesheet" href="splash.css">

This will cause the browser to load both stylesheets, combine the rules from each, and apply them all to
the document in all media types (because the media attribute was omitted, its default value all is used).
For example:

<link rel="stylesheet" href="basic.css">
<link rel="stylesheet" href="splash.css">

<p class="al">This paragraph will be gray only if styles from the
stylesheet 'basic.css' are applied.</p>
<p class="bl1">This paragraph will be gray only if styles from the
stylesheet 'splash.css' are applied.</p>

The one attribute that isn’t in this example markup, but could be, is the title attribute. This attribute is
not often used, but it could become important in the future and, if used improperly, can have unexpected
effects. Why? We’ll explore that in the next section.

Alternate stylesheets

It’s also possible to define alternate stylesheets that users can select in some browsers. These are
defined by making the value of the rel attribute alternate stylesheet, and they are used in
document presentation only if selected by the user.

Should a browser be able to use alternate stylesheets, it will use the values of the 11nk element’s
title attributes to generate a list of style alternatives. So you could write the following:

<link rel="stylesheet" href="sheetl.css" title="Default'">
<link rel="alternate stylesheet" href="bigtext.css" title="Big Text">
<link rel="alternate stylesheet" href="zany.css" title="Crazy colors!">

Users could then pick the style they want to use, and the browser would switch from the first one, labeled
“Default” in this case, to whichever the user picked. Figure 1-7 shows one way in which this selection
mechanism might be accomplished (and in fact was, early in the resurgence of CSS).

& File Edit Go Bookmarks Tools Window Help

Show/Hide P hffles - Mozilla {Build ID: 2002052917} =——F1 &
Stop

Reload 3R

Text Zoom (100%) P

Basic Page Style
CH%racter Coding b+ Default d and cratered slab of home-coolked
p " sy | BigText [they!

Crazy colors!

Page Source el
Page Info |

Apply Theme |

[l ©5 | pocument: Done (0197 zecs) = =

Figure 1-7. A browser offering alternate stylesheet selection

NOTE

As of early 2022, alternate stylesheets were supported in most Gecko-based browsers like Firefox, and in Opera. The Chromium and
WebKit families did not support selecting alternate stylesheets. Compare this to the build date of the browser shown in Figure 1-7, which is
late 2002.

It’s also possible to group alternate stylesheets together by giving them the same title value. Thus, you
make it possible for the user to pick a different presentation for your site in both screen and print media:

<link rel="stylesheet"

href="sheetl.css" title="Default" media='"screen">
<link rel="stylesheet"

href="print-sheetl.css" title="Default" media="print">
<link rel="alternate stylesheet"

href="bigtext.css" title="Big Text" media="screen">
<link rel="alternate stylesheet"

href="print-bigtext.css" title="Big Text" media="print">

If a user selects “Big Text” from the alternate stylesheet selection mechanism in a conforming user agent,
then bigtext.css will be used to style the document in the screen medium, and print-bigtext.css will be
used in the print medium. Neither sheet1.css nor print-sheet1.css will be used in any medium.

Why is that? Because if you give a 1ink witha rel of stylesheet atitle, then you are designating
that stylesheet as a preferred stylesheet. This means that its use is preferred to alternate stylesheets, and it
will be used when the document is first displayed. Once you select an alternate stylesheet, however, the
preferred stylesheet will not be used.

Furthermore, if you designate a number of stylesheets as preferred, then all but one of them will be
ignored. Consider the following code example:

<link rel="stylesheet"

href="sheetl.css" title="Default Layout">
<link rel="stylesheet"

href="sheet2.css" title="Default Text Sizes'">
<link rel="stylesheet"

href="sheet3.css" title="Default Colors">

All three 11nk elements now refer to preferred stylesheets, thanks to the presence of a title attribute
on all three, but only one of them will actually be used in that manner. The other two will be ignored
completely. Which two? There’s no way to be certain, as HTML doesn’t provide a method of determining
which preferred stylesheets should be ignored and which should be used.

If you don’t give a stylesheet a title, then it becomes a persistent stylesheet and is always used in the
display of the document. Often, this is exactly what an author wants, especially since alternate stylesheets
are not widely supported, and almost completely unknown to users.

The style Element

The style element is one way to include a stylesheet, and it appears in the document itself:

<style>...</style>

The styles between the opening and closing style tags are referred to as the document stylesheet or the
embedded stylesheet (because this kind of stylesheet is embedded within the document). It contains styles
that apply to the document, but it can also contain multiple links to external stylesheets using the
@import directive, discussed in the next section.

You can give style elements a media attribute, which functions in the same manner as it does on
linked stylesheets. This, for example, will restrict an embedded stylesheet’s rules to be applied in print
media only.

<style media="print">.</style>

You can also label an embedded stylesheet witha title element, in the same manner and for the same
reasons discussed in the previous section on alternate stylesheets.

As with the 11nk element, the Style element can use the attribute type; in the case of a CSS
document, the correct value is "text/css'". The type attribute is optional in HTMLS5 as long as
you’re loading CSS, because the default value for the type attribute on the style element is
text/css. It would only be necessary to explicitly declare a type value if you were using some other
styling language, perhaps in a future where such a thing in supported. For the time being, though, it
remains wholly optional.

The @import Directive
Now we’ll discuss the stuff that is found inside the style tag. First, we have something very similar to
link: the @import directive:

@import url(sheet2.css);

Just like 1ink, @import can be used to direct the web browser to load an external stylesheet and use
its styles in the rendering of the HTML document. The only major difference is in the syntax and
placement of the command. As you can see, @import is found inside the style element. It must be

placed first, before the other CSS rules, or it won’t work at all. Consider this example:

<style>

@import url(styles.css); /* @import comes first */
hli {color: gray;}

</style>

Like 1ink, there can be more than one @import statement in a document. Unlike 1ink, however, the
stylesheets of every @impor t directive will be loaded and used; there is no way to designate alternate
stylesheets with @import. So, given the following markup:

@import url(sheet2.css);
@import url(blueworld.css);
@import url(zany.css);

...all three external stylesheets will be loaded, and all of their style rules will be used in the display of
e document.

As with 11nk, you can restrict imported stylesheets to one or more media by providing media
descriptors after the stylesheet’s URL:

@import url(sheet2.css) all;
@import url(blueworld.css) screen;
@import url(zany.css) screen, print;

As noted in “The link Tag”, media descriptors can get quite complicated, and are explained in detail in
XREF HERE.

@import can be highly useful if you have an external stylesheet that needs to use the styles found in other
external stylesheets. Since external stylesheets cannot contain any document markup, the 1ink element
can’t be used—but @impor t can. Therefore, you might have an external stylesheet that contains the
following:

@import url(http://example.org/library/layout.css);
@import url(basic-text.css);

@import url(printer.css) print;

body {color: red;}

hi {color: blue;}

Well, maybe not those exact styles, but hopefully you get the idea. Note the use of both absolute and
relative URLs in the previous example. Either URL form can be used, just as with 1ink.

Note also that the @import directives appear at the beginning of the stylesheet, as they did in the

example document. CSS requires the @impor t directive to come before any other rules in a stylesheet.
An @import that comes after other rules (e.g., body {color: red; }) will be ignored by conforming
user agents.

WARNING

Older versions of Internet Explorer for Windows do not ignore any @import directive, even those that come after other rules. Since other
browsers do ignore improperly placed @impor t directives, it is easy to mistakenly place the @import directive incorrectly and thus alter
the display in other browsers.

There is another descriptor that can be added to an @import directive, which is a cascade layer
identifier. This assigns all of the styles in the imported stylesheet to a cascade layer, which is a concept
we’ll explore in Chapter 4. It l1ooks like this:

@import url(basic-text.css) screen layer(basic);

That assigns the styles from basic-text.css to the basic cascade layer. If you want to just assign
the styles to an un-named layer, use layer without the parenthetical naming, like so:

@import url(basic-text.css) screen layer;

Note that this ability is a difference between @import and 1ink, as the latter cannot be labeled with a
cascade layer.

HTTP Linking

There is another, far more obscure way to associate CSS with a document: you can link the two via HTTP
headers.

Under Apache, this can be accomplished by adding a reference to the CSS file in a .htaccess file. For
example:

Header add Link "</ui/testing.css>;rel=stylesheet;type=text/css"

This will cause supporting browsers to associate the referenced stylesheet with any documents served
from under that .htaccess file. The browser will then treat it as if it were a linked stylesheet.
Alternatively, and probably more efficiently, you can add an equivalent rule to the server’s httpd.conf
file:

<Directory /path/to/ /public/html/directory>
Header add Link "</ui/testing.css>;rel=stylesheet;type=text/css"
</Directory>

The effect is exactly the same in supporting browsers. The only difference is in where you declare the
linking.

You probably noticed the use of the term “supporting browsers.” As of early 2022, the widely used
browsers that support HTTP linking of stylesheets are the Firefox family and Opera. That restricts this

technique mostly to development environments based on one of those browsers. In such a situation, you
can use HTTP linking on the test server to mark when you’re on the development site as opposed to the

public site. It’s also an interesting way to hide styles from the Chromium, WebKit, and Internet Explorer
families, assuming you have a reason to do so.

NOTE

There are equivalents to this technique in common scripting languages such as PHP and IIS, both of which allow the author to emit HTTP
headers. It’s also possible to use such languages to explicitly write 1ink elements into the document based on the server offering up the
document. This is a more robust approach in terms of browser support: every browser supports the 1ink element.

Inline Styles

For cases where you want to just assign a few styles to one individual element, without the need for
embedded or external stylesheets, it’s possible to employ the HTML attribute style:

<p style="color: gray;">The most wonderful of all breakfast foods is
the waffle—a ridged and cratered slab of home-cooked, fluffy goodness...
</p>

The style attribute can be associated with any HTML tag whatsoever, even tags found outside of body
(head or title, for instance).

The syntax of a style attribute is fairly ordinary. In fact, it looks very much like the declarations found
in the style container, except here the curly braces are replaced by double quotation marks. So <p
style="color: maroon; background: yellow; "> will set the text color to be maroon and the
background to be yellow for that paragraph only. No other part of the document will be affected by this
declaration.

Note that you can only place a declaration block, not an entire stylesheet, inside an inline style
attribute. Therefore, you can’t put an @import into a style attribute, nor can you include any complete
rules. The only thing you can put into the value of a style attribute is what might go between the curly
braces of a rule.

Use of the style attribute is discouraged. Many of the primary advantages of CSS—the ability to
organize centralized styles that control an entire document’s appearance or the appearance of all
documents on a web server—are negated when you place styles into a Style attribute. In many ways,
inline styles are not much better than the ancient font tag, even if they do have a good deal more
flexibility in terms of what visual effects they can apply.

Summary

With CSS, it is possible to completely change the way elements are presented by a user agent. This can be
executed at a basic level with the display property, and in a different way by associating stylesheets
with a document. The user will never know whether this is done via an external or embedded stylesheet,
or even with an inline style. The real importance of external stylesheets is the way in which they allow
authors to put all of a site’s presentation information in one place, and point all of the documents to that

place. This not only makes site updates and maintenance a breeze, but it helps to save bandwidth, since
all of the presentation is removed from documents.

To make the most of the power of CSS, authors need to know how to associate a set of styles with the
elements in a document. To fully understand how CSS can do all of this, authors need a firm grasp of the
way CSS selects pieces of a document for styling, which is the subject of the next few chapters.

Chapter 2. Selectors

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official release
of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active
later on.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at rfernando@oreilly.com.

One of the primary advantages of CSS is its ability to easily apply a set of styles to all elements of the
same type. Unimpressed? Consider this: by editing a single line of CSS, you can change the colors of all
your headings. Don’t like the blue you’re using? Change that one line of code, and they can all be purple,
yellow, maroon, or any other color you desire. That lets you, the author, focus on design and user
experience rather than tedious find-and-replace operations. The next time you’re in a meeting and
someone wants to see headings with a different shade of green, just edit your style and hit Reload. Voila!
The results are accomplished in seconds and there for everyone to see.

Basic Style Rules

As stated, a central feature of CSS is its ability to apply certain rules to an entire set of element types in a
document. For example, let’s say that you want to make the text of all h2 elements appear gray. Before we
had CSS, you’d have to do this by inserting ... tags inside all
your h2 elements. Applying inline styles using the sty le attribute, which is also bad practice, would
require you to include style="color: gray;" inall your h2 elements, like this:

<h2 style="color: gray;">This is h2 text</h2>

This will be a tedious process if your document contains a lot of h2 elements. Worse, if you later decide
that you want all those h2s to be green instead of gray, you’d have to start the manual tagging all over
again. (Yes, this is really how it used to be done!)

CSS allows you to create rules that are simple to change, edit, and apply to all the text elements you
define (the next section will explain how these rules work). For example, you can write this rule once to
make all your h2 elements gray:

h2 {color: gray;}

mailto:rfernando@oreilly.com

Type Selectors

A type selector, previously known as an element selector, is most often an HTML element, but not
always. For example, if a CSS file contains styles for an XML document, the type selectors might look
something like this:

quote {color: gray;}

bib {color: red;}
booktitle {color: purple;}
myElement {color: red;}

In other words, the elements of the document are the node types being selected. In XML, a selector could
be anything because XML allows for the creation of new markup languages that can have just about
anything as an element name. If you’re styling an HTML document, on the other hand, the selector will
generally be one of the many HTML elements such as p, h3, em, a, or even html itself. For example:

html {color: black;}
hi {color: gray;}
h2 {color: silver;}

The results of this stylesheet are shown in Figure 2-1.
Plutonium

Useful for many applications, plutonium can also be dangerous if improperly handled.

When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It's best to avoid using plutonium at all if it can be avoided.
Figure 2-1. Simple styling of a simple document

Once you’ve globally applied styles directly to elements, you can shift those styles from one element to
another. Let’s say you decide that the paragraph text, not the h1 elements, in Figure 2-1 should be gray.
No problem. Just change the h1 selector to p:

html {color: black;}
p {color: gray;}
h2 {color: silver;}

The results are shown in Figure 2-2.

Plutonium

Useful for many applications, plutonium can also be dangerous if improperly handled.

When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It’s best to avoid using plutonium at all if it can be avoided.

Figure 2-2. Moving a style from one element to another

Grouping

So far, we’ve seen fairly simple techniques for applying a single style to a single selector. But what if you
want the same style to apply to multiple elements? Grouping allows an author to drastically compact
certain types of style assignments, which makes for a shorter stylesheet.

Grouping Selectors

Let’s say you want both h2 elements and paragraphs to have gray text. The easiest way to accomplish this
is to use the following declaration:

h2, p {color: gray;}

By placing the h2 and p selectors at the beginning of the rule, before the opening curly brace, and
separating them with a comma, you’ve defined a rule where the style inside the curly braces (color :
gray) applies to the elements referenced by both selectors. The comma tells the browser that there are
two different selectors involved in the rule. Leaving out the comma would give the rule a completely
different meaning, which we’ll explore in “Descendant Selectors”.

The following alternatives produce exactly the same result, but one is a lot easier to type:

hi {color: purple;}
h2 {color: purple;}
h3 {color: purple;}
h4 {color: purple;}
h5 {color: purple;}
hé {color: purple;}

hi, h2, h3, h4, h5, h6 {color: purple;}

The second alternative, with one with the grouped selector, is also a lot easier to maintain over time.

The universal selector

The universal selector, displayed as an asterisk (*), matches any element at all, much like a wildcard.
For example, to make every single element in a document bold, you would write:

* {font-weight: bold;}

This declaration is equivalent to a grouped selector that lists every element contained within the
document. The universal selector lets you assign the font -weight value bold to every element in the
document in one efficient stroke. Beware, however: although the universal selector is convenient because
it targets everything within its declaration scope, it can have unintended consequences, which are
discussed in Chapter 4.

Grouping Declarations

Just as you can group selectors together into a single rule, you can also group declarations. Assuming that
you want all h1l elements to appear in purple, 18-pixel-high Helvetica text on an aqua background (and
you don’t mind blinding your readers), you could write your styles like this:

hi {font: 18px Helvetica;}
hi {color: purple;}
hi {background: aqua;}

But this method is inefficient—imagine creating such a list for an element that will carry 10 or 15 styles!
Instead, you can group your declarations together:

hi {font: 18px Helvetica; color: purple; background: aqua;}

This will have exactly the same effect as the three-line stylesheet just shown.

Note that using semicolons at the end of each declaration is crucial when you’re grouping them. Browsers
ignore whitespace in stylesheets, so the user agent must rely on correct syntax to parse the stylesheet. You
can fearlessly format styles like the following:

hl {
font: 18px Helvetica;
color: purple;
background: aqua;

}

You can also minimize your CSS, removing all non-required spaces.

hi{font:18px Helvetica;color:purple;background:aqua;}

The last three examples are treated equally by the server, but the second one is generally regarded as the
most human-readable, and the recommended method of writing your CSS during development. You might
choose to minimize your CSS for network-performance reasons, but this is usually automatically handled
by a build tool, server-side script, caching network, or other service, so you’re usually better off writing
your CSS in a human-readable fashion.

If the semicolon is omitted on the second statement, the user agent will interpret the stylesheet as follows:

hl {
font: 18px Helvetica;
color: purple background: aqua;

}

Because background: is not a valid value for color, a user agent will ignore the color declaration
(including the background: aqua part) entirely. You might think the browser would at least render
hls as purple text without an aqua background, but not so. Instead, they will be the default color (which
is usually black) with a transparent background (which is also a default). The declaration font: 18px
Helvetica will still take effect since it was correctly terminated with a semicolon.

TIP

Although it is not technically necessary to follow the last declaration of a rule with a semicolon in CSS, it is generally good practice to do so.
First, it will keep you in the habit of terminating your declarations with semicolons, the lack of which is one of the most common causes of
rendering errors. Second, if you decide to add another declaration to a rule, you won’t have to worry about forgetting to insert an extra
semicolon.

As with selector grouping, declaration grouping is a convenient way to keep your stylesheets short,
expressive, and easy to maintain.

Grouping Everything

You now know that you can group selectors and you can group declarations. By combining both kinds of
grouping in single rules, you can define very complex styles using only a few statements. Now, what if
you want to assign some complex styles to all the headings in a document, and you want the same styles to
be applied to all of them? Here’s how to do it:

hi, h2, h3, h4, h5, h6 {color: gray; background: white; padding: 0.5em;
border: 1px solid black; font-family: Charcoal, sans-serif;}

Here we’ve grouped the selectors, so the styles inside the curly braces will be applied to all the headings
listed; grouping the declarations means that all of the listed styles will be applied to the selectors on the
left side of the rule. The result of this rule is shown in Figure 2-3.

Plutonium

Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It’s best to avoid using plutonium at all if it can be avoided.

Figure 2-3. Grouping both selectors and rules

This approach is preferable to the drawn-out alternative, which would begin with something like this:

hi {color: gray;}
h2 {color: gray;}
h3 {color: gray;}
h4 {color: gray;}
h5 {color: gray;}
hé {color: gray;}
hi {background: white;}
h2 {background: white;}
h3 {background: white;}

...and continue for many lines. You can write out your styles the long way, but we don’t recommend it—
edltlng them would be about as tedious as using Sty le attributes everywhere!

Grouping allows for some interesting choices. For example, all of the groups of rules in the following
example are equivalent—each merely shows a different way of grouping both selectors and declarations:

/* group 1 */

hi {color: silver; background: white;}
h2 {color: silver; background: gray;}
h3 {color: white; background: gray;}
h4 {color: silver; background: white;}
b {color: gray; background: white;}

/* group 2 */

hi, h2, h4 {color: silver;}
h2, h3 {background: gray;}

hi, h4, b {background: white;}
h3 {color: white;}

b {color: gray;}

/* group 3 */

hi, h4 {color: silver; background: white;}
h2 {color: silver;}

h3 {color: white;}

h2, h3 {background: gray;}

b {color: gray; background: white;}

Any of these three approaches to grouping selectors and declarations will yield the result shown in
Figure 2-4.

Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

It's best to avoid using plutonium at all if it can be avoided.
Figure 2-4. The result of equivalent stylesheets

Class and ID Selectors

So far, we’ve been grouping selectors and declarations together in a variety of ways, but the selectors
we’ve been using are very simple ones that refer only to document elements. Type selectors are fine up to
a point, but there are times when you need something a little more focused.

In addition to type selectors, there are class selectors and ID selectors, which let you assign styles in a
way that is independent of element type. These selectors can be used on their own or in conjunction with
type selectors. However, they only work if you’ve marked up your document appropriately, so using them
generally involves a little forethought and planning.

For example, say a document contains a number of warnings. You want each warning to appear in
boldface text so that it will stand out. However, you don’t know which elements these warnings will be.
Some warnings could be entire paragraphs, while others could be a single item within a lengthy list or a
few words in a section of text. So, you can’t define a rule using type selectors of any kind. Suppose you
tried this route:

p {
font-weight: bold,;

color: red;

}

All paragraphs would be red and bold, not just those that contain warnings. You need a way to select only
the text that contains warnings — or, more precisely, a way to select only those elements that are

warnings. How do you do it? You apply styles to parts of the document that have been marked in a certain
way, independent of the elements involved, by using class selectors.

Class Selectors

The most common way to apply styles without worrying about the elements involved is to use class
selectors. Before you can use them, however, you need to modify your actual document markup so that the
class selectors will work. Enter the class attribute:

<p class="warning">When handling plutonium, care must be taken to avoid

the formation of a critical mass.</p>

<p>With plutonium, the possibility of implosion is
very real, and must be avoided at all costs. This can be accomplished
by keeping the various masses separate.</p>

To associate the styles of a class selector with an element, you must assign a class attribute the
appropriate value. In the previous code block, a class value of warning was assigned to two
elements: the first paragraph and the span element in the second paragraph.

To apply styles to these classed elements, you can use a compact notation where the name of a class is
preceded by a period (.):

*.warning {font-weight: bold;}

When combined with the example markup shown earlier, this simple rule has the effect shown in Figure 2-
5. That is, the declaration font -weight: bold will be applied to every element that carries a
class attribute with a value of warning.

L
Plutonium
Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken to avoid the formation of a critical
mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It's best to avoid using plutonium at all if it can be avoided.

Figure 2-5. Using a class selector

As Figure 2-5 illustrates, the class selector works by directly referencing a value that will be found in the
class attribute of an element. This reference is always preceded by a period (.), which marks it as a
class selector. The period helps keep the class selector separate from anything with which it might be
combined, such as a type selector. For example, you may want boldface warning text only when an entire

paragraph is a warning:

p.warning {font-weight: bold;}

The selector now matches any p elements that have a class attribute containing the word warning, but
no other elements of any kind, classed or otherwise. Since the Span element is not a paragraph, the rule’s
selector doesn’t match it, and it won’t be displayed using boldfaced text.

If you wanted to assign different styles to the Span element, you could use the selector

span.warning:

p.warning {font-weight: bold;}
span.warning {font-style: italic;}

In this case, the warning paragraph is boldfaced, while the warning span is italicized. Each rule applies
only to a specific type of element/class combination, so it does not leak over to other elements.

Another option is to use a combination of a general class selector and an element-specific class selector
to make the styles even more useful, as in the following markup:

.warning {font-style: italic;}
span.warning {font-weight: bold;}

The results are shown in Figure 2-6.
Plutonium

Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It's best to avoid using plutonium at all if it can be avoided.

Figure 2-6. Using generic and specific selectors to combine styles

In this situation, any warning text will be italicized, but only the text within a Span element with a
class of warning will be both boldfaced and italicized.

TIP

Notice the format of the general class selector used in the previous example: it’s a class name preceded by a period, and without an
element name or universal selector. In cases where you only want to select all elements that share a class name, you can omit the universal
selector from a class selector without any ill effects. Thus, * .warning and .warning will have exactly the same effect.

Another thing about class names: they should never begin with a number. Browsers will allow you to get
away with this, but CSS validators will complain, and it’s a bad habit to get into. Thus, you should write
.C8675 in your CSS and class="c8675" in your HTML, rather than . 8675 and class="8675".
If you must refer to classes that begin with numbers, put a backslash between the period and the first
number, like so: . \8675.

Multiple Classes

In the previous section, we dealt with class values that contained a single word. In HTML, it’s possible
to have a space-separated list of words in a single class value. For example, if you want to mark a
particular element as being both urgent and a warning, you could write:

<p class="urgent warning">When handling plutonium, care must be taken to
avoid the formation of a critical mass.</p>

<p>With plutonium, the possibility of implosion is
very real, and must be avoided at all costs. This can be accomplished
by keeping the various masses separate.</p>

The order of the words doesn’t matter; warning urgent would also work and would yield precisely
the same results no matter how your CSS is written.

Now let’s say you want all elements witha class of warning to be boldfaced, those witha class of
urgent to be italic, and those elements with both values to have a silver background. This would be
written as follows:

.warning {font-weight: bold;}
.urgent {font-style: italic;}
.warning.urgent {background: silver;}

By chaining two class selectors together, you can select only those elements that have both class names, in
any order. As you can see, the HTML source contains class="urgent warning" but the CSS
selector is written .warning.urgent. Regardless, the rule will still cause the “When handling
plutonium... ” paragraph to have a silver background, as illustrated in Figure 2-7. This happens because
the order the words are written in the source document, or in the CSS, doesn’t matter. (This is not to say
the order of classes is always irrelevant, but we’ll get to that later in the chapter.)

L
Plutonium
Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken to avoid the formation of a critical
mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It's best to avoid using plutonium at all if it can be avoided.

Figure 2-7. Selecting elements with multiple class names

If a multiple class selector contains a name that is not in the space-separated list, then the match will fail.
Consider the following rule:

p.warning.help {background: red;}

As you might expect, the selector will match only those p elements with a class containing the words
warning and help. Therefore, it will not match a p element with just the words warning and
urgent inits class attribute. It would, however, match the following:

<p class="urgent warning help">Help me!</p>

ID Selectors

In some ways, ID selectors are similar to class selectors, but there are a few crucial differences. First, ID
selectors are preceded by an octothorpe (#)—also known as a pound sign (in the US), hash sign, hash
mark, or tic-tac-toe board—instead of a period. Thus, you might see a rule like this one:

*#first-para {font-weight: bold;}

This rule produces boldfaced text in any element whose id attribute has a value of first-para.

The second difference is that instead of referencing values of the class attribute, ID selectors refer,
sensibly enough, to values found in id attributes. Here’s an example of an ID selector in action:

*#lead-para {font-weight: bold;}

<p id="lead-para'>This paragraph will be boldfaced.</p>
<p>This paragraph will NOT be bold.</p>

Note that the value 1ead-para could have been assigned to any element within the document. In this
particular case, it is applied to the first paragraph, but we could have applied it just as easily to the

second or third paragraph. Or an unordered list. Or anything.

The third difference is that there should only be one instance of a given ID value in a document. If you find
yourself wanting to apply the same ID to multiple elements in a document, make it a class instead.

As with class selectors, it is possible (and very much the norm) to omit the universal selector from an ID
selector. In the previous example, we could also have written with the exact same effect:

#lead-para {font-weight: bold;}

This is useful for circumstances where you know that a certain ID value will appear in a document, but
you don’t know the element type on which it will appear. For example, you may know that in any given
document, there will be an element with an ID value of nostImportant. You don’t know whether that
most important thing will be a paragraph, a short phrase, a list item, or a section heading. You know only
that it will exist in each document, occur in an arbitrary element, and appear no more than once. In that
case, you would write a rule like this:

#mostImportant {color: red; background: yellow;}

This rule would match any of the following elements (which, as noted before, should not appear together
in the same document because they all have the same ID value):

<hl id="mostImportant">This is important!</hi>
<em id="mostImportant">This is important!
<ul id="mostImportant">This is important!

While HTML standards say each 1d must be unique in a document, CSS doesn’t care. If we had
erroneously included the HTML shown just now, all three would likely be red with a yellow background
because all three match the #mostImportant selector.

NOTE

As with class names, IDs should never start with numbers. If you must refer to an ID that begins with a number and you cannot change the
ID value in the markup, use a backslash before the first number, as in #\309.

Deciding Between Class and ID

You may assign classes to any number of elements, as demonstrated earlier; the class name warning
was applied to both a p and a span element, and it could have been applied to many more elements. ID
values, on the other hand, should be used once, and only once, within an HTML document. Therefore, if
you have an element with an 1d value of 1ead-para, no other element in that document should have an
id value of 1lead-para.

That’s according to the HTML specification, anyway. As noted previously, CSS doesn’t care if your
HTML is valid or not: it should find however many elements a selector can match. That means that if you
sprinkle an HTML document with several elements, all of which have the same value for their ID

attributes, you should get the same styles applied to each.

NOTE

Having more than one of the same ID value in a document also makes DOM scripting more difficult, since functions like
getElementById() depend on there being one, and only one, element with a given ID value.

Unlike class selectors, ID selectors can’t be combined with other IDs, since ID attributes do not permit a
space-separated list of words. An ID selector can be combined with itself, though:
#warning#warning will match the element with an 1d value of warning. This should rarely, if
ever, be done, but it is possible.

Another difference between class and i1d names is that IDs carry more weight when you’re trying to
determine which styles should be applied to a given element. This will be explained in greater detail in

Chapter 4.

Also note that HTML defines class and ID values to be case-sensitive, so the capitalization of your class
and ID values must match what’s found in your documents. Thus, in the following pairing of CSS and
HTML, the element’s text will not be boldfaced:

p.criticalInfo {font-weight: bold;}

<p class="criticalinfo">Don't look down.</p>

Because of the change in case for the letter i, the selector will not match the element shown.

On a purely syntactical level, the dot-class notation (e.g., .warning) is not guaranteed to work for XML
documents. As of this writing, the dot-class notation works in HTML, SVG, and MathML, and it may well
be permitted in future languages, but it’s up to each language’s specification to decide that. The hash-ID
notation (e.g., #1ead) should work in any document language that has an attribute whose value is
supposed to be unique within a document.

Attribute Selectors

With both class and ID selectors, what you’re really doing is selecting values of elements’ attributes. The
syntax used in the previous two sections is particular to HTML, SVG, and MathML documents as of this
writing. In other markup languages, these class and ID selectors may not be available (as, indeed, those
attributes may not be present). To address this situation, CSS2 introduced attribute selectors, which can
be used to select elements based on their attributes and the values of those attributes. There are four
general types of attribute selectors: simple attribute selectors, exact attribute value selectors, partial-
match attribute value selectors, and leading-value attribute selectors.

Simple Attribute Selectors

If you want to select elements that have a certain attribute, regardless of that attribute’s value, you can use

a simple attribute selector. For example, to select all h1l elements that have a class attribute with any
value and make their text silver, write:

hi[class] {color: silver;}

So, given the following markup:

<hl class="hoopla">Hello</h1>
<hi>Serenity</h1>
<h1l class="fancy">Fooling</h1>

you get the result shown in Figure 2-8.

Serenity

Figure 2-8. Selecting elements based on their attributes

This strategy is very useful in XML documents, as XML languages tend to have element and attribute
names that are specific to their purpose. Consider an XML language that is used to describe planets of the
solar system (we’ll call it PlanetML). If you want to select all pml-planet elements with a moons
attribute and make them boldface, thus calling attention to any planet that has moons, you would write:

pml-planet[moons] {font-weight: bold,;}

This would cause the text of the second and third elements in the following markup fragment to be
boldfaced, but not the first:

<pml-planet>Venus</pml-planet>
<pml-planet moons="1">Earth</pml-planet>
<pml-planet moons="2">Mars</pml-planet>

In HTML documents, you can use this feature in a number of creative ways. For example, you could style
all images that have an alt attribute, thus highlighting those images that are correctly formed:

img[alt] {outline: 3px solid forestgreen;}

This particular example is generally useful more for diagnostic purposes—that is, determining whether
images are indeed correctly marked up—than for design purposes.

If you wanted to boldface any element that includes tit1le information, which most browsers display as
a “tool tip” when a cursor hovers over the element, you could write:

*[title] {font-weight: bold;}

Similarly, you could style only those anchors (a elements) that have an href attribute, thus applying the
styles to any hyperlink but not to any placeholder anchors.

It is also possible to select elements based on the presence of more than one attribute. You do this by
chaining the attribute selectors together. For example, to boldface the text of any HTML hyperlink that has
bothan href and a title attribute, you would write:

alhref][title] {font-weight: bold;}

This would boldface the first link in the following markup, but not the second or third:

W3C

Standards Info

dead.letter

Selection Based on Exact Attribute Value

You can further narrow the selection process to encompass only those elements whose attributes are a
certain value. For example, let’s say you want to boldface any hyperlink that points to a certain document
on the web server. This would look something like:

alhref="http://www.css-discuss.org/about.html"] {font-weight: bold;}

This will boldface the text of any a element that has an href attribute with exactly the value
http://www.css-discuss.org/about.html. Any change at all, even dropping the www . part or changing to a
secure protocol with https, will prevent a match.

Any attribute and value combination can be specified for any element. However, if that exact combination
does not appear in the document, then the selector won’t match anything. Again, XML languages can
benefit from this approach to styling. Let’s return to our PlanetML example. Suppose you want to select
only those planet elements that have a value of 1 for the attribute moons:

planet[moons="1"] {font-weight: bold,;}

This would boldface the text of the second element in the following markup fragment, but not the first or
third:

<planet>Venus</planet>
<planet moons="1">Earth</planet>
<planet moons="2">Mars</planet>

As with attribute selection, you can chain together multiple attribute-value selectors to select a single
document. For example, to double the size of the text of any HTML hyperlink that has both an href with
a value of https://www.w3.org/ and a title attribute with a value of W3C Home, you would write:

alhref="https://www.w3.0rg/"][title="W3C Home"] {font-size: 200%;}

http://www.css-discuss.org/about.html
https://www.w3.org/

This would double the text size of the first link in the following markup, but not the second or third:

W3C

<a href="https://developer.mozilla.org"
title="Mozilla Developer Network">Standards Info

confused.link

The results are shown in Figure 2-9.

Standards Info
confused Jink

Figure 2-9. Selecting elements based on attributes and their values

Again, this format requires an exact match for the attribute’s value. Matching becomes an issue when an
attribute selector encounters values that can, in turn, contain a space-separated list of values (e.g., the
HTML attribute class). For example, consider the following markup fragment:

<planet type="barren rocky'">Mercury</planet>

The only way to match this element based on its exact attribute value is to write:

planet[type="barren rocky"] {font-weight: bold;}

If you were to write planet[type="barren"], the rule would not match the example markup and
thus would fail. This is true even for the class attribute in HTML. Consider the following:

<p class="urgent warning">When handling plutonium, care must be taken to
avoid the formation of a critical mass.</p>

To select this element based on its exact attribute value, you would have to write:

p[class="urgent warning"] {font-weight: bold;}

This is not equivalent to the dot-class notation covered earlier, as we will see in the next section. Instead,
it selects any p element whose class attribute has exactly the value "urgent warning", with the
words in that order and a single space between them. It’s effectively an exact string match, whereas when
using class selector, the class order doesn’t matter.

Also, be aware that ID selectors and attribute selectors that target the 1d attribute are not precisely the
same. In other words, there is a subtle but crucial difference between hl#page-title and
hi[id="page-title"]. This difference is explained in Chapter 4.

Selection Based on Partial Attribute Values

Odds are that you’ll sometimes want to select elements based on portions of their attribute values, rather
than the full value. For such situations, CSS offers a variety of options for matching substrings in an
attribute’s value. These are summarized in Table 2-1.

Table 2-1. Substring matching with attribute selectors

Type Description

[foo~="bar"] Selects any element with an attribute foo whose value contains the word bar in a space-separated list of words
[foo*="bar"] Selects any element with an attribute f00 whose value contains the substring bar

[foor="bar"] Selects any element with an attribute foo whose value begins with bar

[foo$="bar"] Selects any element with an attribute foo whose value ends with bar

[foo|="ba Selects any element with an attribute foo whose value starts with bar followed by a dash (U+002D) or whose value
r'] is exactly equal to bar

The last of these attribute selectors that match on a partial subset of an element’s attribute value is actually
easier to show than it is to describe. Consider the following rule:

*[lang|="en"] {color: white;}

This rule will select any element whose 1ang attribute is equal to en or begins with en -. Therefore, the
first three elements in the following example markup would be selected, but the last two would not:

<h1l lang="en">Hello!</h1>
<p lang="en-us">Greetings!</p>
<div lang="en-au">G'day!</div>
<p lang="fr'">Bonjour!</p>
<h4 lang="cy-en'">Jrooana!</h4>

In general, the form [att |="val"] canbe used for any attribute and its values. Let’s say you have a
series of figures in an HTML document, each of which has a filename like figure-1.gif and figure-3.jpg.
You can match all of these images using the following selector:

img[src|="figure"] {border: 1px solid gray;}

Or, if you're creating a CSS framework or pattern library, instead of creating redundant classes like
"btn btn-small btn-arrow btn-active", youcandeclare "btn-small-arrow-
active", and target the class of elements with:

*[class|="btn"] { border-radius: 5px;}

<button class="btn-small-arrow-active">Click Me</button>

The most common use for this type of attribute selector is to match language values, as demonstrated in an
upcoming section, “The :lang and :dir Pseudo-Classes”.

Matching one word in a space-separated list

For any attribute that accepts a space-separated list of words, it is possible to select elements based on
the presence of any one of those words. The classic example in HTML is the class attribute, which can
accept one or more words as its value. Consider our usual example text:

<p class="urgent warning">When handling plutonium, care must be taken to
avoid the formation of a critical mass.</p>

Let’s say you want to select elements whose class attribute contains the word warning. You cando
this with an attribute selector:

p[class~="warning"] {font-weight: bold;}

Note the presence of the tilde (~) in the selector. It is the key to selection based on the presence of a
space-separated word within the attribute’s value. If you omit the tilde, you would have an exact value-
matching attribute selector, as discussed in the previous section.

This selector construct is equivalent to the dot-class notation discussed in “Deciding Between Class and
ID”. Thus, p.warning and p[class~="warning"] are equivalent when applied to HTML
documents. Here’s an example that is an HTML version of the “PlanetML” markup seen earlier:

Mercury
Venus
<spanh class="life-bearing cloudy">Earth

To italicize all elements with the word barren intheir class attribute, you write:

span[class~="barren"] {font-style: italic;}

This rule’s selector will match the first two elements in the example markup and thus italicize their text,
as shown in Figure 2-10. This is the same result we would expect from writing Span.barren
{font-style: italic;}.

Mercury Venus Earth

Figure 2-10. Selecting elements based on portions of attribute values

So why bother with the tilde-equals attribute selector in HTML? Because it can be used for any attribute,
not just class. For example, you might have a document that contains a number of images, only some of
which are figures. You can use a partial-match value attribute selector aimed at the tit1le text to select
only those figures:

img[title~="Figure"] {border: 1px solid gray;}

This rule selects any image whose title text contains the word Figure (but not figure, as class
names are case-sensitive). Therefore, as long as all your figures have title text that looks something
like “Figure 4. A bald-headed elder statesman,” this rule will match those images. For that matter, the
selector img[title~="Figure"] will also match a title attribute with the value “How to Figure Out
Who’s in Charge.” Any image that does not have a title attribute, or whose title value doesn’t
contain the word “Figure,” won’t be matched.

Matching a substring within an attribute value

Sometimes you want to select elements based on a portion of their attribute values, but the values in
question aren’t space-separated lists of words. In these cases, you can use the asterisk-equals substring
matching form [attr*="val"] to match substrings that appear anywhere inside the attribute values.
For example, the following CSS matches any span element whose class attribute contains the
substring cloud, so both “cloudy” planets are matched, as shown in Figure 2-11:

span[class*="cloud"] {font-style: italic;}

Mercury
Venus
Earth

Mercury Venus Earth

Figure 2-11. Selecting elements based on substrings within attribute values

Note the presence of the asterisk (*) in the selector. It’s the key to selecting elements based on the
presence of a substring within an attribute’s value. To be clear, it is not related to the universal selector,
other than it uses the same character.

As you can imagine, there are many useful applications for this particular capability. For example,
suppose you wanted to specially style any links to the World Wide Web Consortium’s website. Instead of
classing them all and writing styles based on that class, you could instead write the following rule:

alhref*="w3.0org"] {font-weight: bold,;}

You aren’t confined to the class and href attributes. Any attribute is up for grabs here: title, alt,
src, id...if the attribute has a value, you can style based on a substring within that value. The following
rule draws attention to any image with the string “ space” in its source URL:

img[src*="space"] {outline: 5px solid red;}

Similarly, the following rule draws attention to <input> elements that have a title telling the user what
to do, along with any other input whose title contains the substring “format” in its title:

input[title*="format"] {background-color: #dedede;}

<input type="tel"
title="Telephone number should be formatted as XXX-XXX-XXXX"
pattern="\d{3}\-\d{3}\-\d{4}">

A common use for the general substring attribute selector is to match a section of a class in pattern library
class names. Elaborating on the last example, we can target any class name that starts with "btn"
followed by a dash, and that contains the substring “arrow” preceded by a dash, by using the pipe-
equals attribute selector:

[class|="btn"][class="-arrow"] { content: "v";}

<button class="btn-small-arrow-active'">Click Me</button>

The matches are exact: if you include whitespace in your selector, then whitespace must also be present in
an attribute’s value. The attribute names and values must be case-sensitive only if the underlying
document language requires case sensitivity. Class names, titles, URLs, and ID values are all case-
sensitive, but HTML attribute keyword values, such as input types, are not:

input[type="CHeckBoX"] {margin-right: 10px;}

<input type="checkbox" name="rightmargin" value="10px'">

Matching a substring at the beginning of an attribute value

In cases where you want to select elements based on a substring at the beginning of an attribute value, then
the caret-equals attribute selector pattern [attA="val"] is what you’re seeking. This can be
particularly useful in a situation where you want to style types of links differently, as illustrated in

Figure 2-12.

alhrefA="https:"] {font-weight: bold,;}
alhrefA="mailto:"] {font-style: italic;}

W3C home page

My banking login screen
O’Reillv & Associates home page
Send mail to me @ example.com
Wikipedia (English)

Figure 2-12. Selecting elements based on substrings that begin attribute values

Another use case is when you want to style all images in an article that are also figures, as in the figures
you see throughout this text. Assuming that the alt text of each figure begins with text in the pattern “Figure
5”—which is an entirely reasonable assumption in this case—then you can select only those images with
the caret-equals attribute selector:

img[altAr="Figure"] {border: 2px solid gray; display: block; margin: 2em auto;}

The potential drawback here is that any img element whose alt starts with “Figure” will be selected,
whether or not it’s meant to be an illustrative figure. The likeliness of that occurring depends on the
document in question.

Another use case is selecting all of the calendar events that occur on Mondays. In this case, let’s assume
all of the events have a title attribute containing a date in the format “Monday, March 5th, 2012.”
Selecting them all is a simple matter of [titleA="Monday"].

Matching a substring at the end of an attribute value

The mirror image of beginning-substring matching is ending-substring matching, which is accomplished
using the [att$="val"] pattern. A very common use for this capability is to style links based on the
kind of resource they target, such as separate styles for PDF documents, as illustrated in Figure 2-13.

a[href$=".pdf"] {font-weight: bold;}

Home page
FA
Printable instructions

Detailed warranty
Contact us

Figure 2-13. Selecting elements based on substrings that end attribute values

Similarly, you could (for whatever reason) select images based on their image format with the dollar-
equals attribute selector:

img[src$=".gif"] {...}
img[src$=".jpg"] {...}
img[src$=".png"] {...}

To continue the calendar example from the previous section, it would be possible to select all of the
events occurring within a given year using a selector like [title$="2015"].

NOTE

You may have noticed that we’ve quoted all the attribute values in the attribute selectors. Quoting is required if the value includes any
special characters, begins with a dash or digit, or is otherwise invalid as an identifier and needs to be quoted as a string. To be safe, we
recommend always quoting attribute values in attribute selectors, even though it is only required to make strings out of invalid identifiers.

The Case Insensitivity Identifier

Including an i before the closing bracket of an attribute selector will allow that selector to match attribute
values case-insensitively, regardless of document language rules.

For example, suppose you want to select all links to PDF documents, but you don’t know if they’ll end in
.pdf, .PDF, or even .Pdf. Here’s how:

a[href$=".PDF' 1i]

Adding that humble little 1 means the selector will match any a element whose href attribute’s value
ends in . pdf, regardless of the capitalization of the letters P, D, and F.

This case-insensitivity option is available for all the attribute selectors we’ve covered. Note, however,
that this only applies to the values in the attribute selectors. It does not enforce case insensitivity on the
attribute names themselves. Thus, in a case-sensitive language, planet[type*="rock" 1i] will
match all of the following:

<planet type="barren rocky'">Mercury</planet>
<planet type='"cloudy ROCKY">Venus</planet>
<planet type="life-bearing Rock">Earth</planet>

It will not match the following element, because the attribute TYPE isn’t matched by type in XML:

<planet TYPE='"dusty rock'">Mars</planet>

Again, that’s in languages that enforce case sensitivity in the element and attribute syntax. XHTML was
one such language. In languages that are case-insensitive, like HTML 5, this isn’t an issue.

NOTE

There is a proposed mirror identifier, S, which enforces case sensitivity. As of early 2022, it was only supported by the Firefox family of
browsers.

Using Document Structure

CSS is so capable because it uses the structure of documents to determine appropriate styles and how to
apply them. Let’s take a moment to discuss structure before moving on to more powerful forms of
selection.

Understanding the Parent-Child Relationship

To understand the relationship between selectors and documents, we need to once again examine how
documents are structured. Consider this very simple HTML document:

<!doctype html>
<html>
<head>

<meta charset="utf-8">

<title>Meerkat Central</title>
</head>

<body>

<h1>Meerkat Central</h1>

<p>

Welcome to Meerkat Central, the best meerkat web site
on the entire Internet!</p>

We offer:

Detailed information on how to adopt a meerkat</1li>
<1i>Tips for living with a meerkat</1li>
Fun things to do with a meerkat, including:
<o0l>
Playing fetch</1i>
Digging for food</1i>
Hide and seek</1i>
</0l>
</1i>

</1i>
...and so much more!</1i>

<p>
Questions? Contact us!
</p>
</body>
</html>

Much of the power of CSS is based on the parent-child relationship of elements. HTML documents
(actually, most structured documents of any kind) are based on a hierarchy of elements, which is visible in
the “tree” view of the document (see Figure 2-14). In this hierarchy, each element fits somewhere into the
overall structure of the document. Every element in the document is either the parent or the child of
another element, and it’s often both. If a parent has more than one child, those children are siblings.

html

head body

/N /\

base title p

\/\ /\

em em strong 1i a

\
/N

em 11 I1 li

AN

An element is said to be the parent of another element if it appears directly above that element in the
document hierarchy. For example, in Figure 2-14, the first p element from the left is parent to the em and
strong elements, while Strong is parent to an anchor (a) element, which is itself parent to another
em element. Conversely, an element is the child of another element if it is directly beneath the other
element. Thus, the anchor element on the far right side of Figure 2-14 is the child of a p element, which is
in turn child to the body element, and so on.

]

Figure 2-14. A document tree structure

The terms “parent” and “child” are specific applications of the terms ancestor and descendant. There is a
difference between them: in the tree view, if an element is exactly one level above or below another, then
they have a parent-child relationship. If the path from one element to another is traced through two or

more levels, the elements have an ancestor-descendant relationship, but not a parent-child relationship. (A
child is also a descendant, and a parent is also an ancestor.) In Figure 2-14, the uppermost Ul element is
parent to two 11 elements, but the uppermost ul is also the ancestor of every element descended from its
11 element, all the way down to the most deeply nested 11 elements. Those 11 elements, children of the
01, are siblings.

Also, in Figure 2-14, there is an anchor that is a child of strong, but also a descendant of the p, body,
and html elements. The body element is an ancestor of everything that the browser will display by
default, and the htm1 element is ancestor to the entire document. For this reason, in an HTML or XHTML
document, the html element is also called the root element.

Descendant Selectors

The first benefit of understanding this model is the ability to define descendant selectors. Defining
descendant selectors is the act of creating rules that operate in certain structural circumstances, but not
others. As an example, let’s say you want to style only those em elements that are descended from h1
elements. To do so, write the following:

hi em {color: gray;}

This rule will make gray any text in an em element that is the descendant of an h1 element. Other em text,
such as that found in a paragraph or a block quote, will not be selected by this rule. Figure 2-15 illustrates
the result.

Meerkat Central

Figure 2-15. Selecting an element based on its context

In a descendant selector, the selector side of a rule is composed of two or more space-separated
selectors. The space between the selectors is an example of a combinator. Each space combinator can be
translated as “found within,” “which is part of,” or “that is a descendant of,” but only if you read the
selector right to left. Thus, h1l em can be translated as, “Any em element that is a descendant of an h1
element.”

To read the selector left to right, you might phrase it something like, “Any h1 that contains an em will
have the following styles applied to the em.” That’s much more verbose and confusing, and it’s why we,
like the browser, read selectors from right to left.

You aren’t limited to two selectors. For example:

ul ol ul em {color: gray;}

In this case, as Figure 2-16 shows, any emphasized text that is part of an unordered list that is part of an
ordered list that is itself part of an unordered list (yes, this is correct) will be gray. This is obviously a
very specific selection criterion.

o It's a list
= A right smart list
1. Within, another list
» This is [?'t':{:p
» 50 very deep
2. Alist of lists to see
« And all the lists for me!

Figure 2-16. A very specific descendant selector

Descendant selectors can be extremely powerful. Let’s consider a common example. Assume you have a
document with a sidebar and a main area. The sidebar has a blue background, the main area has a white
background, and both areas include lists of links. You can’t set all links to be blue because they’d be
impossible to read in the sidebar, and you also can’t set all links to white because they’d disappear in the
main part of the page.

The solution: descendant selectors. In this case, you give the element that contains your sidebar a class of
sidebar and enclose the main part of the page in a main element. Then, you write styles like this:

.sidebar {background: blue;}

main {background: white;}

.sidebar a {color: white;}
main a {color: blue;}

Figure 2-17 shows the result.

css-tricks.com Bl OgS

lea.verou.me

meyerweb.com
tantek com These are the web logs ("blogs™) I visit a lot. They're all written by

ey nil people who know a lot about Web design and CSS in general. By
reading them I can get a sense of the trends in design and thinking
about document structure.

Figure 2-17. Using descendant selectors to apply different styles to the same type of element

NOTE
:any-1ink refers to both visited and unvisited links. We’ll talk about it in detail in Chapter 3.

Here’s another example: let’s say that you want gray to be the text color of any b (boldface) element that
is part of a blockquote and for any bold text that is found in a normal paragraph:

blockquote b, p b {color: gray;}

The result is that the text within b elements that are descended from paragraphs or block quotes will be
gray.

One overlooked aspect of descendant selectors is that the degree of separation between two elements can

be practically infinite. For example, if you write ul em, that syntax will select any em element
descended from a ul element, no matter how deeply nested the em may be. Thus, ul em would select
the em element in the following markup:

List item 1

List item 1-1</1i>
List item 1-2</1i>
List item 1-3

List item 1-3-1</1i>
List item 1-3-2</1i>
List item 1-3-3</1i>
</0l>
</1i>
List item 1-4</1i>
</o0l>
</1i>

A more subtle aspect of descendant selectors is that they have no notion of element proximity. In other
words, the closeness of two elements within the document tree has no bearing on whether a rule applies
or not. This is important when it comes to specificity (which we’ll cover in the next chapter) and when
considering rules that might appear to cancel each other out.

For example, consider the following (which contains a selector type we’ll discuss in the upcoming
section, “The Negation Pseudo-Class”):

div (.help) span {color: gray;}
div.help span {color: red;}

<div class="help">
<div class="aside'">

This text contains a span element within.
</div>
</div>

What the CSS says, in effect, is “any span inside a div that doesn’t have a class containing the word
help should be gray” in the first rule, and “any span inside a div whose class contains the word
help” in the second rule. In the given markup fragment, both rules apply to the Span shown.

Because the two rules have equal weight and the “red” rule is written last, it wins out and the span is
red. The fact that the div class="aside" is “closer to” the span thanthe div class="help"
is irrelevant. Again: descendant selectors have no notion of element proximity. Both rules match, only one

color can be applied, and due to the way CSS works, red is the winner here. (We’ll discuss why that’s so
in the next chapter.)

NOTE

As of early 2022, there were proposals to add element-proximity awareness to CSS via “selector scoping,” but the proposals were still
being actively revised and may not come to fruition.

Selecting Children

In some cases, you don’t want to select an arbitrarily descended element. Rather, you want to narrow your
range to select an element that is specifically a child of another element. You might, for example, want to
select a strong element only if it is a child (as opposed to any other level of descendant) of an h1
element. To do this, you use the child combinator, which is the greater-than symbol (>):

hi > strong {color: red;}

This rule will make red the strong element shown in the first ha, but not the second:

<h1>This is very important.</hi>
<h1>This is really very important.</hi>

Read right to left, the selector h1 > strong translates as, “Selects any Strong element that is a
direct child of an h1 element.” The child combinator can be optionally surrounded by whitespace. Thus,
hl > strong, h1> strong, and h1>strong are all equivalent. You can use or omit whitespace
as you wish.

When viewing the document as a tree structure, we can see that a child selector restricts its matches to
elements that are directly connected in the tree. Figure 2-18 shows part of a document tree.

P

span a span

strong

Figure 2-18. A document tree fragment

In this tree fragment, you can pick out parent-child relationships. For example, the a element is parent to
the strong, but it is child to the p element. You could match elements in this fragment with the selectors
p > aanda > strong,butnotp > strong, since the strong is a descendant of the p but not its
child.

You can also combine descendant and child combinations in the same selector. Thus, table.summary
td > p will select any p element that is a child of a td element that is itself descended froma table

element that has a class attribute containing the word summary.

Selecting Adjacent Sibling Elements

Let’s say you want to style the paragraph immediately after a heading, or give a special margin to a list
that immediately follows a paragraph. To select an element that immediately follows another element with
the same parent, you use the adjacent-sibling combinator, represented as a plus symbol (+). As with the
child combinator, the symbol can be surrounded by whitespace, or not, at the author’s discretion.

To remove the top margin from a paragraph immediately following an h1 element, write:
hi + p {margin-top: 0;}
The selector is read as, “Select any p element that immediately follows an h1l element that shares a

parent with the p element.”

To visualize how this selector works, let’s once again consider a fragment of a document tree, shown in
Figure 2-19.

div

T

ol ul

11 11 11 1i 1i 13
Figure 2-19. Another document tree fragment

In this fragment, a pair of lists descends froma div element, one ordered and the other not, each
containing three list items. Each list is an adjacent sibling, and the list items themselves are also adjacent
siblings. However, the list items from the first list are not siblings of the second, as the two sets of list
items do not share the same parent element. (At best, they’re cousins, and CSS has no cousin selector.)

Remember that you can select the second of two adjacent siblings only with a single combinator. Thus, if
youwrite 11 + 1i {font-weight: bold; }, only the second and third items in each list will be
boldfaced. The first list items will be unaffected, as illustrated in Figure 2-20.

1. Listitem 1
2. List item 1
3. List item 1

This is some text that is part of the 'div'.

« A list item
+ Another list item
« Yet another list item

Figure 2-20. Selecting adjacent siblings

To work properly, CSS requires that the two elements appear in “source order.” In our example, an 01
element is followed by a ul element. This allows us to select the second element with 01 + ul, but we
cannot select the first using the same syntax. For ul + 01 to match, an ordered list must immediately
follow an unordered list.

Keep in mind that text content between two elements does not prevent the adjacent-sibling combinator
from working. Consider this markup fragment, whose tree view would be the same as that shown in

Figure 2-18:

<div>

List item 1</1i>
List item 1</1i>
List item 1</1i>
</0l>
This is some text that is part of the 'div'.

A list item</1li>
Another list item</1li>
Yet another list item</1li>

</div>

Even though there is text between the two lists, we can still match the second list with the selector o1 +
ul. That’s because the intervening text is not contained with a sibling element, but is instead part of the
parent div. If we wrapped that text in a paragraph element, it would then prevent 01 + ul from
matching the second list. Instead, we might have to write something like 01 + p + ul.

As the following example illustrates, the adjacent-sibling combinator can be used in conjunction with
other combinators:

html > body table + ul{margin-top: 1.5em;}

The selector translates as, “Selects any ul element that immediately follows a sibling table element
that is descended from a body element that is itself a child of an html element.”

As with all combinators, you can place the adjacent-sibling combinator in a more complex setting, such as
div#content hl + div ol. That selector is read as, “Selects any 01 element that is descended
froma div when the div is the adjacent sibling of an h1 which is itself descended from a div whose
id attribute has a value of content.”

Selecting Following Siblings

The general sibling combinator lets you select any element that follows another element when both
elements share the same parent, represented using the tilde (~) combinator.

As an example, to italicize any 01 that follows an h2 and also shares a parent with the h2, you’d write
h2 ~ ol {font-style: italic;}. The two elements do not have to be adjacent siblings,
although they can be adjacent and still match this rule. The result of applying this rule to the following
markup is shown in Figure 2-21:

<div>
<h2>Subheadings</h2>
<p>It is the case that not every heading can be a main heading. Some headings
must be subheadings. Examples include:</p>

Headings that are less important</1li>
Headings that are subsidiary to more important headlines</1i>
Headings that like to be dominated</1i>
</0l>
<p>Let's restate that for the record:</p>

Headings that are less important</1li>
Headings that are subsidiary to more important headlines</1i>
Headings that like to be dominated</1i>
</0l>
</div>

As you can see, both ordered lists are italicized. That’s because both of them are 01 elements that follow
an h2 with which they share a parent (the div).

Subheadings

It is the case that not every heading can be a main heading. Some headings must be
subheadings. Examples include:

1. Headings that are less important
2. Headings that are subsidiary to more important headlines
3. Headings that like to be dominated

Let’s restate that for the record:

1. Headings that are less important
2. Headings that are subsidiary to more important headlines
3. Headings that like to be dominated

Figure 2-21. Selecting following siblings

Summary

By using selectors based on the document’s language, authors can create CSS rules that apply to a large
number of similar elements just as easily as they can construct rules that apply in very narrow
circumstances. The ability to group together both selectors and rules keeps stylesheets compact and
flexible, which incidentally leads to smaller file sizes and faster download times.

Selectors are the one thing that user agents usually must get right because the inability to correctly
interpret selectors pretty much prevents a user agent from using CSS at all. On the flip side, it’s crucial
for authors to correctly write selectors because errors can prevent the user agent from applying the styles
as intended. An integral part of correctly understanding selectors and how they can be combined is a
strong grasp of how selectors relate to document structure and how mechanisms—such as inheritance and
the cascade itself—come into play when determining how an element will be styled.

The selectors we covered in this chapter aren’t the end of the story, though. They’re not even half the
story. In the next chapter, we’ll dive into the powerful and ever-expanding world of pseudo-class and
pseudo-element selectors.

Chapter 3. Pseudo-Class and -Element
Selectors

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official release
of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active
later on.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at rfernando@oreilly.com.

In the previous chapter, we saw how selectors can match a single element, or a collection of elements,
using fairly simple expressions that match the structure of the document. Those are great if your needs are
just to style based on structure, but what if you need to style part of a document based on its current state?
Or if you want to select all the form elements that are disabled, or those that are required for form
submission to be allowed? For those things, and a great deal more, there are the pseudo-class and
pseudo-element selectors.

Pseudo-Class Selectors

Pseudo-class selectors let you assign styles to what are, in effect, phantom classes inferred by the state of
certain elements, or markup patterns within the document, or even by the state of the document itself.

The phrase “phantom classes” might seem a little odd, but it really is the best way to think of how pseudo-
classes work. For example, suppose you wanted to highlight every other row of a data table. You could
do that by marking up every other row something like class="even" and then writing CSS to highlight
rows with that class—or (as we’ll soon see) you could use a pseudo-class selector to achieve the same
effect, one which will act as if you’d added all those classes to the markup even though you haven’t.

There’s an aspect of pseudo-classes that needs to be made explicit here: pseudo-classes always refer to
the element to which they’re attached, and to no other. Seems like a weirdly obvious thing to say, right?
The reason to make it explicit is that for some pseudo-classes, it’s a common error to think they are
descriptors that refer to descendant elements.

To illustrate this, Eric would like to share a personal anecdote.

Example 3-1.

When my first child was born in 2003, I announced it online, as one does. A number of people responded

mailto:rfernando@oreilly.com

with congratulations and CSS jokes, chief among them the selector #ericmeyer:first-child
(we’ll getto : first-child injust a bit). The problem there is that selector would select me, not my
daughter, and only if I were the first child of my own parents (which, as it happens, I am). To properly
select my first child, that selector would need to be #ericmeyer > :first-child.

The confusion is understandable, which is why we’re addressing it here. Reminders will be found
throughout the following sections. Just always keep in mind that the effect of pseudo-classes is to apply a
sort of a “phantom class” to the element to which they’re attached, and you should be OK.

All pseudo-classes, without exception, are a word or hyphenated phrase preceded by a single colon (:),
and they can appear anywhere in a selector.

Combining Pseudo-Classes

Before we really get started, a word about chaining. CSS makes it possible to combine (“chain”) pseudo-
classes together. For example, you can make unvisited links red when they’re hovered and visited links
maroon when they are hovered:

a {color: red;}
a {color: maroon;}

The order you specify doesn’t actually matter; you could also write a: hover : 1ink to the same effect
as a:link:hover. It’s also possible to assign separate hover styles to unvisited and visited links that
are in another language—for example, German:

a (de) {color: gray;}
a (de) {color: silver;}

Be careful not to combine mutually exclusive pseudo-classes. For example, a link cannot be both visited
and unvisited, so a:1ink:visited doesn’t make any sense and will never match anything.

Structural Pseudo-Classes

The first set of pseudo-classes we’ll explore are structural in nature; that is, they refer to the markup
structure of the document. Most of them depend on patterns within the markup, such as choosing every
third paragraph, but others allow you to address specific types of elements.

Selecting the root element

This is the quintessence of structural simplicity: the pseudo-class : root selects the root element of the
document. In HTML, this is always the htm1l element. The real benefit of this selector is found when
writing stylesheets for XML languages, where the root element may be different in every language—for
example, in SVG it’s the Svg element, and in our earlier PlanetML examples it was the pm1 element—or
even when you have more than one possible root element within a single language (though not a single
document!).

Here’s an example of styling the root element in HTML, as illustrated in Figure 3-1:

{border: 10px dotted gray;}
body {border: 10px solid black;}

Disable * Cookies = €55 v Forms * Images v Information = M

B OSSOSO SIOIOSOIOOSIPOSIOSIPOPOSITPOSTPS

@ e ®
® is is the body of the document.
@

AReosocococococococococdm

« O% Yo @y
Figure 3-1. Styling the root element

In HTML documents, you can always select the html element directly, without having to use the : root
pseudo-class. There is a difference between the two selectors in terms of specificity, which we’ll cover
in Chapter 4, but otherwise they’ll have the same effect.

Selecting empty elements

With the pseudo-class :empty, you can select any element that has no children of any kind, including
text nodes, which covers both text and whitespace. This can be useful in suppressing elements that a CMS
(Content Management System) has generated without filling in any actual content. Thus, p :empty
{display: none; } would prevent the display of any empty paragraphs.

Note that in order to be matched, an element must be, from a parsing perspective, truly empty—no
whitespace, visible content, or descendant elements. Of the following elements, only the first and last
would be matched by p:empty:

<p></p>

<p> </p>

<p>

</p>

<p><!—-a comment--></p>

The second and third paragraphs are not matched by : empty because they are not empty: they contain,
respectively, a single space and a single newline character. Both are considered text nodes, and thus
prevent a state of emptiness. The last paragraph matches because comments are not considered content,
not even whitespace. But put even one space or newline to either side of that comment, and p: empty
would fail to match.

You might be tempted to just style all empty elements with something like * : empty {display:
none; }, but there’s a hidden catch: : empty matches HTML’s empty elements, like img, hr, br, and
input. It could even match textarea, unless you insert some default text into the textarea
element. Thus, in terms of matching elements, img and img: empty are effectively the same. (They are
different in terms of specificity, which we’ll cover in the next chapter.)

NOTE

As of early 2022, : empty is unique in that it’s the only CSS selector that takes text nodes into consideration when determining matches.
It’s also supposed to ignore whitespace inside elements, but no browser had supported that behavior as of this writing.

Selecting only children

If you’ve ever wanted to select all the images that are wrapped by a hyperlink element, the :only-
child pseudo-class is for you. It selects elements when they are the only child element of another
element. So let’s say you want to add a border to any image that’s the only child of another element. You’d
write:

img {border: 1px solid black;}

This would match any image that meets those criteria. Therefore, if you had a paragraph which contained
an image and no other child elements, the image would be selected regardless of all the text surrounding
it. If what you’re really after is images that are sole children and found inside hyperlinks, then you just
modify the selector like so (which is illustrated in Figure 3-2):

alhref] img {border: 2px solid black;}

 The W3C
 The W3C

W3C
W3C | The Wac
W3~ _The W3C

Figure 3-2. Selecting images that are only children inside links

There are two things to remember about : only-child. The first is that you always apply it to the
element you want to be an only child, not to the parent element, as explained earlier. And that brings up
the second thing to remember, which is that when you use : only-child in a descendant selector, you
aren’t restricting the elements listed to a parent-child relationship.

To go back to the hyperlinked-image example, a[href] img:only-child matches any image that is
an only child and is descended from an a element, whether or not it’s a child of an a element. To match,
the element image must be the only child of its direct parent and also a descendant of an a element with an
href attribute, but that parent can itself be a descendant of the same a element’. Therefore, all three of
the images in the following would be matched, as shown in Figure 3-3:

alhref] img {border: 5px solid black;}

A link to the

web site

A link to the web site

Figure 3-3. Selecting images that are only children inside links

In each case, the image is the only child element of its parent, and it is also descended from an a element.
Thus, all three images are matched by the rule shown. If you want to restrict the rule so that it matched
images that were the only children of a elements, then add the child combinator to yield a[href] >
img:only-child. With that change, only the first of the three images shown in Figure 3-3 would be
matched.

Only-of-type selection

That’s all great, but what if you want to match images that are the only images inside hyperlinks, but there
are other elements in there with them? Consider the following:

e

In this case, we have an a element that has two children: b and img. That image, no longer being the only
child of its parent (the hyperlink), can never be matched using : only-child. However, it can be
matched using : only-of-type. This is illustrated in Figure 3-4:

alhref] img {border: 5px solid black;}

e
+

Figure 3-4. Selecting images that are the only sibling of their type

The difference is that : only-of - type will match any element that is the only of its type among all its
siblings, whereas :only-child will only match if an element has no siblings at all.

This can be very useful in cases such as selecting images within paragraphs without having to worry
about the presence of hyperlinks or other inline elements:

p > img {float: right; margin: 20px;}

As long as there aren’t multiple images that are children of the same paragraph, the image will be floated
to the right.

You can also use this pseudo-class to apply extra styles to an h2 when it’s the only one in a given section

of a document, like this:

section > h2 {margin: 1em 0 0.33em; font-size: 1.8rem; border-bottom: 1px solid

gray;}
section > h2 {font-size: 2.4rem;}

Given those rules, any section that has only one child h2 will have that h2 appear larger than usual. If
there are two or more h2 children to a section, neither of them will be larger than the other. The
presence of other children—whether they are other heading levels, paragraphs, tables, paragraphs, lists,
and so on—will not interfere with matching,

There’s one more thing to make clear, which is that : only-of - type refers to elements and nothing
else. Consider the following:

p.unique {color: red;}

<div>
<p class="unique">This paragraph has a 'unique' class.</p>
<p>This paragraph doesn't have a class at all.</p>

</div>

In this case, neither of the paragraphs will be selected. Why not? Because there are two paragraphs that
are descendants of the div, so neither of them can be the only one of their type.

The class name is irrelevant here. We can be fooled into thinking that “type” is a generic description,
because of how we parse language. Type, in the way :only-of - type means it, refers only to the
element type, as with type selectors. Thus, p.unique:only-of-type means “select any p element
which is the only p element among its siblings if it also has a class of unique” It does not mean
“select any p element whose class attribute contains the word unique when it’s the only sibling
paragraph to meet that criterion.”

Selecting first children

It’s pretty common to want to apply special styling to the first or last child of an element. A common
example is styling a bunch of navigation links in a tab bar and wanting to put some special visual touches
on the first or last tab (or both). In the past, this was done by applying special classes to those elements.
We have pseudo-classes to carry the load for us, removing the need to manually figure out which elements
are the first and last.

The pseudo-class : first-child is used to select elements that are the first children of other elements.
Consider the following markup:

<div>

<p>These are the necessary steps:</p>

Insert key</1li>
<1i>Turn key clockwise</1i>
Push accelerator</1i>

<p>

Do not push the brake at the same time as the accelerator.
</p>
</div>

In this example, the elements that are first children are the first p, the first 11, and the strong and em
elements, which are all the first children of their respective parents. Given the following two rules:

p {font-weight: bold;}
1i {text-transform: uppercase;}

we get the result shown in Figure 3-5.
These are the necessary steps:

« INSERT KEY
= Turn key clockwise
+ Push accelerator

Do not push the brake at the same time as the accelerator.
Figure 3-5. Styling first children

The first rule boldfaces any p element that is the first child of another element. The second rule
uppercases any 11 element that is the first child of another element (which, in HTML, must be either an
0l or ul element).

As has been mentioned, the most common error is assuming that a selector like p: first-child will
select the first child of a p element. Remember the nature of pseudo-classes, which is to attach a sort of

phantom class to the element associated with the pseudo-class. If you were to add actual classes to the
markup, it would look like this:

<div>
<p class="first-child">These are the necessary steps:</p>

<li class="first-child">Insert key</1li>
<1i>Turn key <strong class="first-child">clockwise</1i>
Push accelerator</1i>

<p>
Do <em class="first-child">not push the brake at the same time as the
accelerator.
</p>
</div>

Therefore, if you want to select those em elements that are the first child of another element, you write
em:first-child.

Selecting last children

The mirror image of : first-childis :last-child. If we take the previous example and just
change the pseudo-classes, we get the result shown in Figure 3-6.

p {font-weight: bold;}

1i {text-transform: uppercase;}

<div>
<p>These are the necessary steps:</p>

Insert key</1li>
<1i>Turn key clockwise</1i>
Push accelerator</1i>

<p>
Do not push the brake at the same time as the accelerator.
</p>
</div>

These are the necessary steps:

« Insert key
= Turn key clockwise
+« PUSH ACCELERATOR

Do not push the brake at the same time as the
accelerator.
Figure 3-6. Styling last children

The first rule boldfaces any p element that is the last child of another element. The second rule
uppercases any 11 element that is the last child of another element. If you wanted to select the em element
inside that last paragraph, you could use the selector p: last-child em, which selects any em
element that descends from a p element that is itself the last child of another element.

Interestingly, you can combine these two pseudo-classes to create a version of : only-child. The
following two rules will select the same elements:

{color: red;}
{background-color: red;}

T T

Either way, we get paragraphs with red foreground and background colors (not a good idea, to be clear).

Selecting the first and last of a type

In a manner similar to selecting the first and last children of an element, you can select the first or last of a
type of element within another element. This permits things like selecting the first table inside a given
element, regardless of whatever elements come before it.

table {border-top: 2px solid gray;}

Note that this does not apply to the entire document; that is, the rule shown will not select the first table in
the document and skip all the others. It will instead select the first table element within each element
that contains one, and skip any sibling table elements that come after the first. Thus, given the document
structure shown in Figure 3-7, the circled nodes are the ones that are selected.

/’/’//E'id\

/;1‘:1-;2\ section
h1 @abli} p table p p h2 (\'E‘ableﬂl; ul table table p

Figure 3-7. Selecting first-of-type tables

Within the context of tables, a useful way to select the first data cell within a row regardless of whether a
header cell comes before it in the row is as follows:

td {border-left: 1px solid red;}

That would select the first data cell in each of the following table rows (that is, the cells containing
‘(7” and ‘(R)’):

<tr>
<th scope="row">Count</th><td>7</td><td>6</td><td>11</td>
</tr>
<tr>
<td>R</td><td>X</td><td>-</td>
</tr>

Compare that to the effects of td:first-child, which would select the first td element in the second
row, but not in the first row.

The flip side is : last-of-type, which selects the last instance of a given type from amongst its
sibling elements. In a way, it’s just like : first-of-type, except you start with the last element in a
group of siblings and walk backward toward the first element until you reach an instance of the type.
Given the document structure shown in Figure 3-8, the circled nodes are the ones selected by
table:last-of-type.

‘////’I?E.d\

section section

hi table p Gabﬁ} b b h2 table ul table {icatj}f/; D

#
_____ - =

Figure 3-8. Selecting last-of-type tables

As was noted with : only-of - type, remember that you are selecting elements of a type from among
their sibling elements; thus, every set of siblings is considered separately. In other words, you are not
selecting the first (or last) of all the elements of a type within the entire document as a single group. Each
set of elements that share a parent is its own group, and you can select the first (or last) of a type within
each group.

Similar to what was noted in the previous section, you can combine these two pseudo-classes to create a

version of :only-of-type. The following two rules will select the same elements:

table {color: red;}
table {background: red;}

Selecting every nth child

If you can select elements that are the first, last, or only children of other elements, how about every third
child? All even children? Only the ninth child? Rather than try to define a literally infinite number of
named pseudo-classes, CSS has the : nth-child() pseudo-class. By filling integers or even simple

algebraic expressions into the parentheses, you can select any arbitrarily numbered child element you
like.

Let’s start with the : nth-child() equivalent of : first-child, whichis :nth-child(1).In
the following example, the selected elements will be the first paragraph and the first list item.

p (1) {font-weight: bold;}
1i (1) {text-transform: uppercase;}
<div>

<p>These are the necessary steps:</p>

Insert key</1li>
<1i>Turn key clockwise</1i>
Push accelerator</1i>

<p>
Do not push the brake at the same time as the accelerator.
</p>
</div>

If we change the numbers from 1 to 2, however, then no paragraphs will be selected, and the middle (or
second) list item will be selected, as illustrated in Figure 3-9:

p (2) {font-weight: bold;}
1i (2) {text-transform: uppercase;}

These are the necessary steps:

« Insert key
« TURN KEY CLOCKWISE
+ Push accelerator

Do not push the brake at the same time as the accelerator.
Figure 3-9. Styling second children

You can insert any integer you choose; if you have a use case for selecting any ordered list that is the 93rd
child element of its parent, then 01l :nth-child(93) is ready to serve. This will match the 93rd child
of any parent as long as that child is an ordered list. (This does not mean the 93rd ordered list among its
siblings; see the next section for that.)

Is there a reason to use : nth-child (1) rather than : first-child? No. In this case, use

whichever you prefer. There is literally no difference between them.

More powerfully, you can use simple algebraic expressions in the forma n + b or a n - b to define
recurring instances, where a and b are integers and n is present as itself. Furthermore, the + _b_ or —
_b__ part is optional and thus can be dropped if it isn’t needed.

Let’s suppose we want to select every third list item in an unordered list, starting with the first. The
following makes that possible, selecting the first and fourth items, as shown in Figure 3-10.

ul > 1i (3n + 1) {text-transform: uppercase;}

These are the necessary steps:

« INSERT KEY

= Turn key clockwise

» Grip steering wheel with hands
+« PUSH ACCELERATOR

+ Steer vehicle

+ Use brake as necessary

Do not push the brake at the same time as the accelerator.
Figure 3-10. Styling every third list item

The way this works is that n represents the series 0, 1, 2, 3, 4, and on into infinity. The browser then
solves for 3n + 1, yielding 1, 4, 7, 10, 13, and so on. Were we to drop the + 1, thus leaving us with
simply 3n, the results would be 0, 3, 6, 9, 12, and so on. Since there is no zeroth list item—all element
counting starts with one, to the likely chagrin of array-slingers everywhere—the first list item selected by
this expression would be the third list item in the list.

Given that element counting starts with one, it’s a minor trick to deduce that :nth-child(2n) will
select even-numbered children, and either : nth-child(2n+1) or :nth-child(2n-1) will select
odd-numbered children. You can commit that to memory, or you can use the two special keywords that
:nth-child() accepts: even and odd. Want to highlight every other row of a table, starting with the
first? Here’s how you do it, with the results shown in Figure 3-11:

tr (odd) {background: silver;}

J.TJ_I.IJJJ.IJJI.FJJJ. RS) of RS OFLFR LWRPL LErd J."'l.Ul.-I_I.I.I.E,IJ’J.J.u

Missouri MO Jefferson City Eastern Bluebird
Montana MT Helena Western Meadowlark
Nebraska NE Lincoln Western Meadowlark
NMNevada NV Carson City Mountain Bluebird
New Hampshire NH Concord Purple Finch

New Jersey NI Trenton Eastern Goldfinch
New Mexico NM Santa Fe Roadrunner

New York NY Albany Eastern Bluebird
North Carolina NC Raleigh Northern Cardinal
North Dakota ND Bismarck Western Meadowlark
Ohio OH Columbus Northern Cardinal
Oklahoma OK Oklahoma City Scissor-Tailed Flycatcher
Oregon OR Salem Western Meadowlark
Pennsylvania PA Harrisburg Ruffed Grouse

™ML _3_ T %_-_21 ™T o o SRERURES BE SRRl o THL - 3. T_I__ AT _- 3 AL T

Figure 3-11. Styling every other table row
Anything more complex than every-other-element requires an an + b expression.

Note that when you want to use a negative number for b, you have to remove the + sign, or else the
selector will fail entirely. Of the following two rules, only the first will do anything. The second will be
dropped by the parser and ignored:

tr (4n - 2) {background: silver;}
tr (3n + -2) {background: red;} /* INVALID */

You can also use a negative value for A in the expression, which will effectively count backward from the
term you use in B. Selecting the first five list items in a list can be done like this:

1i (-n + 5) {font-weight: bold;}

This works because negative n goes 0, -1, -2, -3, -4, and so on. Add 5 to each of those, and you get 5, 4,
3, 2, 1, and so on. Put a negative number in there for a multiplier on n, and you can get every second,
third, or whatever-number-you-want element, like so:

1i (-2n + 10) {font-weight: bold;}

That will select the 10th, 8th, 4th, and 2nd list items in a list.

As you might expect, there is a corresponding pseudo-class in :nth-last-child(). This lets you do
the same thing as :nth-child(), except with :nth-last-child() you start from the last element
in a list of siblings and count backward toward the beginning. If you’re intent on highlighting every other
table row and making sure the very last row is one of the rows in the highlighting pattern, either one of
these will work for you:

tr (odd) {background: silver;}
tr (2n+1) {background: silver;} /* equivalent */

If the DOM (Document Object Model) is updated to add or remove table rows, there is no need to add or

remove classes. By using structural selectors, these selectors will always match the odd rows of the
updated DOM.

Any element can be matched using both : nth-child() and :nth-last-child() ifit fits the
criteria. Consider these rules, the results of which are shown in Figure 3-12:

1i (3n + 3) {border-left: 5px solid black;}
1i (4n - 1) {border-right: 5px solid black; background: silver;}

Again, using negative terms for A will essentially count backwards, except since this pseudo-class is
already counting from the end, a negative term counts forward. That is to say, you can select the last five
list items in a list like so:

1i (-n + 5) {font-weight: bold;}

NOTE

There is an extension of :nth-child() and :nth-last-child() that allows selecting from among elements matched by a simple
selector; for example, : nth-child(2n + 1 of p.callout). As of early 2022, this was supported in Safari, but there were no
apparent plans to support it in other browsers. If you need this capability, see : nth-of-type in the next section of the chapter.

The Sun
V645 Centauri |
JAlpha Centauri A
Alpha Centauri B
Barnard's Star
Pwoit 359 |
Lalande 21185
Sirius A
Jsirius B
Luyten 726-8 A l
Luyten 726-8 B

PRoss 154

Ross 248

Epsilon Eridani .
PLacaille 9352

Ross 128

Figure 3-12. Combining patterns of :nth-child() and :nth-last-child()

It’s also the case that you can string these two pseudo-classes together as :nth-child(1):nth-
last-child(1), thus creating a more verbose restatement of : only-child. There’s no real reason
to do so other than to create a selector with a higher specificity (discussed in the next chapter), but the
option is there.

You can use CSS to determine how many list items are in a list, and style them accordingly:

1i {width: 100%;}
1li (1) (2),
1i (2) (1) {width: 50%;}

1i (1) (3),

1i (1) (3) ~ 1i {width: 33.33%;}
1i (1) (4),
1i (1) (4) ~ 1i {width: 25%;}

In these examples, if a list item is the only list item, then the width is 100%. If a list item is the first item
and also the second-from-the-last item, that means there are two items, and the width is 50%. If an item is
the first item and also the third from the last item, then we make it, and the two sibling list items following
it, 33% wide. Similarly, if a list item is the first item and also the fourth from the last item, it means that
there are exactly four items, so we make it, and its three siblings, 25% of the width. (Note: this sort of
thing is a lot easier with the : has () pseudo-class, covered later in this chapter.)

Selecting every nth of a type

In what may have become a familiar pattern, the : nth-child() and :nth-last-child() pseudo-
classes have analogues in : nth-of-type() and :nth-last-of-type(). You can, for example,
select every other hyperlink that’s a child of any given paragraph, starting with the second, using p >
a:nth-of-type(even). This will ignore all other elements (Spans, strongs, etc.) and consider
only the links, as demonstrated in Figure 3-13:

p>a (even) {background: blue; color: white;}

ConHugeCo is the industry leader of web-enabled [IOIEn=i1ey. Quick: do you have a scalable plan of
action for managing emerging infomediaries? We invariably cultivate [Ei=svstg eyeballs. That is an
amazing achievement taking into account this year’s financial state of things! We believe we know that if you
globally then you may also enhance interactively. The i/ to strategize iteravely leads to the
power to [EEnEGvga0LnIcg. The accounting factor is dynamic. If all of this sounds amazing to you, that’s
because it is! Our is unmatched, but our real-time structuring and [illi=vsi peration Bi3
always considered an amazing achievement. The [TenianrRerany is fractal. We apply the proverb
“Absence makes the heart grow fonder™ not only to but our power to reintermediate. What
does the term “global” really mean? Do you have a game plan to become [e#le#I8l? We will monetize the
ability of B2 =site=] (0 maximize.

(Text courtesy http://andrewdavidson.com/gibberish/)

Figure 3-13. Selecting the even-numbered links

If you want to work from the last hyperlink backward, then you’duse p > a:nth-last-of-
type(even).

As before, these select elements of a type from among their sibling elements, not from among all the
elements of a type within the entire document as a single group. Each element has its own list of siblings,
and selections happen within each group.

The difference between : nth-of-type and nth-child is that :nth-of-type counts the
instances of whatever you’re selecting, and does its counting within that collection of elements. Take, for
example, the following markup:

<tr>
<th scope="row">Count</th>
<td>7</td>
<td>6</td>
<td>1i1</td>

<td>17</td>
<td>3</td>
<tds>21</td>

</tr>

<tr>
<td>R</td>
<td>X</td>
<td>-</td>
<td>C</td>
<td>%</td>
<td>A</td>
<td>I</td>

</tr>

If you wanted to select every table cell in a row when it’s in an even-numbered column, you would use
td:nth-child(even). Butif you want to select every even-numbered instance of a table cell, that
would be td:nth-of-type(even). You can see the difference in Figure 3-14, which shows the
result of the following CSS.

td (even) {background: silver;}
td (even) {text-decoration: underline;}

Count 7 6 11 17 3
R X - C % Al

Figure 3-14. Selecting both nth-child and nth-of-type table cells

In the first row, every other table data cell (td) is selected, starting with the first cell that comes after the
table header cell (th). In the second row, since all the cells are td cells, that means all the cells in that
row are of the same type and thus the counting starts at the first cell.

As you might expect, you canuse :nth-of-type(1):nth-last-of-type(1) together to restate
:only-of-type, only with higher specificity. (We will explain specificity in Chapter 4, we promise.)

Location Pseudo-Classes

With the location pseudo-classes, we cross into the territory of selectors that match pieces of a document

based on something in addition to the structure of the document — something that cannot be precisely
deduced simply by studying the document’s markup.

This may sound like we’re applying styles at random, but not so. Instead, we’re applying styles based on
somewhat ephemeral conditions that can’t be predicted in advance. Nevertheless, the circumstances under
which the styles will appear are, in fact, well-defined. Think of it this way: during a sporting event,
whenever the home team scores, the crowd will cheer. You don’t know exactly when during a game the
team will score, but when it does, the crowd will cheer, just as predicted. The fact that you can’t predict
the exact moment of the cheer doesn’t make it any less expected.

Now consider the anchor element (&), which (in HTML and related languages) establishes a link from one
document to another. Anchors are always anchors, but some anchors refer to pages that have already been
visited, while others refer to pages that have yet to be visited. You can’t tell the difference by simply
looking at the HTML markup, because in the markup, all anchors look the same. The only way to tell
which links have been visited is by comparing the links in a document to the user’s browser history. So
there are actually two basic types of links: visited and unvisited.

Hyperlink specific pseudo-classes

CSS defines a few pseudo-classes that apply only to hyperlinks. In HTML, hyperlinks are any a elements
with an href attribute; in XML languages, a hyperlink is any element that act as a link to another
resource. Table 3-1 describes the pseudo-classes you can apply to them.

Table 3-1. Link pseudo-classes

Name Description
:1ink Refers to any anchor that is a hyperlink (i.e., has an href attribute) and points to an address that has not been visited.
rvisited Refers to any anchor that is a hyperlink to an already visited address. For security reasons, the styles that can be

applied to visited links are severely limited; see sidebar “Visited Links and Privacy” for details.
rany-1link Refers to any element that would be matched by either : 1ink or :visited.
:local-1link Refers to any link that points at the same URL as the page being styled. One example would be skip-links within a

document. Note: not supported as of early 2022.

The first of the pseudo-classes in Table 3-1 may seem a bit redundant. After all, if an anchor hasn’t been
visited, then it must be unvisited, right? If that’s the case, all we should need is the following:

a {color: blue;}
a {color: red;}

Although this format seems reasonable, it’s actually not quite enough. The first of the rules shown here
applies not only to unvisited links, but also to “named anchors” (i.e., any a element that has a name
attribute and not an href attribute) such as this one:

4. The Lives of Meerkats

The resulting text would be blue because the a element will match the rule a {color: blue; }.
Therefore, to avoid applying your link styles to placeholder links, use the : 1ink and :visited
pseudo-classes:

a {color: blue;} /* unvisited links are blue */
a {color: red;} /* visited links are red */

This is a good place to revisit attribute and class selectors and show how they can be combined with
pseudo-classes. For example, let’s say you want to change the color of links that point outside your own
site. In most circumstances, we can use the starts-with attribute selector. However, some CMS’s set all
links to be absolute URLs, in which case you could assign a class to each of these anchors. It’s easy:

My About page
An external site

To apply different styles to the external link, all you need is a rule like this:

a.external , alhrefA="http"] { color: slateblue;}
a.external , alhrefA="http"] {color: maroon;}

This rule will make the second anchor in the preceding markup slateblue by default and maroon once
visited, while the first anchor will remain the default color for hyperlinks (usually blue when not visited
and purple once visited). For improved usability and accessibility, visited links should be easily
distinguished from non-visited links.

NOTE

Styled visited links enable visitors to know where they have been and what they have yet to visit. This is especially important on large
websites where it may be difficult to remember which pages have been visited, especially for those with cognitive disabilities. Not only is
highlighting visited links one of the W3C Web Content Accessibility Guidelines, but it makes searching for content faster, more efficient, and
less stressful for everyone.

The same general syntax is used for ID selectors as well:

a#footer-copyright {background: yellow;}
a#footer-copyright {background: gray;}

You can chain the two link-state pseudo-classes together, but there’s no reason why you ever would: a
link cannot be both visited and unvisited at the same time! If you want to select all links, regardless of
whether they’re visited or not, use :any-1link:

a#footer-copyright {text-decoration: underline;}

VISITED LINKS AND PRIVACY

For well over a decade, it was possible to style visited links with any CSS properties available, just
as you could unvisited links. However, in the mid-2000s several people demonstrated that one could
use visual styling and simple DOM scripting to determine if a user had visited a given page. For
example, given the rule :visited {font-weight: bold;}, ascript could find all of the
boldfaced links and tell the user which of those sites they’d visited—or, worse still, report those sites
back to a server. A similar, non-scripted tactic uses background images to achieve the same result.

While this might not seem terribly serious to you, it can be utterly devastating for a web user in a
country where one can be jailed for visiting certain sites—opposition parties, unsanctioned religious
organizations, “immoral” or “corrupting” sites, and so on. It can also be used by phishing sites to
determine which online banks a user has visited. Thus, two steps were taken.

The first step is that only color-related properties can be applied to visited links: color,
background-color, column-rule-color,outline-color, border-color, and the
individual-side border color properties (e.g., border-top-color). Attempts to apply any other
property to a visited link will be ignored. Furthermore, any styles defined for : 1ink will be applied
to visited links as well as unvisited links, which effectively makes : 1ink “style any hyperlink,”
instead of “style any unvisited hyperlink.”

The second step is that if a visited link has its styles queried via the DOM, the resulting value will be
as if the link were not visited. Thus, if you’ve defined visited links to be purple rather than unvisited
links’ blue, even though the link will appear purple onscreen, a DOM query of its color will return the
blue value, not the purple one.

As of early 2022, this behavior is present throughout all browsing modes, not just “private browsing”
modes. Even though we’re limited in how we can use CSS to differentiate visited links from non-
visited links, it is important for usability and accessibility to use the limited styles supported by
visited links to differentiate them from unvisited links.

Non-hyperlink location pseudo-classes

Hyperlinks aren’t the only elements that can be related to location. CSS also provides a few pseudo-
classes that relate to the targets of hyperlinks, summarized in Table 3-2.

Table 3-2. Non-link location pseudo-classes

Name Description

:target Refers to an element whose id attribute value matches the fragment selector in the URL used to load the page; that is,
the element specifically targeted by the URL.

:target-withi Refers to an element that is the target of the URL, or which contains an element that is so targeted. Note: not
n supported as of early 2022.

:scope Refers to elements that are a reference point for selector matching.

First, let’s talk about target selection. When a URL includes a fragment identifier, the piece of the
document at which it points is called (in CSS) the target. Thus, you can uniquely style any element that is
the target of a URL fragment identifier with the : target pseudo-class.

Even if you’re unfamiliar with the term “fragment identifier,” you’ve probably seen them in action.
Consider this URL:

http://www.w3.0rg/TR/css3-selectors/#target-pseudo

The target-pseudo portion of the URL is the fragment identifier, which is marked by the # symbol. If
the referenced page (http://www.w3.0rg/TR/css3-selectors/) has an element with an ID of target -
pseudo, then that element becomes the target of the fragment identifier.

Thanks to : target, you can highlight any targeted element within a document, or you can devise
different styles for various types of elements that might be targeted—say, one style for targeted headings,
another for targeted tables, and so on. Figure 3-15 shows an example of : target inaction:

* {border-left: 5px solid gray,; background: yellow url(target.png)
top right no-repeat;}

Welcome!
What does the standard industry term “efficient” really mean?

ICnnHugeCn is the industry leader of C2C2B performance. ()

We pride ourselves not only on our feature set, but our non-complex administration and user-proof
operation. Our technology takes the best aspects of SMIL and C++. Our functionality is unmatched, but
our 1000/60/60/24/7/365 returns-on-investment and non-complex operation is constantly considered a
remarkable achievement. The power to enhance perfectly leads to the aptitude to deploy dynamically.
Think super-macro-real-time.

(Text courtesy http://andrewdavidson.com/gibberish/)
Figure 3-15. Styling a fragment identifier target

: target styles will not be applied in three circumstances:

1. If the page is accessed via a URL that does not have a fragment identifier

2. If the page is accessed via a URL that has a fragment identifier, but the identifier does not match any
elements within the document

3. If the page’s URL is updated in such a way that a scroll state is not created, which happens most
often via JavaScript shenanigans. (This isn’t a CSS rule, but it is how browsers behave.)

More interestingly, though, what happens if multiple elements within a document can be matched by the
fragment identifier—for example, if the author erroneously included three separate instances of <div
id="target-pseudo"> in the same document?

http://www.w3.org/TR/css3-selectors/

The short answer is that CSS doesn’t have or need rules to cover this case, because all CSS is concerned
with is styling targets. Whether the browser picks just one of the three elements to be the target or
designates all three as co-equal targets, : target styles should be applied to anything that is a valid
target.

Closely related to the : target pseudo-class is the : target-within pseudo-class. The difference
is that : target-within will not only match elements that are targets, but also elements that are the
ancestors of targets. Thus, the following CSS would match any p element containing a target, or that was
itself a target.

p {border-left: 5px solid gray,; background: yellow url(target.png)
top right no-repeat;}

Or it would, anyway, if any browser supported it. As of early 2022, this was not the case.

Finally, we consider the : scope pseudo-class. This is quite widely supported, but at present, it only
comes in handy in scripting situations. Consider the following JavaScript and HTML, which we’ll
explain after the code.

var output = document.getElementById('output');
var registers = output.querySelectorAll(':scope > div');

<section id="output">
<h3>Results</h3>
<div></div>
<div></div>
</section>

The JavaScript portion says, in effect, “Find the element with an ID of output. Then, find all the divs that
are children of the output element you just found.” (Yes, CSS selectors can be used in JavaScript!) The

: scope in that bit of JS referred to the scope of the thing that had been found, thus keeping the selection
confined to just that instead of the whole document. The result is that, in the JavaScript program’s
memory, it now has a structure holding references to the two div elements in the HTML.

If you use : scope in straight CSS, it will refer to the scoping root, which (at present) means the html
element, assuming the document is HTML. Neither HTML nor CSS provide a way to set scoping roots
other than the root element of the document. So, outside of JavaScript, : SCope is essentially equivalent
to : root. That may change in the future, but for now, you should only use : scope in JavaScript
contexts.

JAVASCRIPT AND CSS

There are a few ways CSS has influenced the evolution of JavaScript, and one of them is the ability to
use the CSS selection engine from within JavaScript via . querySelectorAll (). This method
can take any CSS selector as a string, and will return a collection of all the elements within the DOM
(Document Object Model) that are matched by the selector. There is also a . querySelector (),
which also accepts any CSS selector as a string, but will only return the first element found, so it’s not
always as useful.

There are some older JS methods for collecting elements that you may come across, such as
.getElementByID() and .getElementsByTagName(). These are from the time before
.querySelectorAll() was added to JavaScript, and while they may be marginally more

performant than . querySelectorAll () insome situations, they’re mostly found in legacy
codebases these days. Both are now more simply handled with . querySelectorAll(). For
example, the following two lines would have the same result:

var subheads
var subheads

Document.getElementsByTagName('h2");
Document.querySelectorAll('h2");

Similarly, a .getElementById('summary') canbe equivalently replaced with
.querySelectorAll('#summary').

The advantage in . querySelectorAll () is thatis can take any selector, no matter how
complex, including grouped selectors. Thus, you could get all of the level-two and -three headings in
a single call: Document.querySelectorAll('h2, h3"). Or grab a more complex sets of
elements with something like .querySelectorAll('h2 + p, pre + p, table + *,
thead th:nth-child(even)').

Note, though, that the list of elements returned by . querySelectorAll() is static, and therefore
is not updated when the DOM is dynamically changed. That is, if another part of the JS adds a section
with an h2 element in it, the elements previously collected with . querySelectorAll('h2,
h3"') will not be updated to include the newly-added h2. You’d either need to add it yourself
manually, or else do a new .querySelectorAll() call.

User action pseudo-classes

CSS defines a few pseudo-classes that can change a document’s appearance based on actions taken by the
user. These dynamic pseudo-classes have traditionally been used to style hyperlinks, but the possibilities
are much wider. Table 3-3 describes these pseudo-classes.

Table 3-3. User action pseudo-classes

Name Description

:hover Refers to any element over which the mouse pointer is placed—e.g., a hyperlink over which the mouse pointer is
hovering.

ractive Refers to any element that has been activated by user input—e.g., a hyperlink on which a user clicks during the time

the mouse button is held down, or an element a user has tapped via touchscreen.

: focus Refers to any element that currently has the input focus—i.e., can accept keyboard input or otherwise be activated in
some way.

:focus-within Refers to any element that currently has the input focus—i.e., can accept keyboard input or be activated in some way
—or an element that contains an element which is so focused.

:focus-visibl Refers to any element that currently has the input focus, but only if the user agent thinks it is an element type that
e should have visible focus.

Elements that can become :active or have : focus include links, buttons, menu items, any element
with a tabindex value, and all other interactive elements, including form controls and elements that are
content-editable (by having the contenteditable attribute added to the element’s opening tag).

As with : 1ink and : visited, these pseudo-classes are most familiar in the context of hyperlinks.
Many web pages have styles that look like this:

{color: navy;}
{color: gray;}

{color: orange;}

{color: red;}
{color: yellow;}

QoY DY

NOTE

The order of the pseudo-classes is more important than it might seem at first. The usual recommendation is “link-visited-focus-hover-
active.” The next chapter explains why this particular ordering is important and discusses several reasons you might choose to change or
even ignore the recommended ordering.

Notice that the dynamic pseudo-classes can be applied to any element, which is good since it’s often
useful to apply dynamic styles to elements that aren’t links. For example, using this markup:

input {background: silver; font-weight: bold;}

...you could highlight a form element that is ready to accept keyboard input, as shown in Figure 3-16.

Name | Eric Meyer

Title Ei’rmndards Ev|

E-mail

Figure 3-16. Highlighting a form element that has focus

Two relatively new additions to the user-action pseudo-classes are : focus-within and : focus-
visible. Let’s take the second one first. : focus-visible is very muchlike : focus in that it
applies to elements that have focus, but there’s a big difference: it will only match if that element that has
focus is an element that the user agent thinks should be given visible focus styles in a given situation.

For example, consider HTML buttons. When a button is clicked via mouse, it is given focus, the same as
if we had used a keyboard interface to move the focus to it. As authors who care about accessibility and
aesthetics, we want the button to have focus styles when it’s focused via keyboard or some other assistive
technology, but we might not like it getting focus styles when it’s clicked or tapped.

We can split this difference using CSS such as the following:

button {outline: 5px solid maroon;}

This will put a thick dark-red outline around the button when tabbing to it via keyboard, but the rule above
won’t be applied when the button is clicked with the mouse.

Building on that, : focus-within applies to any element that has focus, or any element that has a
descendant with focus. Given the following CSS and HTML, we’ll get the result shown in Figure 3-17.

nav {border: 3px solid silver;}
a {outline: 2px solid currentColor;}
<nav>

Home

About

Contact
</nav>

MMCon_ac

Figure 3-17. Selecting elements using : focus-within

The third link currently has focus, having received it by the user tabbing to that link, and is styled with a
two-pixel outline. The nav element that contains it is also being given focus styling via : focus -

within, because an element within itself (that is, an element descended from it) currently has focus.
This adds a little more visual weight to that area of the page, which can be helpful. Be careful of
overdoing it, though. Too many focus styles can create visual overload, potentially confusing users.

WARNING

While you can style elements with : focus any way you like, do not remove all styling from focused elements. Differentiating which
element currently has focus is vital for accessibility, especially for those navigating your site or application with a keyboard.

Real-world issues with dynamic styling

Dynamic pseudo-classes present some interesting issues and peculiarities. For example, it’s possible to

set visited and unvisited links to one font size and make hovered links a larger size, as shown in Figure 3-
18:

a , a {font-size: 13px;}
a , a {font-size: 20px;}

ess-tricks.com WEb Blﬂgs

lea verou.me

meyerweb.com
mnmkﬂnnlThmcmtﬂmWWMgFMMﬁﬂlvuhabLﬂmﬁmaﬂ
— written by people who know a lot about Web design anc
CSs in general. By reading them I can get a sense of the

trends in design and thinking about document structure.

zeldman.com

Figure 3-18. Changing layout with dynamic pseudo-classes

As you can see, the user agent increases the size of the anchor while the mouse pointer hovers over it —
or, thanks to the : active setting, when a user touches it on a touch screen. As we are changing a
property that impacts line height, a user agent that supports this behavior must redraw the document while
an anchor is in hover state, which could force a reflow of all the content that follows the link.

Ul-State Pseudo-Classes

Closely related to the dynamic pseudo-classes are the user-interface (Ul) state pseudo-classes, which
are summarized in Table 3-4. These pseudo-classes allow for styling based on the current state of user-
interface elements such as checkboxes.

Table 3-4. Ul-state pseudo-classes

Name Description

:enabled Refers to user-interface elements (such as form elements) that are enabled; that is, available for input.

:disabled Refers to user-interface elements (such as form elements) that are disabled; that is, not available for input.

:checked Refers to radio buttons or checkboxes that have been selected, either by the user or by defaults within the document
itself.

:indeterminate Refers to radio buttons or checkboxes that are neither checked nor unchecked; this state can only be set via DOM
scripting, and not due to user input.

:default Refers to the radio button, checkbox, or option that was selected by default.
rautofill Refers to a user input that has been auto-filled by the browser.

:placeholder-s Refers to a user input that has placeholder (not value) text pre-filled.

hown

:valid Refers to a user input that meets all of its data validity requirements.

:invalid Refers to a user input that does not meet all of its data validity requirements.
:in-range Refers to a user input whose value is between the minimum and maximum values.

rout-of-range Refers to a user input whose value is below the minimum or above the maximum values allowed by the control.

:required Refers to a user input that must have a value set.
roptional Refers to a user input that does not need to have a value set.
:read-write Refers to a user input that is editable by the user.
:read-only Refers to a user input that is not editable by the user.

Although the state of a UI element can certainly be changed by user action—for example, a user checking
or unchecking a checkbox—UI-state pseudo-classes are not classified as purely dynamic because they can
also be affected by the document structure or scripting.

Enabled and disabled Ul elements

Thanks to both DOM scripting and HTMLS5, it is possible to mark a user-interface element (or group of
user interface elements) as being disabled. A disabled element is displayed, but cannot be selected,
activated, or otherwise interacted with by the user. Authors can set an element to be disabled either
through DOM scripting, or by adding a disabled attribute to the element’s markup.

Any element that hasn’t been disabled is by definition enabled. You can style these two states using the
:enabled and :disabled pseudo-classes. It’s much more common to style disabled elements and
leave enabled elements alone, but both have their uses, as illustrated in Figure 3-19:

{font-weight: bold;}
{opacity: 0.5;}

Name |your full name
Title |your job title

E-mail

Figure 3-19. Styling enabled and disabled UI elements

Check states

In addition to being enabled or disabled, certain UI elements can be checked or unchecked—in HTML,
the input types “checkbox” and “radio” fit this definition. CSS offers a : checked pseudo-class to
handle elements in that state. There is also the : indeterminate pseudo-class, which matches any
checkable UI element that is neither checked nor unchecked. These states are illustrated in Figure 3-20:

{background: silver;}
{border: red;}

Rating O1 02 @3 04 [O5

Figure 3-20. Styling checked and indeterminate Ul elements

Although checkable elements are unchecked by default, it’s possible for an HTML author to toggle them
on by adding the checked attribute to an element’s markup. An author can also use DOM scripting to
flip an element’s checked state to checked or unchecked, whichever they prefer.

As of early 2022, the indeterminate state can only be set through DOM scripting or by the user agent itself;
there is no markup-level method to set elements to an indeterminate state. The purpose of styling an
indeterminate state is to visually indicate that the element needs to be checked (or unchecked) by the user.
However, note that this is purely a visual effect: it does not affect the underlying state of the UI element,
which is either checked or unchecked, depending on document markup and the effects of any DOM
scripting.

Although the previous examples show styled radio buttons, remember that direct styling of radio buttons

and checkboxes with CSS is actually very limited. Nevertheless, that shouldn’t limit your use of the
selected-option pseudo-classes. As an example, you can style the labels associated with your checkboxes
and radio buttons using a combination of : checked and the adjacent sibling combinator:

input[type="checkbox"] + label {
color: red;
font-style: italic;

}

<input id="chbx" type="checkbox"> <label for="chbx">I am a label</label>

If you need to select all checkboxes that are not checked, use the negation pseudo-class (which is covered
later in the chapter) like this: input [type="checkbox"]:not(:checked). Only radio buttons
and checkboxes can be checked. All other elements, and these two when not checked, are

:not (:checked). This approach fills the gap left by the absence of an : unchecked pseudo-class.

Default-value pseudo-classes

There are three pseudo-classes that relate to default values and filler text: :default,
:placeholder-shown, and :autofill.

The : default pseudo-class matches the UI elements that are the default among a set of similar
elements. This typically applies to context menu items, buttons, and select lists/menus. If there are several
same-named radio buttons, the one that was originally selected (if any) matches : default, even if the
UI has been updated by the user so that it no longer matches : checked. If a checkbox was checked on
page load, : default matches it. Any initially-selected option(s) ina select element will match.

[type="checkbox"] + label { font-style: italic; }

<input type="checkbox" id="chbx" checked name="foo" value="bar">
<label for="chbx">This was checked on page load</label>

:default will also match a form’s default button, which is generally the first but ton element in
DOM order that is a member of a given form. This could be used to indicate to users which button will be
activated if they just hit Enter, instead of explicitly selecting a button to activate.

:placeholder-shown is similar in that it will select any 1nput that has had placeholder text
defined at the markup level. For example:

<input type="text" id="firstName" placeholder="Your first name">
<input type="text" id="lastName" placeholder="Your last name">

The value of a placeholder attribute will be placed into the input fields in a browser, usually in a
lighter color than normal text. If you want to style those 1nput elements in a consistent way, then you can
do something like this:

input {opacity: 0.75;}

Note that this selects the input as a whole, not just the placeholder text. (To style the placeholder text
itself, see ““The Placeholder Text Pseudo-Element”” later in the chapter.)

rautofill is a little but different than the other two: it matches any element that has had its value
automatically filled in or auto-completed by the browser. This may be familiar to you if you’ve ever filled
out a form by having the browser fill in stored values of your name, email, mailing address, and so on.
The input fields that are filled in usually get a distinct style, like a yellowish background. You can add to
that using :autofill, perhaps like this:

input {border: thick solid maroon;}

NOTE

While you can add to default browser styling of autofilled text, it is difficult to override the browser’s built-in styles for things such as
background colors. This is because the browsers’ styles for autofilled fields are set to override just about anything else, largely as a way to
provide users with a consistent experience of autofilled content.

Optionality pseudo-classes

The pseudo-class : required matches any user-input element that is required, as denoted by the
presence of the required attribute. The : optional pseudo-class matches user-input elements that do
not have the required attribute, or whose required attribute has a value of false.

A user-input element is : required if having a value for it is required before the form to which it
belongs can be validly submitted. All other user-input elements are matched by : optional. For
example:

input { border: 1px solid #f00;}
input { border: 1px solid #ccc;}

<input type="email" placeholder="enter an email address" required>
<input type="email" placeholder="optional email address'">
<input type="email" placeholder="optional email address" required="false'">

The first email input will match the : required pseudo-class because of the presence of the
required attribute. The second input is optional, and therefore will match the : optional pseudo-
class. The same is true for the third input, which has a required attribute, but the value is false.

Elements that are not user-input elements can be neither required nor optional. Including the required
attribute on a non-user-input element won’t lead to an optionality pseudo-class match.

Validity pseudo-classes

The :valid pseudo-class refers to a user input that meets all of its data validity requirements. The
: invalid pseudo-class, on the other hand, refers to a user input that does not meet all of its data
validity requirements.

The validity pseudo-classes :valid and : invalid only apply to elements having the capacity for data

validity requirements: a div will never match either selector, but an input could match either,
depending on the current state of the interface.

Here’s an example where an image is dropped into the background of any email input which has focus,
with one image being used when the input is invalid and another used when the input is valid, as
illustrated in Figure 3-21:

input[type="email"] {
background-position: 100% 50%;
background-repeat: no-repeat;

}

input[type="email"] {
background-image: url(warning.jpg);

}

input[type="email"] {
background-image: url(checkmark.jpg);

}

<input type="email">

test

test@example.org

Figure 3-21. Styling valid and invalid Ul elements

Keep in mind that these pseudo-class states may not act as you might expect. For example, as of early
2022, any empty email input that isn’t required matches : valid, despite the fact a null input is not a
valid email address, because no email address is a valid response for an optional input. If you try to fill
in a malformed address or just some random text, that will be matched by : invalid because itisn’t a
valid email address.

Range pseudo-classes

The range pseudo-classes include :in-range, which refers to a user input whose value is between the
minimum and maximum values set by HTML5’s min and max attributes, and : out -of - range, which
refers to a user input whose value is below the minimum or above the maximum values allowed by the
control.

For example, consider a number input that accepts numbers in the range 0 to 1,000:

input[type="number"] {
background-position: 100% 50%;
background-repeat: no-repeat;

}

input[type="number"] {
background-image: url(warning.jpg),;

3
input[type="number"] {
background-image: url(checkmark.jpg);

}

<input id="nickels" type="number" min="0" max="1000" />

In this example, a value from zero to one thousand, inclusive, would mean the input element is matched
by :in-range. Any value outside that range, whether input by the user or assigned via the DOM, will
cause the 1nput to match :out-of-range instead.

The :in-range and : out-of -range pseudo-classes apply only to elements with range limitations.
User inputs that don’t have range limitations, like links for inputs of type tel, will not be matched by
either pseudo-class.

There is also a step attribute in HTMLS5. If a value is invalid because it does not match the step value,
but is still between or equal to the min and max values, it will match : invalid while also still
matching : in-range. That is to say, a value can be in-range while also being invalid.

Thus, in the following scenario, the input’s value will be both red and boldfaced, because the value 23 is

in range but is not evenly divisible by 10:

input[type="number"] {color: red;}
input[type="number"] {font-weight: bold;}

<input id="by-tens" type="number" min="0" max="1000" step="10" value="23" />

Mutability pseudo-classes

The mutability pseudo-classes include : read-write, whichrefers to a user input that is editable by
the user; and : read-only, which matches user inputs that are not editable, including radio buttons and
checkboxes. Only elements that have the capacity to have their values altered by user input can match
:read-write.

For example, in HTML, a non-disabled, non-read-only input elementis : read-write, as is any
element with the contenteditable attribute. Everything else matches : read-only.

By default, neither of the following rules would ever match: textarea elements are read-write, and
pre elements are read-only.

textarea {opacity: 0.75;}
pre {border: 1px dashed green;}

However, each can be made to match as follows:

<textarea disabled></textarea>
<pre contenteditable>Type your own code!</pre>

Because the textarea is givena disabled attribute, it becomes read-only, and so will have the first

rule apply. Similarly, the pre here has been given the attribute contenteditable, so now itis a
read-write element. This will be matched by the second rule.

The :lang and :dir Pseudo-Classes

For situations where you want to select an element based on its language, you can use the : lang()
pseudo-class. In terms of its matching patterns, the : 1ang() pseudo-class is similar to the |= attribute
selector. For example, to italicize elements whose content is written in French, you could write either of
the following:

* (fr) {font-style: italic;}
*[lang|="fr"] {font-style: italic;}

The primary difference between the pseudo-class selector and the attribute selector is that language
information can be derived from a number of sources, some of which are outside the element itself. For
the attribute selector, the element must have the attribute present to match. The : 1ang pseudo-class, on
the other hand, matches descendants of an element with the language declaration. As Selectors Level 3
states:

In HTML, the language is determined by a combination of the 1ang attribute, and possibly
information from the meta elements and the protocol (such as HTTP headers). XML uses an
attribute called xm1 : 1ang, and there may be other document language-specific methods for
determining the language.

—https://www.w3.org/TR/selectors-3/

The pseudo-class will operate on all of that information, whereas the attribute selector can only work if
there is a 1ang attribute present in the element’s markup. Therefore, the pseudo-class is more robust than
the attribute selector and is probably a better choice in most cases where language-specific styling is
needed.

CSS also has a :dir () pseudo-class, which selects elements based on the HTML direction of an
element. So you could, for example, select all the elements whose direction is right-to-left like this:

* (rtl) {border-right: 2px solid;}

The thing to watch out for here is that the : dir () pseudo-class selects elements based on their
directionality in HTML, and not the value of the direction property in CSS that may be applied to
them. Thus, the only two values you can really select on as of early 2022 are 1tr (left-to-right) and rt1
(right-to-left) because those are the only direction values that HTML permits.

Logical Pseudo-Classes

Beyond structure and language, there are pseudo-classes intended to bring a touch of logic and flexibility
to CSS selectors. These start with negation and proceed to union, by allowing group matching within a
single part of a selector.

The Negation Pseudo-Class

Every selector we’ve covered thus far has had one thing in common: they’re all positive selectors. In
other words, they are used to identify the things that should be selected, thus excluding by implication all
the things that don’t match and are thus not selected.

For those times when you want to invert this formulation and select elements based on what they are not,
CSS provides the negation pseudo-class, :not (). It’s not quite like any other selector, fittingly enough,
and it does have some restrictions on its use, but let’s start with an example.

Let’s suppose you want to apply a style to every list item that doesn’t have a class of moreinfo, as
illustrated in Figure 3-22. That used to be very difficult, and in certain cases impossible, to make happen.
Now we can declare:

1i (.moreinfo) {font-style: italic;}

These are the necessary steps:

s Insert key

= Turn key elockwise

» Grip steering wheel with hands
s Push accelerator

s Steer vehicle

s Use brake as necessary

Do not push the brake at the same time as the accelerator.

Figure 3-22. Styling list items that dont have a certain class

The way : not () works is that you attach it to a selector, and then in the parentheses you fill in a selector
or group of selectors which describe what the original selector cannot match.

Let’s flip around the previous example and select all elements with a class of moreinfo that are not
list items. This is illustrated in Figure 3-23:

.moreinfo (1i) {font-style: italic;}

These are the necessary steps:

= Insert key
= Turn key clockwise
« Grip steering wheel with hands

Do not push the brake at the same time as the accelerator. Doing so can cause what
computer scientists might term a “race condition” except you won’t be racing so much
as burning out the engine. This can cause a fire, lead to a traffic accident, or worse.

Figure 3-23. Styling elements with a certain class that arent list items

Translated into English, the selector would say, “Select all elements with a class whose value contains
the word moreinfo as long as they are not 11 elements.” Similarly, the translation of
li:not(.moreinfo) would be “Select all 11 elements as long as they do not have a class whose
value contains the word moreinfo.”

You can also use the negation pseudo-class at any point in a more complex selector. Thus, to select all
tables that are not children of a section element, you would write *: not (section) > table.
Similarly, to select table header cells that are not part of the table header, you’d write something like
table *:not(thead) > tr > th, witha resultlike that shown in Figure 3-24.

State Post Capital State Bird
Alabama AL Montgomery Yellowhammer
Alaska AK Juneau Willow Ptarmigan
Arizona A7 Phoenix Cactus Wren

Arkansas AR Little Rock Mockingbird
California CA Sacramento California Quail

Colorado CO Denver Lark Bunting
Connecticut CT Hartford American Robin
Delaware DE Dover Blue Hen Chicken
Florida FL. Tallahassee Northern Mockingbird
Georgia GA Atlanta Brown Thrasher

State Post Capital State Bird

Figure 3-24. Styling header cells outside the table’s head area

What you cannot do is nest negation pseudo-classes; thus, p:not (:not(p)) is invalid and will be
ignored. It’s also, logically, the equivalent of just writing p, so there’s no point anyway. Furthermore, you
cannot reference pseudo-elements (which we’ll cover shortly) inside the parentheses, since they are not
simple selectors. You can include attribute selectors and pseudoclasses; they may seem complicated, but
they are simple selectors.

Technically, you can put a universal selector into the parentheses, but there’s very little point. After all,
p:not(*) would mean “Select any p element as long as it isn’t any element,” and there’s no such thing
as an element that is not an element. Very similar to that would be p: not (p), which would also select
nothing. It’s also possible to write things like p:not (div), which will select any p element that is not
a div element—in other words, all of them. Again, there is very little reason to do this.

On the other hand, it’s possible to chain negations together to create a sort of “and also not this” effect.
For example, you might want to select all elements witha class of 1ink that are neither list items nor
paragraphs:

*.1link (11) (p) {font-style: italic;}

That translates to “Select all elements with a class whose value contains the word 11nk as long as
they are neither 11 nor p elements.” This used to be the only way to exclude a group of elements, but CSS
(and browsers) support selector lists in negations. That allows us to rewrite the previous example like so:

*.1link (11, p) {font-style: italic;}

Along with this came the ability to use more complex selectors, such as those using descendant
combinators. If you need to select all elements that are descended from a form element, but do not
immediately follow a p element, you could write it as:

form *:not(p + *)

Translated, that’s “select any element that is not the adjacent sibling a p element, and is also the
descendant of a form element”. And you can put these into groups, so if you also want to exclude list
items and table-header cells, it would go something like this:

form *:not(p + *, 1li, thead > tr > th)

NOTE

The ability to use complex selectors in : not () only came to browsers in early 2021, so exercise caution when using it, especially in legacy
settings.

One thing to watch out for with : not () is that you can have situations where rules combine in
unexpected ways, mostly because we’re not used to thinking of selection in the negative. Consider this test
case:

div (.one) p {font-weight: normal;}
div.one p {font-weight: bold;}

<div class="one'">
<div class="two'">
<p>I'm a paragraph!</p>
</div>
</div>

The paragraph will be boldfaced, not normal-weight. This is because both rules match: the p element is
descended froma div whose class does not contain the word one (<div class="two">), butit
is also descended from a div whose class contains the word one. Both rules match, and so both
apply. Since there is a conflict, the cascade (which is explained in the next chapter) is used to resolve the
conflict, and the second rule wins. The structural arrangement of the markup, with the div. two being
“closer” to the paragraph than div.one, is irrelevant.

The matches-any pseudo-classes

CSS has two pseudo-classes that allow for group matching within a complex selector, 1s() and
:where (). These are almost identical to each other, with just a minor difference that we’ll cover once
we understand how they work. Let’s start with 1s ().

Suppose you want to select all list items, whether or not they are part of an ordered or an unordered list.
The traditional way to do that is:

ol 1i, ul 1i {font-style: italic;}
With :1s(), we canrewrite that like so:

(ol, ul) 1i {font-style: italic;}

The matched elements will be exactly the same: all list items that are part of either ordered or unordered
lists.

This might seem slightly pointless: not only is the syntax slightly less clear, it’s also one character longer.
And it’s true that in simple situations like that, : 1s() isn’t terribly compelling. The more complex the
situation, though, the more likely : 1s () will really shine.

NOTE

:1s() used to be called :matches() before a 2021 rename, and was also present in vendor-prefixed form as : -wekbit-any()
and : -moz-any () in still older browsers.

For example, what if we want to style all list items that are at least two levels deep in nested lists, no
matter what combination of ordered and unordered lists are above them? Compare the following rules,
both of which will have the effect shown in Figure 3-25, except one uses the traditional approach and the
other uses :1s().

ol ol 1i, ol ul 1i, ul ol 1i, ul ul 1li {font-style: italic;}

(ol, ul) (ol, ul) 1i {font-style: italic;}

o [t alist

v Aright smart it
[Within, another list

o This 15 deep

S0 very deep
2. Alist of lists to see

o And all the lsts for me!

Figure 3-25. Using matches-any to select elements

Now consider what the traditional approach would look like for three, four, or even more levels deep of
nested lists!

This can be used in all sort of situations: selecting all links inside lists that are themselves inside headers,
footers, and nav elements could look like this:

(header, footer, nav, #header, #footer) (ol,ul) a[href] {font-style: italic;}

Even better: the list of selectors inside : 1s() is what’s called a “forgiving selector list.” By default, if
any one thing in a selector is invalid, the whole rule is marked invalid. Forgiving selector lists, on the
other hand, will throw any part that’s invalid and honor the rest.

So, given all that, what’s the difference between :1s() and :where()? The sole difference between
them is that 1s (') takes the specificity of the most-specific selector in its selector list, whereas
:where () has zero specificity. If that last sentence didn’t make sense to you, don’t worry! We haven’t
discussed specificity yet, but will in the next chapter.

WARNING

:is() and :where() only came to browsers in early 2021, so exercise caution when using them, especially in legacy settings.

Selecting defined elements

As the web has advanced, it’s added more and more capabilities. One of the more recent is the ability to
add custom elements to your markup in a standardized way. This happens a lot with pattern libraries,
which often define Web Components based on elements that are specific to the library.

One thing such libraries do to be more efficient is hold off on defining an element until it’s needed, or it’s
ready to be populated with whatever content is supposed to go into it. Such a custom element might look
like this in markup:

<mylib-combobox>options go here</mylib-combobox>

The actual goal is to fill that combobox (a dropdown list that also allows users to enter arbitrary values)
with whatever options the backend CMS (Content Management System) provides for it, downloaded via a
script that requests the latest data in order to build the list locally, and removing the placeholder text in
the process. But what happens if the server fails to respond, leaving the custom element undefined and
stuck with its placeholder text? Without taking steps, the text “options go here” will get inserted into the
page, probably with minimal styling.

That’s where :defined comes in. You can use it to select any defined element, and combine it with
:not () to select elements that aren’t yet defined. Here’s a simple way to hide undefined comboboxes,
and also to apply styles to defined comboboxes.

mylib-combobox () {display: none;}
mylib-combobox {display: inline-block;}
mylib-combobox {font-size: inherit; border: 1px solid gray,; outline: 1px solid silver;}

The :has() pseudo-class

This one is a little bit tricky, because it doesn’t quite follow all the rules we’ve been working under until
now—but as a result, it’s also insanely powerful.

Imagine you want to apply special styles to any diVv element that contains an image. Another way of
saying that is that if a div element has an img element inside it, you want to apply certain styles to the
div. And that’s exactly what : has () makes possible.

The previous example would be written something like this, with the result illustrated in Figure 3-26:

div (img) {
border: 3px double gray;
}

<div>

</div>
<div>
<p>No image here!</p>
</div>
<div>
<p>This has text and .
</div>

o mage e

MWMWM

Figure 3-26. Using :has() to select elements

The second div, which does not have an img element as a descendant, doesn’t get the border. If you only
wanted the first div to get the border, because you actually wanted to only style div's that have
images as direct children, just modify the selector to use the child
combinator, like this: “div:has(> img). That would prevent the third div from getting
the border.

:has () is, in one very real sense, the mythical “parent selector” CSS authors have wished for since the
beginning of CSS itself. Except it isn’t just for parent selection, because you can select based on siblings,
or make the selection happen as far up the ancestry chain as you like. And if all that didn’t quite make
sense to you, hang on: we’ll explain further.

There are two things to note right off the bat:

1. Inside the parentheses of :has(), you can provide a comma-separated list of selectors, and each of
those selectors can be simple or complex.

2. Those selectors are considered relative to the element to which the : has () is attached.

Let’s take those in order. All of the following are valid : has() uses:

table (tbody th) {..}
/* tables whose body contains table headers */

a (img) {-}
/* 1links containing only an image */

header (nav, form.search) {.}
/* headers containing either nav or a form classed search */

section (+ h2 em, table + table, ol ul ol ol) {.}
/* sections immediately followed by an 'h2' that contains an 'em'
OR that contain a table immediately followed by another table
OR that contain an 'ol' inside an 'ol' inside a 'ul' inside an 'ol' */

That last example might be a bit overwhelming, so let’s break it down a bit further. We could restate in a
longer way, like this:

section (+ h2 em),
section (table + table),
section (ol ul ol ol) {.}

And here are two examples of the markup patterns that would be selected:

<section>(..section content..)</section>
<h2>I'm an h2 with an emphasis element inside, which means
the section right before me gets selected!</h2>

<section>

<h2>This h2 doesn’t get the section selected, because it’s a child of
the section, not its immediately-following sibling</h2>

<p>This paragraph is just here.</p>

<aside>

<h3>Q1 Results</h3>

<table>(..table contents..)</table>

<table>(..table contents..)</table>

</aside>

<p>Those adjacent-sibling tables mean this paragraph’s parent section element
DOES get selected!</p>

</section>

In the first example, the selection isn’t based on parentage or any other ancestry: instead, the section is
selected because its immediate sibling (the h2) has an em element as one of its descendants. In the
second, the section is selected because it has a descendant table that’s immedaitely followed by
another table, both of which happen in this case to be inside an aside element. That makes this
specific example one of grandparent selection, not parent selection, because the section is grandparent
to the tables.

Right, so that’s the first point that was raised earlier. The second was that the selectors inside the
parentheses are relative to the element bearing the : has (). What that means is that, for example, the
following selector is never going to match anything:

div:has(html body h1)

That’s because while an h1 can certainly be a descendant of a div, the html and body elements
cannot. What that selector means, translated into English, is: “select any div that has a descendant html
which itself has a descendant body which has a descendant h1”. html will never be a descendant of
div, so this selector can’t match.

To pick something a little more realisitc, here’s a bit of markup showing lists nested inside each other,
which has the document structure shown in Figure 3-27.

List item</1li>
List item

List item</1li>
List item</1li>
List item</1li>

</1i>
List item</1li>
List item</1li>
List item

List item</1li>
List item

List item</1li>
List item</1li>
List item</1li>

</o0l>
</1i>
List item</1li>

</1li>
</o0l>

Figure 3-27. A fragment of a document’s structure

To that structure, we’ll apply the following rules. Spoiler alert: one of them will match an element, and
the other will not.

ul (11 ol) {border: 1px solid red;}
ul (ol ul ol) {font-style: italic;}

The first causes the browser to look at all the ul elements. For any ul it finds, it looks at the structure of
the elements that descend from that ul. If it finds an 11 01 relationship in the elements that descend
from the ul, then the ul is matched, and in this case will be given a red border.

If we study the markup structure, either in the code or in Figure 3-27, we can see there are two ul
elements. The first has 11 descendants, but not any 01 descendants, so it won’t be matched. The second
ul also has 11 descendants, and one of them as an 01 descendant. It’s a match! The ul will be given a
red border.

The second rule also causes the browser to look at all the ul elements. In this case, for any ul it finds,

the browser looks to see if there is an 01 ul 01l relationship within the descendants of the ul.
Elements outside the ul don’t count: only those within it are considered. Of the two ul elements in the
document, neither has an 01 inside a ul that’s inside another 01 that is itself descended from the ul
being considered. There’s no match, so neither of the ul elements will be italicized.

Even more powerfully, you’re free to mix : has () with other pseudo-classes. You might, for example,
want to select any heading level if it has an image inside. There are two ways to do this: the long clumsy
way, and the compact way. Both are shown here:

hi:has(img), h2:has(img), h3:has(img), h4:has(img), h5:has(img), h6:has(img)

:is(h1, h2, h3, h4, h5, h6):has(img)
The two selectors have the same outcome, which is to say, if an element is one of the listed heading

elements, and that element has among its descendant elements an img element, then the heading will be
selected.

For that matter, you could select any headings that don’t have images inside:

:is(h1, h2, h3, h4, h5, h6):not(:has(img))

That is to say: if an element is one of the listed heading levels, but an img element is not one of the
descendants it has, then the heading will be selected. If we bring them together and apply them to a
number of headings, we get the results shown in Figure 3-28.

[" [ext gnd

I, 00000 000000000000000 000000000000000000000

Jox i ot and

T . Tt and

l i Tt and

“ " ot and i
3 i i

ll

Figure 3-28. To has and has not

As you can already see, there is a lot of power in this selector. There are also dangers: it is entirely
possible to write selectors that cause major performance hits to the browser, especially in settings where
scripting may be used to modify the document structure. Consider the following:

div (*.popup) {..}

This is saying, “apply these styles to any div that has an element witha class of popup as a
descendant.” When the page is loaded into the browser, it has to check all the "div's to see if they match
this selector. That could mean a few trips up and down the document’s structural tree, but ideally it would
resolve in less than a second, and the page can then be displayed.

But suppose then we have a script that can add . popup to an element, or even several elements, on the
page. As soon as the class values change, the browser not only has to check to see if there are styles that
apply to . popup elements and their descendants, it also has to check to see if there are any ancestor or
sibling elements that are affected by this change. Instead of only looking down the document tree, the
browser now has to look up as well. And any change triggered by this could mean changes all throughout
the page’s layout, both when an element is marked as . popup and whenever a . popup element loses
that class value, potentially affecting elements in entirely different parts of the document.

This sort of performance hit is why there hasn’t been a “parent selector” or anything like it before.
Computers are getting fast enough, and browser engines smart enough, that this is much less of a worry
than it was in the past — but it’s still something to keep in mind, and test out thoroughly.

NOTE

It is not possible to nest pesudo-elements like : : first-1lineor ::selection in has (). (We’ll discuss pseudo-elements shortly.)

As of mid-2022, the Firefox family of browser did not support : has (), though there were plans to add it. That said, be careful not to use it
in ways that make its support necessary, particularly in the years following 2022.

Other pseudo-classes

There are even more pseudo-classes defined in in the CSS Selectors specification, but they are barely
supported in browsers, or in some cases not supported at all as of early 2022, or else are things we’ll
cover elswhere in the book. We’re listing them here for the sake of completeness, and to point you toward
pseudo-classes that might be supported between this edition of the book and the next one. (Or could be
replaced with an equivalent pseudo-class with a different name; that happens sometimes.)

Table 3-5. Other pseudo-classes

Name Description

:nth-col() Refers to table cells or grid items that are in an nth column, which is found using the An + b pattern. Essentially the
same as :nth-child(), but refers specifically to table or grid columns.

:nth-last-col Refers to table cells or grid items that are in an nth-last column, which is found using the An + b pattern. Essentially

() the same as :nth-last-child(), but refers specifically to table or grid columns.
1left Refers to any left-hand page in a printed document. See XREF HERE for more.
:right Refers to any right-hand page in a printed document. See XREF HERE for more.

:fullscreen Refers to an element that is being displayed fullscreen; e.g., a video that’s in fullscreen mode.
:past Refers to an element that appeared before (in time) an element being matched by : current.

icurrent Refers to an element, or the ancestor of an element, that is currently being displayed in a time-based format like a
video; e.g., an element containing closed-caption text.

:future Refers to an element that will appear after (in time) an element being matched by : current.

:paused Refers to any element that can have the states “playing” or “paused” (e.g., audio, video, etc.) when it is in the
“paused” state.

:playing Refers to any element that can have the states “playing” or “paused” (e.g., audio, video, etc.) when it is in the
“playing” state.

:picture-in-p Refers to an element that is used as a picture-in-picture display.
icture

Pseudo-Element Selectors

Much as pseudo-classes assign phantom classes to anchors, pseudo-elements insert fictional elements into
a document in order to achieve certain effects.

Unlike the single colon of pseudo-classes, pseudo-elements employ a double-colon syntax, like

: :first-1ine. This is meant to distinguish pseudo-elements from pseudo-classes. This was not
always the case—in CSS2, both selector types used a single colon—so for backward compatibility,
browsers will accept single-colon pseudo-type selectors. Don’t take this as an excuse to be sloppy,
though! Use the proper number of colons at all times in order to future-proof your CSS; after all, there is
no way to predict when browsers will stop accepting single-colon pseudo-type selectors.

Styling the First Letter

The : : first-letter pseudo-element styles the first letter, or a leading punctuation character and the
first letter (if the text starts with punctuation), of any non-inline element. This rule causes the first letter of
every paragraph to be colored red:

p {color: red;}

The : : first-letter pseudo-element is most commonly used to create an “initial cap” or “drop cap”
typographic effect. You could make the first letter of each p twice as big as the rest of the heading, though
you may want to only apply this styling to the first letter of the first paragraph:

p {font-size: 200%;}

The result of this rule is illustrated in Figure 3-29.

This is an h2 element

Figure 3-29. The :-first-letter pseudo-element in action

This rule effectively causes the user agent to style a fictional, or “faux”, element that encloses the first
letter of each p. It would look something like this:

<p><p-first-letter>T</p-first-letter>his is a p element, with a styled first
letter</h2>

The : : first-letter styles are applied only to the contents of the fictional element shown in the
example. This <p-first-letter> element does not appear in the document source, nor even in the
DOM tree. Instead, its existence is constructed on the fly by the user agent and is used to apply the
::first-letter style(s) to the appropriate bit of text. In other words, <p-first-letter>isa
pseudo-element. Remember, you don’t have to add any new tags. The user agent styles the first letter for
you as if you had encased it in a styled element.

The first letter is defined as the first typographic letter unit of the originating element, if it is not preceded
by other content, like an image. The specifications use the term “letter unit” because some languages have
letters made up of more than character, like “ce” in Old West Norse. Punctuation that precedes or follows
the first letter unit, even if there are several such symbols, should be included inthe : : first-letter
pseudo-element. The browser does this for you.

Styling the First Line

Similarly, : : first-1ine canbe used to affect the first line of text in an element. For example, you
could make the first line of each paragraph in a document large and purple:

p {
font-size: 150%;
color: purple;

}

In Figure 3-30, the style is applied to the first displayed line of text in each paragraph. This is true no
matter how wide or narrow the display region is. If the first line contains only the first five words of the
paragraph, then only those five words will be big and purple. If the first line contains the first 30 words of
the element, then all 30 will be big and purple.

This 15 a paragraph of text that has only

one stylesheet applied to it. That style causes the first line to
be big and purple. No other line will have those styles applied.

Figure 3-30. The ::first-line pseudo-element in action

Because the text from “This” to “only” should be big and purple, the user agent employs a fictional
markup that looks something like this:

<p>

<p-first-line>This is a paragraph of text that has only</p-first-line>
one stylesheet applied to it. That style causes the first line to

be big and purple. No other line will have those styles applied.

</p>

If the first line of text were edited to include only the first seven words of the paragraph, then the fictional
</p-first-1line> would move back and occur just after the word “that.” If the user were to increase
or decrease the font-size rendering, or expand or contract the browser window causing the width of the
text to change, thereby causing the number of words on the first line to increase or decrease, the browser
automatically sets only the words in the currently displayed first line to be both big and purple.

The length of the first line depends on a number of factors, including the font-size, letter spacing, width of
the parent container, etc. Depending on the markup and the length of that first line, it is possible that the
end of the first line comes in the middle of a nested element. If the : : first-1ine breaks up a nested
element, such as an em or a hyperlink, the properties attached to the : : first-1line will only apply to
the portion of that nested element that is displayed on the first line.

Restrictions on ::first-letter and ::first-line

The : :first-letter and : : first-1ine pseudo-elements currently can be applied only to block-
display elements such as headings or paragraphs, and not to inline-display elements such as hyperlinks.
There are also limits on the CSS properties that may be applied to : : first-lineand : :first-
letter. The following table gives an idea of these limitations.

++ <table id="properties_permitted_on_pseudo-elements"> <caption>Properties permitted on pseudo-
elements</caption> <thead> <tr> <th>::first-letter</th> <th>::first-line</th> </tr> </thead> <tbody> <tr>
<td> All font properties All background properties All text decoration
properties All inline typesetting properties All inline layout properties All
border properties <code>box-shadow</code></1i> <code>color</code>
<code>opacity</code> </td>

<td> All font properties All background properties All margin
properties All padding properties All border properties All text decoration

properties All inline typesetting properties <code>color</code></1i>
<code>opacity</code> </td> </tr>

</tbody> </table> ++

The Placeholder Text Pseudo-Element

As it happens, the restrictions on what styles can be applied via : : first-1ine are exactly the same
as the restrictions on styles applied via : : placeholder. This pseudo-element matches any
placeholder text placed into text inputs and textareas. You could, for example, italicize text input
placeholder text and turn textarea placeholder text a dusky blue like this:

input {font-style: italic;}
textarea {color: cornflowerblue;}

For both input and textarea elements, this text is defined by the placeholder attribute in
HTML. The markup will look something very much like this:

<input type="text" placeholder="(XXX) XXX-XXXX" id="phoneno">
<textarea placeholder="Tell us what you think!"></textarea>

If text is pre-filled using the value attribute on input elements, or by placing content inside the
textarea element, that will override the value of any placeholder attribute, and the resulting text
won’t be selected with the : : placeholder pseudo-element.

The Form Button Pseudo-ELement

Speaking of forms elements, it’s also possible to directly select the file-selector button — and only the
file-selector button — in an input element that has a type of file. This gives you a way to call
attention to the button a user needs to click to open the file-selection dialog, even if no other part of the
input can be directly styled.

If you’ve never seen a file-selection input, it usually looks like this:

<label for="uploadField">Select file from computer</label>
<input id="uploadField" type="file">

That second line gets replaced with a control whose appearance is dependent on the combination of
operating system and browser, so it tends to look at least a little different (sometimes a lot different) from
one user to the next. Figure 3-31 shows on possible rendering of the input, with the button styled by the
following CSS.

input {
border: thick solid gray;
border-radius: 2em;

delect ile from computer Browse.. No fl selected

d¢lect fle from computer Brovse..) Nofleseeced

Figure 3-31. Styling the button in a file submission input

Styling (or Creating) Content Before and After Elements
Let’s say you want to preface every h2 element with a pair of silver square brackets as a typographical

effect:

h2 {content: "]]"; color: silver;}

CSS lets you insert generated content, and then style it directly using the pseudo-elements : :before
and : :after. Figure 3-32 illustrates an example.

This is an h2 element

Figure 3-32. Inserting content before an element

The pseudo-element is used to insert the generated content and to style it. To place content at the end of an
element, right before the closing tag, use the pseudo-element : : after. You could end your documents
with an appropriate finish:

body {content: "The End.";}

Conversely, if you want to insert some content at the beginning of an element, right after the opening tag,
use : :before. Just remember that in either case, you have to use the content property in order to
insert something to style.

Generated content is its own subject, and the entire topic (including more detail on : : before and
: rafter)is covered more thoroughly in XREF HERE.

Highlight pseudo-elements

A relatively new concept in CSS is the ability to style pieces of content that have been highlighted, either
by user selection or by the user agent itself. These are summarized in Table 3-6.

Table 3-6. Highlight pseudo-elements

Name Description

: :selection Refers to any part of a document that has been highlighted for user operation; e.g., text which has been drag-selected
with a mouse.

: itarget-text Refers to the text of a document which has been targeted. This is distinct from the : target pseudo-class, which
refers to a targeted element as a whole, not a fragment of text.

: :spelling-er Refers to the part of a document that has been marked by the user agent as a misspelling.
ror

::grammar -err Refers to the part of a document that has been marked by the user agent as a grammar error.
or

Of the four pseudo-elements in Table 3-6, only one, : : selection, has any appreciable support as of
early 2022. So we’ll explore it, and leave the others for a future edition.

When a user uses a mouse pointer to click-hold-and-drag in order to highlight some text, that’s a selection.
Most browsers have default styles set for text selection. Authors can apply a limited set of CSS properties
to such selections, overriding the browser’s default styles, by styling the : : selection pseudo-
element. Let’s say you want selected text to be white on a navy-blue background. The CSS for that would
look like this:

{color: white; background-color: navy;}

The primary use cases for : : selection are when you want to specify a color scheme for selected text
that doesn’t clash with the rest of the design, or when you want to define different selection styles for
different parts of a document. For example:

{color: white; background-color: navy;}
form {color: silver; background-color: maroon;?}

Be careful in styling selection highlights: users generally expect text they select to look a certain way,
usually defined by settings in their operating system. Thus, if you get too clever with selection styling, you
could confuse users. That said, if you know that selected text can be difficult to see because your design’s
colors tend to obscure it, defining more obvious highlight styles is probably a good idea.

Note that selected text can cross element boundaries, and that there can be multiple selections within a
given document. Imagine a situation where a user selects text starting from the middle of one paragraph to
the middle of the next. In effect, each paragraph will get its own selection pseudo-element nested inside,
and selection styling will be handled as appropriate for the context. This means that, given the following
CSS and HTML, you’ll get a result like that shown in Figure 3-33.

.pl {color: silver; background-color: black;}

.p2 {color: black; background-color: silver;}

<p class="pl">This is a paragraph with some text that can be selected, one of two.</p>
<p class="p2">This is a paragraph with some text that can be selected, two of two.</p>

LU Re kI some (et hat can be selected, ong of two.

This 15 & paragraph wath Some fext that can be selected, two of two.

Figure 3-33. Selection styling

This underscores a point made earlier: be careful with your selection styling. It is all too easy to make
text unreadable for some users, particularly if your selection styles interact badly with the user’s default
selection styles.

Furthermore, you can only apply a limited number of CSS properties to selections: color,
background-color, text-decoration and related properties, text - shadow, and the
stroke properties (in SVG).

NOTE

As of early 2022, selections did not have their styles inherited: selecting text containing some inline elements would apply the selection
styling to the text outside the inline elements, but not within the inline elements. It is not clear if this behavior is intended, but it was
consistent across major browsers.

Beyond : : selection, there will likely be increasing support for : : target-text. As of early
2022, this was only supported in Chromium browsers, which introduced a feature that needs it. With this
feature, text can be added to the end of a URL as part of the fragment identifier for highlighting, in order to
draw attention to one or more parts of the page.

For example, a URL might look something like:
https://example.org/#:~:text=for%20use%20in%20illustrative%20examples.

The part at the end says to the browser, “once you’ve loaded the page, highlight any examples of this
text.” The text is encoded for use in URLs, which is why it’s filled with %20 strings — they represent

spaces. The result will look something like Figure 3-34.

ampleDomai

This domln I oS st examples 1 documents, ou may use
Goma 1 e bt rorconrnion or akingforpemssion,

d text styling
If you wanted to suppress this content highlighting on your own pages, you might do something like this:

{color: inherit; background-color: inherit;}

As for : :spelling-error and : :grammar-error, these are meant to apply highlighting of some
sort to any spelling or grammar errors within a document. You can see the utility for something like
Google Docs or the editing fields of content management systems like WordPress or Craft. For most other
things, though, they seem unlikely to be very popular. Regardless, as of this writing, there was no browser
support for either, and the Working Group was still hashing out the details of how they should work.

The backdrop pseudo-element

Suppose you have an element that’s being presented full-screen, like a video. Furthermore, suppose that
element doesn’t neatly fill the full screen all the way to the edges, perhaps because the aspect ratio of the
element doesn’t match the aspect ratio of the screen. What should be filled in for the parts of the screen
where the element doesn’t reach? And how would you do select that non-element region with CSS?

Enter the : : backdrop pseudo-element. This represents a box that’s the exact size of the full-screen

viewport, and it is always drawn beneath a fullscreen element. So you might put a dark-gray backdrop
behind any fullscreen video like this:

video {background: #111;}

There aren’t any restrictions on what styles can be applied to backdrops, but since they’re essentially
empty boxes placed behind a fullscreen element, most of the time, you’ll probably be setting background
colors or images.

An important thing to remember is that backdrops do not participate in inheritance. That means they can’t
inherit styles from ancestor elements, nor do they pass any of their styles on to any children. Whatever
styles you apply to the backdrop will exist in their own little pocket universe.

The video-cue pseudo-element

On the subject of videos, some videos can have WebVTT (Web Video Text Tracks) data containing the
text captions. These captions are known as cues, and can be styled with the : : cue pseudo-element.

Let’s say you have a video that’s mostly dark, with a few light segments. You might then style the cues to
be a light-ish gray text on a translucent dark background, as follows:

{

color: silver;
background: rgba(0,0,0,0.5);
}

This will always apply to the currently-visible cue.

You can also select parts of individual cues using a selector pattern inside parentheses. This can be used
to style specific elements defined in the WebVTT data, drawn from a small list allowed by the WebVTT
specification. For example, any italicized cue text could be selected as follows:

(1) {.}

It is possible to use stuctural pseudo-classes like : nth-child, but these will only apply within a given
cue, not across cues. That is, you can’t select every other cue for styling, but you can select every other
element within a given cue. Assume the following WebVTT data:

00:00:01.500 --> 00:00:02.999
<v Hildy>Tell me, is the lord of the universe in?</v>

00:00:03.000 --> 00:00:04.299
- Yes, he's in.
- In a bad humor.

In the second cue, there are two lines of text. These are treated as separate elements, in effect, even though
no elements are specified. Thus, we could make “Hildy”’s text in the first cue boldface, and give alternate
colors to the two lines of dialogue in the second cue, like so:

(v[voice="Hildy"]) {font-weight: bold;}
((odd)) {color: yellow;}
((even)) {color: white;}

As of early 2022, there is a limited range of properties that can be applied to cues. They are:
e color
e background and its associated longhand properties (e.g., background-color)

e text-decoration and its associated longhand properties (e.g., text-decoration-
thickness)

e text-shadow

e text-combine-upright

e font and its associated longhand proeprties (e.g., font -weight)
e ruby-position

e Opacity

e visibility

e white-space

e outline and its associated longhand properties (e.g., outline-width)

Shadow Pseudo-classes and -Elements

Another recent innovation in HTML has been the introduction of the Shadow DOM, which is a very deep
and complex subject we don’t have the space to explore here. At a very basic level, the Shadow DOM
allows developers to create encapsulated markup, style, and scripting within the regular (or “light™)
DOM. This keeps the styles and scripts of one shadow DOM from affecting any other part of the

document, whether those parts are in the light or shadow DOM.

We’re bringing this up here because CSS does provide ways to hook into Shadow DOMs, as well as to
reach up from within a shadow DOM to select the piece of the light DOM that hosts the shadow. (This all
sounds very panel-van-artistic, doesn’t it?)

Shadow pseudo-classes

To see what this means, let’s bring back the combobox example from earlier in the chapter. It looked like
this:

<mylib-combobox>options go here</mylib-combobox>

Now, within this custom element, a whole set of scripting and CSS could be attached. These scripts and
styles would apply only within the my1ib-combobox element. Even if the CSS says something like 11
{color: red;}, that will only apply to 11 elements constructed within the mylib-combobox. It
can’t leak out to turn list items elsewhere on the page red.

That’s all good, but what if you want to style the host element in a certain way? The host element, more
generally called the shadow host, is in this case my1ib-combobox. From within the shadow host, CSS
can select the host using the : host pseudo-class. For example:

{border: 2px solid red;}

That will reach up, so to speak, “pierce through the shadow boundary” (to use an evocative phrase from
the specification), and select the mylib-combobox element.

Now, suppose there can be different kinds of combo boxes, each with its own class. Something like this:

<mylib-combobox class="countries">options go here</mylib-combobox>
<mylib-combobox class='"regions">options go here</mylib-combobox>
<mylib-combobox class="cities'">options go here</mylib-combobox>

You might want to style each class of combocbox differently. For that, the : host () pseudo-class exists.

(.countries) {border: 2px solid red;}
(.regions) {border: 1px solid silver;}
(.cities) {border: none; background: gray;}

These rules could then be included in a single stylesheet that’s loaded by all comboboxes, using the
presence of classes on the shadow hosts to style as appropriate.

But wait! What if, instead of latching on to classes, we want to style our shadow hosts based on where
they appear in the light DOM? In that case, : host-context () has you covered. Thus, we can style
our comboxes one way if they’re part of a form, and a different way if they’re part of a header navigation
element.

(form) {border: 2px solid red;}

(header nav) {border: 1px solid silver;}

The first of these means, “if the shadow host is the descendant of a form element, apply these styles.”
The second means, “if the shadow host is the descendant of a nav element that is itself descended from a
header element, apply these styles.” To be clear, form and nav are not the shadow hosts in these
situations! The selector in : host-context () is only described the context in which the host needs to
be placed in order to be selected.

NOTE
As of early 2022, :host-context () wasn’t supported by the Firefox family.

Shadow pseudo-elements

In addition to having hosts, Shadow DOMs can also define slots. These are elements that are meant to
have other things slotted into them, much as you would place an expansion card into an expansion slot.
Let’s expand the markup of the combobox by a little bit.

<mylib-combobox>
Country
["shadow-tree"]
<slot name="label"></slot>
[/"shadow tree"]
</mylib-combobox>

Now, to be clear, the ""'shadow tree" thing there isn’t actual markup. It’s just there to represent the
shadow DOM that gets constructed by whatever script builds it. So please don’t go writing square-
bracketed quoted element names into your documents: they will fail.

That said, given a setup like the above, the span would be slotted into the s1ot element, because the
names match. You could try applying styles to the slot, but what if you’d rather style the thing that got
plugged into the slot? That’s represented by the : : slotted() pseudo-element, which accepts a
selector as needed.

Thus, if you want to style all slotted elements one way and then add some extra style if the slotted element

is a span, you would write something like:

(*) {outline: 2px solid red;}
(span) {font-style-italic;}

More practically, you could style all slots red, and then remove that red from any slot that’s been slotted
with content, thus making the slots that failed to get any content stand out. Something like this:

slot {color: red;}
(*) {color: black;}

WARNING

The Shadow DOM and its use is a complex topic, and one which we have not even begun to scratch the surface of in this section. Our only
goal was to introduce the pseudo-classes and -elements that pertain to the Shadow DOM, not explain the Shadow DOM or illustrate best
practices.

Summary

As we saw in this chapter, pseudo-classes and pseudo-elements bring a whole lot of power and flexibility
to the table. Whether selecting hyperlinks based on their visited state, matching elements based on their
placement in the document structure, or styling pieces of the Shadow DOM, there’s a pseudo selector for
nearly every taste.

In this chapter and the last one, we’ve mentioned the concepts of “specificity” and “the cascade” a few
times, and promised to talk about them soon. Well, “soon” is now: That’s exactly what we’ll do in the
next chapter.

Chapter 4. Specificity, Inheritance, and the
Cascade

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official release
of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active
later on.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at rfernando@oreilly.com.

Chapter 2 showed how document structure and CSS selectors allow you to apply a wide variety of styles
to elements. Knowing that every valid document generates a structural tree, you can create selectors that
target elements based on their ancestors, attributes, sibling elements, and more. The structural tree is what
allows selectors to function and is also central to a similarly crucial aspect of CSS: inheritance.

Inheritance is the mechanism by which some property values are passed on from an element to a
descendant element. When determining which values should apply to an element, a user agent must
consider not only inheritance but also the specificity of the declarations, as well as the origin of the
declarations themselves. This process of consideration is what’s known as the cascade.

We will explore the interrelation between these three mechanisms—specificity, inheritance, and the
cascade—in this chapter, but the difference between the latter two can be summed up this way: looking at
hl {color: red; color: blue;} and making the h1l blue happens because of the cascade; and
a span inside the h1 also being blue happens because of inheritance.

Above all, regardless of how abstract things may seem, keep going! Your perseverance will be rewarded.

Specificity

You know from Chapter 2 that you can select elements using a wide variety of means. In fact, it often
happens that the same element is selected by two or more rules, each with its own selector. Let’s consider
the following three pairs of rules. Assume that each pair will match the same element:

hi {color: red;}
body h1 {color: green;}

h2.grape {color: purple;}
h2 {color: silver;}

mailto:rfernando@oreilly.com

html > body table tr[id="totals"] td ul > 1li {color: maroon;}
li#answer {color: navy;}

Only one of the two rules in each pair can be applied, or “win,” since the matched elements can be only
one color or the other. How do we know which one will win?

The answer is found in the specificity of each selector. For every rule, the user agent (i.e., a web
browser) evaluates the specificity of the selector and attaches the specificity to each declaration in the
rule within the cascade layer that has precedence. When an element has two or more conflicting property
declarations, the one with the highest specificity will win out.

NOTE

This isn’t the whole story in terms of conflict resolution, which is a bit more complicated than a single paragraph can cover. For now, just
keep in mind that selector specificity is only compared to other selectors that share the same origin and cascade layer. We’ll cover those
terms, and more, a bit later in this chapter (in “The Cascade™).

A selector’s specificity is determined by the components of the selector itself. A specificity value can be
expressed in three parts, like this: @, @, 0. The actual specificity of a selector is determined as follows:

For every ID attribute value given in the selector, add 1, 0, O.

For every class attribute value, attribute selection, or pseudo-class given in the selector, add
0,1,0.

For every element and pseudo-element given in the selector, add 0, 0, 1.
Combinators do not contribute anything to the specificity.

Anything listed inside a :where () pseudo-class, and the universal selector, adds 0, @, 0. (While
they do not contribute anything to the specificity weight, they do match elements, unlike
combinators.)

The specificityofan : 1s(), :not (), or :has() pseudo-class is equal to the specificity of the
most specific selector in its selector list argument.

For example, the following rules’ selectors result in the indicated specificities:

hi {color: red;} /* specificity = 0,0,1 */
p em {color: purple;} /* specificity = 0,0,2 */
.grape {color: purple;} /* specificity = 0,1,0 */
.bright {color: yellow;} / specificity = 0,1,0 */
p.bright em.dark {color: maroon;} /* specificity = 0,2,2 */
#1d216 {color: blue;} /* specificity = 1,0,0 */
* (aside#warn, code) {color: red;} /* specificity = 1,0,1 */
div#sidebar *[href] {color: silver;} /* specificity = 1,1,1 */

Given a case where an em element is matched by both the second and fifth rules in this example, that
element will be maroon because the sixth rule’s specificity outweighs the second’s.

Take special note of the next-last selector, * : 1s(aside#warn, code). The :is() pseudo-class is
one of a small group of pseudo-classes where the specificity is equal to the most specific selector in the
selector list. Here, the selector list was aside#warn, code. The aside#warn compound selector
has a specificity of 1, ©, 1 and the code selector has a specificity of @, ©, 1. Thus, the whole :1s()
portion of the selector is set to the specificity of the aside#warn selector.

Now, let’s return to the pairs of rules from earlier in the section and fill in the specificities:

hi {color: red;} /*0,0,1 */
body hi {color: green;} /* 0,0,2 (winner)*/

h2.grape {color: purple;} /* 0,1,1 (winner) */
h2 {color: silver;} /*0,0,1 */

html > body table tr[id="totals"] td ul > 1li {color: maroon;} /* 0,1,7 */
li#answer {color: navy;} /*1,0,1
(winner) */

We’ve indicated the winning rule in each pair; in each case, it’s because the specificity is higher. Notice

how they’re listed, and that the order the rules are in doesn’t actually matter here.

In the second pair, the selector h2 . grape wins because it has an extra class: ©, 1, 1 beats out 0, 0, 1.
In the third pair, the second rule wins because 1, @, 1 wins out over 0, 1, 7. In fact, the specificity value
0, 1, 0 would win out over the value ©, 0, 13.

This happens because the values are compared from left to right. A specificity of 1, ©, ® will win out
over any specificity that begins with a ©, no matter what the rest of the numbers might be. So 1, 0, 1 wins
over O, 1, 7 because the 1 in the first value’s first position beats the © in the second value’s first
position.

Declarations and Specificity

Once the specificity of a selector has been determined, the specificity value will be conferred on all of its
associated declarations. Consider this rule:

hi {color: silver; background: black;}

For specificity purposes, the user agent must treat the rule as if it were “ungrouped” into separate rules.
Thus, the previous example would become:

hi {color: silver;}
hi {background: black;}

Both have a specificity of @, @, 1, and that’s the value conferred on each declaration. The same splitting-
up process happens with a grouped selector as well. Given the rule:

hi, h2.section {color: silver; background: black;}

the user agent treats it if it were the following:

hi {color: silver;} /*0,0,1 */
hi {background: black;} /*0,0,1 %/
h2.section {color: silver;} /*0,1,1 */
h2.section {background: black;} /* 0,1,1 */

This becomes important in situations where multiple rules match the same element and some of the
declarations clash. For example, consider these rules:

hi + p {color: black; font-style: italic;} /*0,0,2 */
p {color: gray; background: white; font-style: normal;} /* 0,0,1 */
*.callout {color: black,; background: silver;} /*0,1,0 */

When applied to the following markup, the content will be rendered as shown in Figure 4-1:

<h1>Greetings!</h1>

<p class="callout">

It's a fine way to start a day, don't you think?

</p>

<p>

There are many ways to greet a person, but the words are not as important
as the act of greeting itself.

</p>

<hi>Salutations!</h1>

<p>

There is nothing finer than a hearty welcome from one's neighbor.
</p>

<p class="callout">

Although a steaming pot of fresh-made jambalaya runs a close second.
</p>

e

150 e ey o ot oy, o o i

Tt manyWays o et erson, Dt ord e ot s ot s e o geing e

W v W

Nalfafons!

Tore i nothing e thon o bty velcome o one s g

AWough camngpoof et el s e it

Figure 4-1. How different rules affect a document

In every case, the user agent determines which rules match a given element, calculates all of the
associated declarations and their specificities, determines which rules win out, and then applies the

winners to the element to get the styled result. These machinations must be performed on every element,
selector, and declaration. Fortunately, the user agent does it all automatically, and nearly instantly. This
behavior is an important component of the cascade, which we’ll discuss later in this chapter.

Resolving multiple matches

When an element is matched by more than one selector in a grouped selector, the most specific selector is
used. Consider the following CSS:

1i, /*0,0,1 %/
.quirky, /*0,1,0 */
#friendly, /*1,0,0 */

1i.happy.happy.happy#friendly { /* 1,3,1 */
color: blue;

}

Here we have one rule with a grouped selector, and each of the individual selectors has a very different
specificity. Now suppose we find this in our HTML.:

<1li class="happy quirky" id="friendly">This will be blue.</1i>

Every one of the selectors in the grouped selector applies to the list item! Which one is used for
specificity purposes? The most specific. Thus, in this example, the blue is applied with a specificity of
1,3, 1.

You might have noticed that we repeated the happy class name three times in one of the selectors. This is
a bit of hack that can be used with classes, attributes, pseudo-classes and even ID selectors to increase
specificity. Do be careful with it, since artifically inflating specificity can create problems in the future:
you might want to override that rule with another, and that rule will need even more classes chained
together.

Zeroed Selector Specificity

The universal selector does not contribute to specificity. In other words, it has a specificity of @, 0, 0,
which is different than having no specificity (as we’ll discuss in “Inheritance”). Therefore, given the
following two rules, a paragraph descended from a div will be black, but all other elements will be

gray:

div p {color: black;} /* 0,0,2 */
* {color: gray;} /*0,0,0 */

This means the specificity of a selector that contains a universal selector along with other selectors is not
changed by the presence of the universal selector. The following two selectors have exactly the same
specificity:

div p /*0,0,2 */
body * strong /* 0,0,2 */

The same is true for the :where() pseudo-class, regardless of whatever selectors might be in its
selector list. Thus, :where(aside#warn, code) has a specificityof 0, 0, 0.

Combinators, including ~, >, +, and the space character, have no specificity at all—not even zero
specificity. Thus, they have no impact on a selector’s overall specificity.

ID and Attribute Selector Specificity
It’s important to note the difference in specificity between an ID selector and an attribute selector that

targets an 1d attribute. Returning to the third pair of rules in the example code, we find:

html > body table tr[id="totals"] td ul > 1li {color: maroon;} /* 0,1,7 */
li#answer {color: navy;} /*1,0,1 (wins) */

The ID selector (#answer) in the second rule contributes 1, @, O to the overall specificity of the
selector. In the first rule, however, the attribute selector ([1d="totals"]) contributes ©, 1, O to the
overall specificity. Thus, given the following rules, the element with an 1d of meadow will be green:

#meadow {color: green;} /*1,0,0 */
[id="meadow"] {color: red;} / 0,1,0 */
Importance

Sometimes, a declaration is so important that it outweighs all other considerations. CSS calls these
important declarations (for hopefully obvious reasons) and lets you mark them by inserting the flag
limportant just before the terminating semicolon in a declaration:

p.dark {color: #333 !important; background: white;}

Here, the color value of #333 is marked with the ! important flag, whereas the background value of
white is not. If you wish to mark both declarations as important, each declaration needs its own
l'important flag:

p.dark {color: #333 !important; background: white !important;?}

You must place the ! important flag correctly, or the declaration may be invalidated. ! important
always goes at the end of a declaration, just before the semicolon. This placement is especially critical
when it comes to properties that allow values containing multiple keywords, such as font:

p.light {color: yellow; font: smaller Times, serif !important;}

If 'important were placed anywhere else in the font declaration, the entire declaration would likely
be invalidated and none of its styles applied.

NOTE

We realize that to those of you who come from a programming background, the syntax of this token instinctively translates to “not
important.” For whatever reason, the bang (!) was chosen as the delimiter for important flags, and it does not mean “not” in CSS, no
matter how many other languages give it that very meaning. This association is unfortunate, but we’re stuck with it.

Declarations that are marked ! important do not have a special specificity value, but are instead
considered separately from non-important declarations. In effect, all ! important declarations are
grouped together, and specificity conflicts are resolved relatively within that group. Similarly, all non-
important declarations are considered as a group, with any conflicts within the non-important group
resolved via the cascade, of which specificity is a part. Thus, in any case where an important and a non-
important declaration conflict, an important declaration will always win (unless the user agent or user
have declared the same property as important, which we’ll see later in the chapter.)

Figure 4-2 illustrates the result of the following rules and markup fragment:

hi {font-style: italic; color: gray !important;}
.title {color: black; background: silver;}
* {background: black !important;}

<h1l class="title">NightwWing</h1>

Figure 4-2. Important rules always win

WARNING

It’s generally bad practice to use ! important in your CSS, and it is rarely needed. If you find yourself reaching for ! important, stop
and look for other ways to get the same result without using ! important. Cascade Layers are one such possibility; see “Sorting by
Cascade Layer” for more details.

Inheritance

Another key concept in understanding how styles are applied to elements is inheritance. Inheritance is the
mechanism by which some styles are applied not only to a specified element, but also to its descendants.
If a color is applied to an h1 element, for example, then that color is applied to all text inside the h1,
even the text enclosed within child elements of that h1:

hi {color: gray;}

<hi>Meerkat Central</h1>

Both the ordinary h1 text and the em text are colored gray because the em element inherits the value of

color fromthe h1l. If property values could not be inherited by descendant elements, the em text would
be black, not gray, and we’d have to color the elements separately.

Consider an unordered list. Let’s say we apply a style of color: gray; for ul elements:

ul {color: gray;}

We expect that style applied to a ul will also be applied to its list items, and also to any content of those
list items, including the marker (i.e., the “bullet” next to each list item). Thanks to inheritance, that’s
exactly what happens, as Figure 4-3 demonstrates.

¢ Oh, don't you wish
« That you could be a fish
« And swim along with me
« Underneath the sea

1. Strap on some fins

2. Adjust your mask

3. Dive in!

Figure 4-3. Inheritance of styles

It’s easier to see how inheritance works by turning to a tree diagram of a document. Figure 4-4 shows the
tree diagram for a document much like the very simple document shown in Figure 4-3.

body
/\

ul ol

PN TN

Figure 4-4. A simple tree diagram

When the declaration color: gray; is applied to the ul element, that element takes on that
declaration. The value is then propagated down the tree to the descendant elements and continues on until
there are no more descendants to inherit the value. Values are never propagated upward; that is, an
element never passes values up to its ancestors.

NOTE

There is a notable exception to the upward propagation rule in HTML: background styles applied to the body element can be passed to the
html element, which is the document’s root element and therefore defines its canvas. This only happens if the body element has a
defined background and the html element does not. There are a few other properties that share this body-to-root behavior, such as
overflow, but it only happens with the body element. There are no other elements that risk inheriting properties from a descendant.

Inheritance is one of those things about CSS that is so basic that you almost never think about it unless you
have to. However, you should still keep a couple of things in mind.

First, note that many properties are not inherited—generally in order to avoid undesirable outcomes. For
example, the property border (which is used to set borders on elements) does not inherit. A quick

glance at Figure 4-5 reveals why this is the case. If borders were inherited, documents would become
much more cluttered—unless the author took the extra effort to turn off the inherited borders.

'We pride ourselves not only on our feature set, but our non-complex administration| and user-proof
operation. Our technology takes the best aspects of SMIL and C++. Our functionality is unmatched, but
jour [1000/60/60/24/7/365 retums-on-investment| and non-complex operation is constantly considered a
remarkable achievement. The power to enhance perfectly leads to [the aptitude to deploy dynamically].
Think super-macro-real-time. [Text courtesy http:/fandrewdavidson.com/gibberish/]]

Figure 4-5. Why borders arent inherited

As it happens, most of the box-model properties—including margins, padding, backgrounds, and borders
—are not inherited for the same reason. After all, you likely wouldn’t want all of the links in a paragraph
to inherit a 30-pixel left margin from their parent element!

Second, inherited values have no specificity at all, not even zero specificity. This seems like an academic
distinction until you work through the consequences of the lack of inherited specificity. Consider the
following rules and markup fragment and compare them to the result shown in Figure 4-6:

* {color: gray;}
hi#page-title {color: black;}

<h1l id="page-title'">Meerkat Central</h1>

<p>

Welcome to the best place on the web for meerkat information!
</p>

Meerkat Central

Welcome to the best place on the Web for meerkat information!

Figure 4-6. Zero specificity defeats no specificity

Since the universal selector applies to all elements and has zero specificity, its color declaration’s value
of gray wins out over the inherited value of black, which has no specificity at all. (And now you may
understand why we listed :where () and the universal selector as having @, @, O specificity: they add

no weight, but do match elements.) Therefore, the em element is rendered gray instead of black.

This example vividly illustrates one of the potential problems of using the universal selector
indiscriminately. Because it can match any element or pseudo-element, the universal selector often has the
effect of short-circuiting inheritance. This can be worked around, but it’s usually more sensible to avoid
the problem in the first place by not using the universal selector by itself indiscriminately.

The complete lack of specificity for inherited values is not a trivial point. For example, assume that a
style sheet has been written such that all text in a “toolbar” is to be white on black:

#toolbar {color: white; background: black;}

This will work so long as the element with an 1d of toolbar contains nothing but plain text. If,

however, the text within this element is all hyperlinks (a elements), then the user agent’s styles for
hyperlinks will take over. In a web browser, this means they’ll likely be colored blue, since the
browser’s internal style sheet probably contains an entry like this:

a {color: blue;}

To overcome this problem, you must declare something like this:

#toolbar {color: white; background: black;}
#toolbar a {color: white;}

By targeting a rule directly at the a elements within the toolbar, you’ll get the result shown in Figure 4-7.

Figure 4-7. Directly assigning styles to the relevant elements

Another way to get the same result is to use the value inherit, covered in the next chapter. We can alter
the previous example like so:

#toolbar {color: white; background: black;}
#toolbar a {color: inherit;}

This also leads to the result shown in Figure 4-7, because the value of color is explicitly inherited
thanks to an assigned rule whose selector has specificity.

The Cascade

Throughout this chapter, we’ve skirted one rather important issue: what happens when two rules of equal
specificity apply to the same element? How does the browser resolve the conflict? For example, consider
the following rules:

hi {color: red;}
hi {color: blue;}

Which one wins? Both have a specificity of @, 0, 1, so they have equal weight and should both apply.

That can’t be the case because the element can’t be both red and blue. So which will it be?

At last, the name “Cascading Style Sheets” comes into focus: CSS is based on a method of causing styles
to cascade together, which is made possible by combining inheritance and specificity with a few rules.
The cascade rules for CSS are:

1. Find all rules containing a selector that matches a given element.
2. Sort all declarations applying to the given element by explicit weight.

3. Sort all declarations applying to the given element by origin. There are three basic origins: author,
reader, and user agent. Under normal circumstances, the author’s styles win out over the reader’s

styles, and both author and reader styles override the user agent’s default styles. This is reversed for
rules marked ! important, where user agent styles override author styles, and both ovedrride
reader styles.

4. Sort all declarations applying to the given element by encapsulation context. If a style is assigned
via a shadow DOM (Document Object Model), for example, it has an encapsulation context for all
elements within that same shadow DOM, and does not apply to elements outside that shadow DOM.
This allows encapsulated styles to override styles that are inherited from outside the shadow DOM.

5. Sort all declarations by whether or not they are element-attached. Styles assigned via a style
attribute are element-attached. Styles assigned from a stylesheet, whether external or embedded, are
not.

6. Sort all declarations by cascade layer. For normal-weight styles, the later a cascade layer first
appears in the CSS, the greater the precedence. Styles without a layer are considered to be part of a
“default” pseudo-layer, one which has higher precedence than styles in explicitly-created layers. For
important-weight styles, the earlier a cascade layer appears in the CSS, the higher the weight, and
all important-weight styles in explicitly-created layers win out over styles in the default layer,
important or otherwise. Cascade layers can appear in any origin.

7. Sort all declarations applying to the given element by specificity. Those elements with a higher
specificity have more weight than those with lower specificity.

8. Sort all declarations applying to the given element by order of appearance. The later a declaration
appears in the style sheet or document, the more weight it is given. Declarations that appear in an
imported style sheet are considered to come before all declarations within the style sheet that
imports them.

To be clear about how this all works, let’s consider some examples that illustrate the some of the cascade
rules.

Sorting by Importance and Origin

If two rules apply to an element, and one is marked ! important, the important rule wins out:
p {color: gray !important;}

<p style="color: black;">Well, hello there!</p>

Despite the fact that there is a color assigned in the Style attribute of the paragraph, the ! important
rule wins out, and the paragraph is gray. This occurs because sorting by ! important has higher
precedence that sorting by element-attached styles (style=""). The gray is inherited by the em element
as well.

Note that if an ! important is added to the inline style in this situation, then it will be the winner. Thus,
given the following, the paragraph (and its descendant element) will be black:

p {color: gray !important;}

<p style="color: black !important;">Well, hello there!</p>

In situations where the importance is the same, the origin of a rule is considered. If an element is matched
by normal styles in both the author’s style sheet and the reader’s style sheet, then the author’s styles are
used. For example, assume that the following styles come from the indicated origins:

p em {color: black;} /* author's style sheet */

p em {color: yellow;} /* reader's style sheet */

In this case, emphasized text within paragraphs is colored black, not yellow, because the author styles win
out over the reader styles. However, if both rules are marked ! important, the situation changes:

p em {color: black !important;} /* author's style sheet */

p em {color: yellow !important;} /* reader's style sheet */

Now the emphasized text in paragraphs will be yellow, not black.

As it happens, the user agent’s default styles—which are often influenced by the user preferences—are
figured into this step. The default style declarations are the least influential of all. Therefore, if an author-
defined rule applies to anchors (e.g., declaring them to be white), then this rule overrides the user
agent’s defaults.

To sum up, there are eight basic levels to consider in terms of declaration precedence. In order of most to
least precedence, these are:

1. Transition declarations (see XREF HERE)
. User agent important declarations

. Reader important declarations

2
3
4. Author important declarations
5. Animation declarations (see XREF HERE)
6. Author normal declarations

7. Reader normal declarations

8. User agent declarations

Thus, a transition style will override all other rules, regardless of whether those other rules are marked
l'important or from what origin the rules come.

Sorting by Element Attachment

Styles can be attached to an element using a markup attribute such as style. These are called element-

attached styles, and they are only outweighed by considerations of origin and weight.

To understand this, consider the following rule and markup fragment:
hi {color: red;}

<hl style="color: green;'">The Meadow Party</hi>

Given that the rule is applied to the h1 element, you would still probably expect the text of the h1 to be
green. This happens because every inline declaration is element-attached, and so has a higher weight than
styles that aren’t element attached, like the color: red rule.

This means that even elements with 1d attributes that match a rule will obey the inline style declaration.
Let’s modify the previous example to include an id:

hi#meadow {color: red;}

<hl id="meadow" style='"color: green;'">The Meadow Party</hi>

Thanks to the inline declaration’s weight, the text of the h1 element will still be green.

Just remember that inline styles are generally a bad practice, so try not to use them if at all possible.

Sorting by Cascade Layer

Cascade layers allow authors to group styles together so that they share a precedence level within the
cascade. This might sound like ! important, and in some ways they are similar — but in others, very
different. This is easier to demonstrate than it is to describe. The ability to create cascade layers means
authors can balance various needs, such as the needs of a component library, against the needs of a
specific page or part of a web app.

NOTE

Cascade layers were introduced to CSS at the end of 2021, so browser support for them will only exist in browsers released from that point
forward.

If conflicting declarations apply to an element and they all have the same explicit weight and origin, and
none are element-attached, they are next sorted by cascade layer. The order of precedence for layers is set
by the order in which the layers are first declared or used, with later declared layers taking precedence
over earlier declared layers for normal styles. Thus, given the following:

@layer site {

hi {color: red;}
}
@layer page {

hi {color: blue;}
}

...then h1 elements will be colored blue. This is because the page layer comes later in the CSS than the
site layer, and so has higher precedence.)

Any style not part of a named cascade layer is assigned to an implicit “default” layer, one which has
higher precedence than any named layer for non-important rules. Suppose we alter the previous example
as follows:

hi {color: maroon;}
@layer site {
hi {color: red;}

}
@layer page {

hi {color: blue;}
}

h1 elements will now be maroon-colored, because the implicit “default” layer to which the h1
{color: maroon; } belongs has higher precedence than any named layer.

It is also possible to define a specific precedence order for named cascade layers. Consider the following
CSS:

@layer site, page;

@layer page {
hi {color: blue;}
}

@layer site {
hi {color: red;}
}

Here, the first line defines an order of precedence for the layers: the page layer will be given higher
precedence than site layer for normal-weight rules like those shown in the example. Thus, in this case,
h1 elements will be blue, because when the layers were sorted, page was given more precedence than
site. For important-flagged rules, the order of precedence is reversed. Thus, if both rules were marked
limportant, the precedence would flip: in that case, h1 elements would be red.

Let’s talk a little bit more about how cascade layers specifically work, especially since they’re so new to
CSS. Let’s say you want to define three layers: one for the basic site styles, one for individual page styles,
one for a component library whose styles are imported from an external stylesheet. The CSS might look
like this:

@layer site, page;
@import url(/assets/css/components.css) layer(components);

This ordering will have normal-weight components styles override page and site normal-weight
styles, whereas normal-weight page styles will only override site normal-weight styles. Conversely,
important site styles will override all page and components styles, whether they’re important or

normal-weight, and page important styles will override all components styles.

Here’s a small example of how layers might be managed.

@layer site, component, page;

@import url(/c/lib/core.css) layer(component);
@import url(/c/lib/widgets.css) layer(component);
@import url(/c/site.css) layer(site);

@layer page {
hi {color: maroon;}
p {margin-top: 0;}
}

@layer site {
body {font-size: 1.1rem;}
hi {color: orange;}
p {margin-top: 0.5em;}

}

p {margin-top: lem;}

In this example, there are three imported stylesheets, one of which is assigned to the site layer and two
of which are in the component layer. Then there are some rules assigned to the page layer, and a
couple of rules placed in the site layer. The rules inthe @layer site {} block will be combined
with the rules from /c/site.css into a single site layer.

After that, there’s a rule outside the explicit cascade layers, which means it’s part of the implicit “default”
layer. Rules in this default layer will override the styles of any of the other layers. So, given the code
shown, paragraphs will have top margins of 1em.

But before all of that, there’s a directive that sets the precedence order of the named layers: page
overrules component and site, and component overrules site. Here’s how those various rules
are grouped as far as the cascade is concerned, with comments to describe their placement in the sorting:

/* 'site' layer 1s the lowest weighted */
@import url(/c/site.css) layer(site);
@layer site {

body {font-size: 1.1rem;}

hi {color: orange;}

p {margin-top: 0.5em;}
}

/* 'component' layer 1s the next-lowest weighted */
@import url(/c/lib/core.css) layer(component);
@import url(/c/lib/widgets.css) layer(component);

/* 'page' layer 1s the next-highest weighted */
@layer page {

hi {color: maroon;}

p {margin-top: 0;}
}

/* the implicit layer is the highest-weighted */
p {margin-top: lem;}

As you can see, the later a layer comes in the ordering of the layers, the more weight it’s given by the
cascade’s sorting algorithm.

Cascade layers don’t have to be named, to be clear. It just keeps things a lot more clear in terms of setting
an order for them. Here are some examples of using un-named cascade layers:

@import url(base.css) layer;
p {margin-top: lem;}

@layer {
hi {color: maroon;}
body p {margin-top: 0;}
}

In this case, the rules imported from base . css are assigned to an un-named layer. Even though it
doesn’t actually have a name, let’s think of it as “CL1”. Then there’s a rule outside the layers, setting
paragraph top margins to be 1em. Finally, there’s an un-named layer block with a couple of rules; let’s
think of it as “CL2”.

So now we have rules in three layers: “CL1”, “CL2”, and the implicit layer. And that’s the order they’re
considered in, so in the case of any conflicting normal rules, the rules in the implicit default layer (which
comes last in the ordering) will win over conflicting rules in the other two layers, and rules in “CL2” will
win over conflicting rules in “CL1”.

At least, that’s the case for normal-weight rules. For ! important rules, the order of precedence is
flipped, so those in “CL1” will win over conflicting important rules in the other two layers, and important
rules in “CL2” win over conflicting important rules in the implicit layer. Strange but true!

This sorting-by-order will come up again in just a little bit, but first, let’s bring specificity into the
cascade.

Sorting by Specificity

If conflicting declarations apply to an element and they all have the same explicit weight, origin, element
attachment (or lack thereof), and cascade layer, they are then sorted by specificity, with the most specific
declaration winning out, like this:

@layer page {
p#bright#bright#bright {color: grey;}

}
p#bright {color: silver;}
p {color: black;}

<p id="bright">Well, hello there!</p>

Given the rules shown, the text of the paragraph will be silver, as illustrated in Figure 4-8. Why? Because
the specificity of p#bright ("1, 0, 1) overrode the specificity of p (0, ®, 1), even though the latter
rule comes later in the style sheet. The styles from the page layer, even though they have the strongest

selector (3, @, 1) aren’t even compared. Only the declarations from the layer with precedence are in
contention.

Figure 4-8. Higher specificity wins out over lower specificity

Remember that this rule only applies if the rules are part of the same cascade layer. If not, specificity
doesn’t matter: a @, @, 1 selector in the implicit layer will win over any non-important rule in an
explicitly-created cascade layer, no matter how high the latter’s specificity gets.

Sorting by Order

Finally, if two rules have exactly the same explicit weight, origin, element attachment, cascade layer, and
specificity, then the one that appears later in the style sheet wins out, similar to how cascade layers are
sorted in order so that later layers win over earlier layers.

Let’s return to an earlier example, where we find the following two rules in the document’s style sheet:

body hi {color: red;}
html hl1 {color: blue;}

In this case, the value of color for all hl elements in the document will be blue, not red. This is
because the two rules are tied with each other in terms of explicit weight and origin, are in the same
cascade layer, and the selectors have equal specificity, so the last one declared is the winner. Note that it
doesn’t matter how close together the elements are in the document tree; even though body and h1 are
closer together than html and h1, the later one wins. The only thing that matters (when the origin,
cascade layer, layer, and specificity are the same) is the order in which the rules appear in the CSS.

So what happens if rules from completely separate style sheets conflict? For example, suppose the
following:

@import url(basic.css);
hi {color: blue;}

What if h1 {color: red;} appears inbasic.css? Inthis case, since there are no cascade layers
in play, the entire contents of basic.css are treated as if they were pasted into the style sheet at the
point where the @impor t occurs. Thus, any rule contained in the document’s style sheet occurs later than
those from the @impor t. If they tie in terms of explicit weight and specificity, the document’s style sheet
contains the winner. Consider the following:

p em {color: purple;} /* from imported style sheet */

p em {color: gray;} /* rule contained within the document */

In this case, the second rule shown wins out over the imported rule because it was the last one specified,
and both are in the implicit cascade layer.

Order sorting is the reason behind the often-recommended ordering of link styles. The recommendation is
that you write your link styles in the order link-visited-focus-hover-active, or LVFHA, like this:

{color: blue;}
{color: purple;}
{color: green;}
{color: red;}
{color: orange;}

LoD

Thanks to the information in this chapter, you now know that the specificity of all of these selectors is the
same: 0, 1, 1. Because they all have the same explicit weight, origin, and specificity, the last one that
matches an element will win out. An unvisited link that is being “clicked” or otherwise activated, such as
via the keyboard, is matched by four of the rules—: 1ink, : focus, :hover, and :active—so the
last one of those four will win out. Given the LVFHA ordering, : active will win, which is likely what
the author intended.

Assume for a moment that you decide to ignore the common ordering and alphabetize your link styles
instead. This would yield:

{color: orange;}
{color: green;}
{color: red;}

{color: blue;}
{color: purple;}

LoD

Given this ordering, no link would ever show : hover, :focus, or : active styles because the
:1ink and :visited rules come after the other three. Every link must be either visited or unvisited, so
those styles will always override the others.

Let’s consider a variation on the LVFHA order that an author might want to use. In this ordering, only
unvisited links will get a hover style; visited links do not. Both visited and unvisited links will get an
active style:

{color: blue;}
{color: red;}
{color: purple;}
{color: green;}
{color: orange;}

LoD

Such conflicts arise only when all the states attempt to set the same property. If each state’s styles address
a different property, then the order does not matter. In the following case, the link styles could be given in
any order and would still function as intended:

{font-weight: bold;}
{font-style: italic;}

{color: green;}

{color: red;}
{background: yellow;}

LoD

You may also have realized that the order of the : 1ink and :visited styles doesn’t matter. You could

order the styles LVFHA or VLFHA with no ill effect.

The ability to chain pseudo-classes together eliminates all these worries. The following could be listed in
any order without any overrides, as the specificity of the latter two is greater than that of the first two:

{color: blue;}
{color: purple;}
{color: red;}
{color: gray;}

Qo DY

Because each rule applies to a unique set of link states, they do not conflict. Therefore, changing their
order will not change the styling of the document. The last two rules do have the same specificity, but that
doesn’t matter. A hovered unvisited link will not be matched by the rule regarding hovered visited links,
and vice versa. If we were to add active-state styles, then order would start to matter again. Consider:

{color: blue;}
{color: purple;}
{color: red;}
{color: gray;}
{color: orange;}
{color: silver;}

Qo DD

If the active styles were moved before the hover styles, they would be ignored. Again, this would happen
due to specificity conflicts. The conflicts could be avoided by adding more pseudo-classes to the chains,
like this:

a {color: orange;}
a {color: silver;}

This does have the effect of raising the specificity of the selectors—both have a specificity value of

0, 3, 1—but they don’t conflict because the actual selection states are mutually exclusive. A link can’t be
both a visited hovered active link and an unvisited hovered active link: only one of the two rules will
match.

Non-CSS Presentational Hints

It is possible that a document will contain presentational hints that are not CSS—for example, the
deprecated font element, or the still-very-much-used height, width, and hidden attributes. Such
presentational hints will be overridden by any author or reader styles, but not by the user agent’s styles. In
modern browsers, presentational hints from outside CSS are treated as if they belong to the user agent’s
stylesheet.

Summary

Perhaps the most fundamental aspect of Cascading Style Sheets is the cascade itself—the process by
which conflicting declarations are sorted out and from which the final document presentation is
determined. Integral to this process is the specificity of selectors and their associated declarations, and

the mechanism of inheritance.

Chapter 5. Values and Units

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official release
of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active
later on.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at rfernando@oreilly.com.

In this chapter, we’ll tackle features that are the basis for almost everything you can do with CSS: the
units that affect the colors, distances, and sizes of a whole host of properties, as well as the units that help
to define those values. Without units, you couldn’t declare that an image should have 10 pixels of blank
space around it, or that a heading’s text should be a certain size. By understanding the concepts put forth
here, you’ll be able to learn and use the rest of CSS much more quickly.

Keywords, Strings, and Other Text Values

Everything in a stylesheet is text, but there are certain value types that directly represent strings of text as
opposed to, say, numbers or colors. Included in this category are URLs and, interestingly enough, images.

Keywords

For those times when a value needs to be described with a word of some kind, there are keywords. A very
common example is the keyword none, which is distinct from O (zero). Thus, to remove the underline
from links in an HTML document, you would write:

al[href] {text-decoration: none;}

Similarly, if you want to force underlines on the links, then you would use the keyword underline
instead of none.

If a property accepts keywords, then its keywords will be defined only for the scope of that property. If
two properties use the same word as a keyword, the behavior of the keyword for one property will not
necessarily be shared with the other. As an example, normal, as defined for letter-spacing,
means something very different than the normal defined for font-style.

Global keywords

mailto:rfernando@oreilly.com

CSS3 defines four “global” keywords that are accepted by every property in the specification:
inherit, initial, unset, and revert.

inherit
The keyword 1nher it makes the value of a property on an element the same as the value of that
property on its parent element. In other words, it forces inheritance to occur even in situations where it

would not normally operate. In many cases, you don’t need to specify inheritance, since many properties
inherit naturally. Nevertheless, inherit can still be very useful.

For example, consider the following styles and markup:

#toolbar {background: blue; color: white;}

<div id="toolbar'">

0ne | Two |
Three

</div>

The div itself will have a blue background and a white foreground, but the links will be styled according
to the browser’s preference settings. They’ll most likely end up as blue text on a blue background, with
white vertical bars between them.

You could write a rule that explicitly sets the links in the “toolbar” to be white, but you can make things a
little more robust by using inherit. You just add the following rule to the stylesheet:

#toolbar a {color: inherit;}

This will cause the links to use the inherited value of color in place of the user agent’s default styles.

Ordinarily, directly assigned styles override inherited styles, but inherit can undo that behavior. It
might not always be a good idea—for example, here links might blend into surrounding text too much, and
become a usability and accessibility concern—but it can be done.

Similarly, you can pull a property value down from a parent even if it wouldn’t happen normally. Take
border, for example, which is (rightfully) not inherited. If you want a Span to inherit the border of its
parent, all youneed is span {border: inherit;}. More likely, though, you just want the border
on a span to use the same border color as its parent. In that case span {border-color:
inherit; } will do the trick.

initial
The keyword initial sets the value of a property to the defined initial value, which in a way means it

“resets” the value. For example, the default value of font -weight is normal. Thus, declaring
font-weight: initial is the same as declaring font-weight: normal.

This might seem a little bit silly until you consider that not all values have explicitly defined initial
values. For example, the initial value for color is “depends on user agent.” That’s not a funky keyword
you should type! What it means is that the default value of color depends on things like the preferences

settings in a browser. While almost nobody changes the default text color setting from black, someone
might set it to a dark gray or even a bright red. By declaring color: initial;, you're telling the
browser to set the color of the element to whatever the user’s default color is set to be.

Another benefit of initial is that you can set a property back to its initial value without having to
know what that initial value actually was. This can be especially useful when resetting a lot of properties
all at once, either via JavaScript or CSS.

unset

The keyword unset acts as a universal stand-in for both inherit and initial. If the property is
inherited, then unset has the same effect as if inherit was used. If the property is not inherited, then
unset has the same effect as if initial was used. This makes it very useful for resetting a property by
canceling out any other styles that might be applied to it.

revert

The keyword revert sets the value of a property to the value the property would have had if no changes
had been made by the current style origin. In effect, revert lets you say, “All property values for this
element should be as if the author styles don’t exist, but user agent and user styles do exist.”

Thus, given the following basic example, p elements will be rendered as gray text with a transparent
background.

p {background: lime; color: gray;}
p {background: revert;}

This does mean that any property whose value is inherited will be given the same value as that of their
parent. revert is useful for cases where you have a bunch of site-wide styles applying to an element,
and you want to strip them all away so as to apply a set of one-off styles to just that element. Rather than
have to override all those properties, you can revert them to defaults — and you can do it with a single
property, which is the topic of the next section.

revert-layer

If you’re using Cascade Layers (see “Sorting by Cascade Layer”) and want to “undo” whatever styles
might be applied by the current layer, the revert-1layer value is here to help. The difference here is
that revert-layer effectivelty means, “All property values for this element should be as if the author
styles in the current Cascade Layer don’t exist, but other author Cascade Layers (inluding the default),
user agent, and user styles do exist.”

Thus, given the following, paragraphs with a class containing the word example will be rendered as
red text on a yellow background:

@layer site, system;

p {color: red;}
@layer system {
p {background: yellow; color: fuchsia;}

}

@layer site {
p {background: lime; color: gray;}
p.example {background: revert; color: revert;}

For the background, the browser looks at the assigned values in previous Cascade Layers and picks the
one with the highest weight. Only one layer (System) set a background color, so that’s what’s used
instead of 1ime. The same is done for the foreground color, and since there is a color assigned in the
default layer, and the default layer overrides all explicitly-created layers, red is used instead of gray.

NOTE

As of late 2022, only Firefox supported revert-layer, but we anticipate it being widely supported in the near future.

The all property

These global values are usable on all properties, but there is a special property that only accepts the
global keywords: all.

ALL

Values inherit|initial |unset |revert

Initial value See individual properties

all is a stand-in for all properties except direction, unicode-bidi, and any custom properties
(see “Custom Properties”). Thus, if you declare all: inherit on an element, you’re saying that you
want all properties except direction, unicode-bidi, and custom properties to inherit their values
from the element’s parent. Consider the following:

section {color: white; background: black; font-weight: bold;}
#example {all: inherit;}

<section>
<div id="example'">This is a div.</div>
</section>

You might think this causes the div element to inherit the values of color, background, and font -
weight fromthe section element. And it does do that, yes—but it will also force inheritance of the
values of every single other property in CSS (minus the two exceptions) from the section element.

Maybe that’s what you want, in which case, great. But if you just want to inherit the property values you
wrote out for the section element, then the CSS would need to look more like this:

section {color: white; background: black; font-weight: bold;}
#example {color: inherit; background: inherit; font-weight: inherit;}

Odds are what you really want in these situations is all: unset, but your stylesheet may vary.

Strings

A string value is an arbitrary sequence of characters wrapped in either single or double quotes, and is
represented in value definitions with <string>. Two simple examples:

"I like to play with strings."
'Strings are fun to play with.'

Note that the quotes balance, which is to say that you always start and end with the same kind of quotes.
Getting this wrong can lead to all kinds of parsing problems, since starting with one kind of quote and
trying to end with the other means the string won’t actually be terminated. You could accidentally
incorporate subsequent rules into the string that way!

If you want to put quote marks inside strings, that’s OK, as long as they’re either not the kind you used to
enclose the string or are escaped using a backslash:

"I've always liked to play with strings."

'He said to me, "I like to play with strings."'

"It's been said that \"haste makes waste.\""

'"There\'s never been a "string theory" that I\'ve liked.'

Note that the only acceptable string delimiters are ' and ", sometimes called “straight quotes.” That
means you can’t use “curly” or “smart” quotes to begin or end a string value. You can use them inside a
string value, as in this code example, though, and they don’t have to be escaped:

"It's been said that “haste makes waste.”"
'"There’s never been a “string theory” that I've liked.'

This requires that you use Unicode encoding for your documents, but you should be doing that regardless.
(You can find the Unicode standard at http://www.unicode.org/standard/standard.html.)

If you have some reason to include a newline in your string value, you can do that by escaping the newline
itself. CSS will then remove it, making things as if it had never been there. Thus, the following two string
values are identical from a CSS point of view:

"This is the right place \
for a newline."
"This is the right place for a newline."

If, on the other hand, you actually want a string value that includes a newline character, then use the
Unicode reference \A where you want the newline to occur:

"This is a better place \Afor a newline."

http://www.unicode.org/standard/standard.html

Identifiers

One word, case-sensitive strings that should not be quoted are known as identifiers, represented in the
CSS syntax as <ident> or <custom-ident>, depending on the specification and context. Identifiers are
used as animation names, gridline names, and counter names, among others. There is also <dashed-
ident>, which is used for custom properties.

Rules for creating a custom identifier include not starting the word with a number, a double hyphen, or a
single hyphen followed by a number. Other than that, really any character is valid, including emojis, but if
you use certain characters, including a space or a backslash, you need to escape them with a backslash.

Identifiers themselves are words, and are case-sensitive; thus, myID and MyID are, as far as CSS is
concerned, completely distinct and unrelated to each other. In cases where a property accepts both an
identifier and one or more keywords, the author should take care to never define an identifier identical to
a valid keyword, including the global keywords initial, inherit, unset, and revert. none is
also a really bad idea, as is running in cases where you’re naming an animation.

URLSs

If you’ve written web pages, you’re almost certainly familiar with URLs (Uniform Resource Locators).
Whenever you need to refer to one—as in the @impor t statement, which is used when importing an
external stylesheet—the general format is:

url(protocol://server/pathname/filename)
url("<string>") /* can use single or double quotes. */

This example defines what is known as an absolute URL. By absolute, we mean a URL that will work no
matter where (or rather, in what page) it’s found, because it defines an absolute location in web space.
Let’s say that you have a server called web.wdffles.org. On that server, there is a directory called pix, and
in this directory is an image waffle22.gif. In this case, the absolute URL of that image would be:

https://web.waffles.org/pix/waffle22.gif

This URL is valid no matter where it is written, whether the page containing it is located on the server
web.wdffles.org or web.pancakes.com.

The other type of URL is a relative URL, so named because it specifies a location that is relative to the
document that uses it. If you’re referring to a relative location, such as a file in the same directory as your
web page, then the general format is:

url(pathname)
url("<string>") /* can use single or double quotes. */

This works only if the image is on the same server as the page that contains the URL. For argument’s sake,
assume that you have a web page located at http://web.waffles.org/syrup.html and that you want the
image waffle22.gif to appear on this page. In that case, the URL would be:

pix/waffle22.gif

This path works because the web browser knows it should start with the place it found the web document
and then add the relative URL. In this case, the pathname pix/waffle22.gif added to the server name
http://web.waffles.org equals http://web.waffles.org/pix/waffle22.gif. You can almost always use an
absolute URL in place of a relative URL; it doesn’t matter which you use, as long as it defines a valid
location.

In CSS, relative URLs are relative to the stylesheet itself, not to the HTML document that uses the
stylesheet. For example, you may have an external stylesheet that imports another stylesheet. If you use a
relative URL to import the second stylesheet, it must be relative to the first stylesheet. In fact, if you have
a URL in any imported stylesheet, it needs to be relative to the imported stylesheet.

As an example, consider an HTML document at http://web.waffles.org/toppings/tips.html, which has a
1ink to the stylesheet http://web.waffles.org/styles/basic.css:

<link rel="stylesheet" type="text/css"
href="http://web.waffles.org/styles/basic.css">

Inside the file basic.css is an @import statement referring to another stylesheet:

@import url(special/toppings.css);

This @import will cause the browser to look for the stylesheet at
http://web.waffles.org/styles/special/toppings.css, not at
http://web.waffles.org/toppings/special/toppings.css. If you have a stylesheet at the latter location, then
the @import in basic.css should read one of the two following ways:

@import url(http://web.waffles.org/toppings/special/toppings.css);

@import url("../special/toppings.css");

Note that there cannot be a space between the url and the opening parenthesis:

body {background: url(http://www.pix.web/picturel.jpg);} /* correct */
body {background: url (images/picture2.jpg);} /* INCORRECT */

If the space is present, the entire declaration will be invalidated and thus ignored.

NOTE

As of this writing in late 2022, the CSS Working Group is planning to introduce a new function called src (), which will only accept strings
and not unquoted URLs. This is meant to allow custom properties to be used inside src (), which will let authors define which file should
be loaded based on the value of a custom property.

Images

An image value is a reference to an image, as you might have guessed. Its syntax representation is
<image>.

At the most basic level of support, which is to say the one every CSS engine on the planet would
understand, an <image> value is a <url> value. In more modern user agents, <image> stands for one of
the following:

<url>

A URL identifier of an external resource; in this case, the URL of an image.

<gradient>

Refers to either a linear, radial, or conic gradient image, either singly or in a repeating pattern.
Gradients are fairly complex, and are covered in detail in Chapter 8.

<image-set>

A set of images, chosen based on a set of conditions embedded into the value, which is defined as
image-set () butis more widely recognized with the -webkit - prefix. For example, -
webkit-image-set () could specify that a larger image be used for desktop layouts, whereas a
smaller image (both in pixel size and file size) be used for a mobile design. It is intended to at least
approximate the behavior of the srcset attribute for picture elements. As of late 2022, -
webkit-image-set was basically universally supported, with most browsers other than Safari
also accepting image-set () (without the prefix).

<cross-fade>

Used to blend two (or more) images together, with a specific transparency given to each image. Use
cases include blending two images together, blending an image with a gradient, and so on. As of early
2022, this was supported as -webkit-cross-fade() in Blink- and WebKit-based browsers,
and not supported at all in the Firefox family, with or without the prefix.

There are also the image () and element () functions, but as of late 2022, neither is supported by any
browser, except for a vendor-prefixed version of element () supported by Firefox 57 and later.
Finally, there is paint () which refers to an image painted by CSS Houdini’s PaintWorklet. As of late
2022, this is only supported in a basic form by Blink-based browsers like Chrome.

Numbers and Percentages

These value types serve as the foundation for many other values types. For example, font sizes can be
defined using the em unit (covered later in this chapter) preceded by a number. But what kind of number?
Understanding the types of numbers here lets us be clear what we mean when defining other value types
later on.

Integers

An integer value is about as simple as it gets: one or more numbers, optionally prefixed by a + or — (plus
or minus) sign to indicate a positive or negative value. That’s it. Integer values are represented in value
syntax as <integer>. Examples include 13, —42, 712, and 1066.

Some properties define a range of acceptable integer values. Integer values that fall outside a defined
range are, by default, considered invalid and cause the entire declaration to be ignored. However, some
properties define behavior that causes values outside the accepted range to be set to the accepted value
closest to the declared value, known as clamping.

In cases (such as the property z - indeXx) where there is no restricted range, user agents must support
values up to +1,073,741,824 (+239),

Numbers

A number value is either an <integer> or a real number, which is to say an integer followed by a dot and
then some number of following integers. Additionally, it can be prefixed by either + or — to indicate
positive or negative values. Number values are represented in value syntax as <number>. Examples
include 5, 2.7183, —3.1416, 6.2832, and 1.0218e29 (scientific notation).

The reason a <number> can be an <integer> and yet there are separate value types is that some
properties will only accept integers (e.g., Z-index), whereas others will accept any real number (e.g.,
flex-grow).

As with integer values, number values may have limits imposed on them by a property definition; for
example, opacity restricts its value to be any valid <number> in the range 0 to 1, inclusive. Some
properties define behavior that causes values outside the accepted range to be clamped to an acceptable
value closest to the declared value; e.g., opacity: 1.7 would be clamped to opacity: 1. For
those that do not, number values that fall outside a defined range are considered invalid and cause the
entire declaration to be ignored.

Percentages

A percentage value is a <number> followed by a percentage sign (%), and is represented in value syntax
as <percentage>. Examples would include 50% and 33 . 333%. Percentage values are always relative to
another value, which can be anything—the value of another property of the same element, a value
inherited from the parent element, or a value of an ancestor element. Properties that accept percentage
values will define any restrictions on the range of allowed percentage values, as well as the way in which
the percentage is relatively calculated.

Fractions

A fraction value (or flexible ratio) is a <number> followed by the fr unit label. Thus, one fractional
unit is 1fr. The fr unit represents a fraction of the leftover space, if any, in a grid container.

As with all CSS dimensions, there is no space between the unit and the number. Fraction values are not
lengths (nor are they compatible with <length>s, unlike some <percentage> values), so they cannot be

used with other unit types in calc () functions.

NOTE

Fraction values are mostly used in Grid layout (see XREF HERE), but there are plans to use it in more contexts, such as the planned (as of
late 2022) stripes() function.

Distances

Many CSS properties, such as margins, depend on length measurements to properly display various page
elements. It’s likely no surprise, then, that there are a number of ways to measure length in CSS.

All length units can be expressed as either positive or negative numbers followed by a label, although
note that some properties will accept only positive numbers. You can also use real numbers—that is,
numbers with decimal fractions, such as 10.5 or 4.561.

All length units are followed by short abbreviation that represents the actual unit of length being
specified, such as in (inches) or pt (points). The only exception to this rule is a length of O (zero),
which need not be followed by a unit when describing lengths.

These length units are divided into two types: absolute length units and relative length units.

Absolute Length Units

We’ll start with absolute units because they’re easiest to understand. The six types of absolute units are as
follows:

Inches (1n)

As you might expect, this notation refers to the inches you’d find on a ruler in the United States. (The
fact that this unit is in the specification, even though almost the entire world uses the metric system, is
an interesting insight into the pervasiveness of US interests on the internet—but let’s not get into
virtual sociopolitical theory right now.)

Centimeters (cm)

Refers to the centimeters that you’d find on rulers the world over. There are 2.54 centimeters to an
inch, and one centimeter equals 0.394 inches.

Millimeters (mm)
For those Americans who are metric-challenged, there are 10 millimeters to a centimeter, so an inch
equals 25.4 millimeters, and a millimeter equals 0.0394 inches.

Quarter-millimeters (Q)

There are 40 Q units in a centimeter; thus, setting an element to be 1/10 of a centimeter wide—which
is also to say, a millimeter wide—would mean a value of 4Q.

Points (pt)

Points are standard typographical measurements that have been used by printers and typesetters for
decades and by word processing programs for many years. Traditionally, there are 72 points to an
inch. Therefore the capital letters of text set to 12 points should be one-sixth of an inch tall. For
example, p {font-size: 18pt;} isequivalenttop {font-size:0.25in;}.

Picas (pc)

Pica is another typographical term. A pica is equivalent to 12 points, which means there are 6 picas to
an inch. As just shown, the capital letters of text set to 1 pica should be one-sixth of an inch tall. For
example, p {font-size: 1.5pc; } would set text to the same size as the example declarations
found in the definition of points.

Pixels (pXx)

A pixel is a small box on screen, but CSS defines pixels more abstractly. In CSS terms, a pixel is
defined to be the size required to yield 96 pixels per inch. Many user agents ignore this definition in
favor of simply addressing the pixels on the screen. Scaling factors are brought into play when page
zooming or printing, where an element 100pX wide can be rendered more than 100 device dots wide.

These units are only really useful if the browser knows all the details of the screen on which your page is
displayed, the printer you’re using, or whatever other user agent might apply. On a web browser, display
is affected by the size of the screen and the resolution to which the screen is set; there isn’t much that you,
as the author, can do about these factors. If nothing else, it should be the case that measurements will be
consistent in relation to each other—that is, that a setting of 1. ©1in will be twice as large as ©.51n, as
shown in Figure 5-1.

[one] This paragraph has a one-"inch" left margin.

[two] This paragraph has a half-"inch" left margin.

Figure 5-1. Setting absolute-length left margins

Let’s make the (fairly suspect) assumption that your computer knows enough about its display system to
accurately reproduce real-world measurements. In that case, you could make sure every paragraph has a
top margin of half an inch by declaring p {margin-top: 0.51in;}.

Absolute units are much more useful in defining stylesheets for printed documents, where measuring
things in terms of inches, points, and picas is much more common.
Pixel lengths

On the face of things, pixels are straightforward. If you look at a screen closely enough, you can see that
it’s broken up into a grid of tiny little boxes. Each box is a pixel. If you define an element to be a certain
number of pixels tall and wide, as in the following markup:

<p>
The following image is 20 pixels tall and wide: <img src="test.gif"

style="width: 20px; height: 20px;" alt="" />
</p>

then it follows that the element will be that many screen elements tall and wide, as shown in Figure 5-2.

The following image is 20 pixels tall and wide: |:|
Figure 5-2. Using pixel lengths

The problem is, thanks to high-density displays like those found on mobile devices and modern laptops,
the individual screen elements aren’t treated as pixels any more. Instead, the pixels used in your CSS are
translated into something that aligns with human expectations, which is covered in the next section.

Pixel theory

In its discussion of pixels, the CSS specification recommends that, in cases where a display’s resolution
density is significantly different than 96 pixels per inch (ppi), user agents should scale pixel
measurements to a reference pixel.

A reference pixel is defined as:

...the visual angle of one pixel on a device with a device pixel density of 96dpi and a distance from
the reader of an arm’s length. For a nominal arm’s length of 28 inches, the visual angle is therefore
about 0.0213 degrees. For reading at arm’s length, 1px thus corresponds to about 0.26 mm

(1/96 inch). (https://www.w3.0rg/TR/css-values-4/#reference-pixel)

On most modern displays, the actual number of pixels per inch (ppi) is higher than 96—sometimes much
higher. The Retina display on an iPhone 13, for example, is physically 326 ppi, and the display on the
iPad Pro is physically 264 ppi. As long as a browser on one of those devices sets the reference pixel such
that an element set to be 10pX tall appears to be 2.6 millimeters tall on the screen, then the physical
display density isn’t something you have to worry about, any more than having to worry about the number
of dots per inch on a printout.

Resolution Units

There are unit types based on display resolution:

Dots per inch (dp1)
The number of display dots per linear inch. This can refer to the dots in a paper printer’s output, the
physical pixels in an LED screen or other device, or the elements in an e-ink display such as that used
by a Kindle.

Dots per centimeter (dpcm)

Same as dpi, except the linear measure is one centimeter instead of one inch.

Dots per pixel unit (dppx)

The number of display dots per CSS px unit. As of CSS3, 1dppX is equivalent to 96dpi because
CSS defines pixel units at that ratio. Just bear in mind that ratio could change in future versions of

https://www.w3.org/TR/css-values-4/#reference-pixel

CSS.

These units are most often used in the context of media queries. As an example, an author can create a
media block to be used only on displays that have higher than 500 dpi:

@media (min-resolution: 500dpi) {
/* rules go here */

}

Again, it’s important to remember that CSS pixels are not device resolution pixels. Text with font -
size: 16px will be a relatively consistent size whether the device has 96 dpi or 470 dpi. While a
reference pixel is defined to appear to be 1/96 of an inch in size, when a device has has more than 96 dpi,
the content will not look smaller. Zooming is created by expanding CSS pixels as much as is needed; an
image will appear larger, but the image size doesn’t actually change: rather, the width of the screen, in
terms of reference pixels, gets smaller.

Relative Length Units

Relative units are so called because they are measured in relation to other things. The actual (or absolute)
distance they measure can change due to factors beyond their control, such as screen resolution, the width
of the viewing area, the user’s preference settings, and a whole host of other things. In addition, for some

relative units, their size is almost always relative to the element that uses them and will thus change from

element to element.

em and ex units

First, let’s consider the character based length units, including em, eX, and ch, which are closely related.
There are two other font-relative units, , cap, and ic, which are not well supported as of early 2022.

The em unit

In CSS, one “em” is defined to be the value of font-size for a given font. If the font-size of an
element is 14 pixels, then for that element, 1em is equal to 14 pixels.

As you may suspect, this value can change from element to element. For example, let’s say you have an
h1 with a font size of 24 pixels, an h2 element with a font size of 18 pixels, and a paragraph with a font
size of 12 pixels. If you set the left margin of all three at 1em, they will have left margins of 24 pixels, 18
pixels, and 12 pixels, respectively:

hi {font-size: 24px;}

h2 {font-size: 18px;}

p {font-size: 12px;}

hi, h2, p {margin-left: dlem;}
small {font-size: 0.8em;}

<h1>Left margin <small>24 pixels</small></h1>
<h2>Left margin <small>18 pixels</small></h2>
<p>Left margin = <small>12 pixels</small></p>

When setting the size of the font, on the other hand, the value of em is relative to the font size of the parent
element, as illustrated by Figure 5-3.

Left margin = 24 pixels

Left margin = 18 pixels

Left margin = 12 pixels

Figure 5-3. Using em for margins and font sizing

In theory, one em is equal to the width of a lowercase m in the font used—that’s where the name comes
from, in fact. It’s an old typographer’s term. However, this is not assured in CSS.

The ex unit

eX refers to the height of a lowercase x in the font being used. Therefore, if you have two paragraphs in
which the text is 24 points in size, but each paragraph uses a different font, then the value of ex could be
different for each paragraph. This is because different fonts have different heights for x, as you can see in
Figure 5-4. Even though the examples use 24-point text—and therefore each example’s em value is 24
points—the x-height for each is different.

Times: x
Garamond:
Helvetica:

Arial:
impact:

Courier:

Figure 5-4. Varying x heights

The ch unit

An interesting addition to CSS3 is the ch unit, which is broadly meant to represent “one character.” CSS
Values and Units Level 4 defines ch as:

Equal to the advance measure of the “0” (ZERO, U+0030) glyph found in the font used to render it.
—https://www.w3.org/TR/css-values-4/#ch

The term advance measure is a CSS-ism that corresponds to the term “advance width” in Western
typography. CSS uses the term “measure” because some scripts are not right to left or left to right, but
instead top to bottom or bottom to top, and so may have an advance height rather than an advance width.

Without getting into too many details, a character glyph’s advance width is the distance from the start of a
character glyph to the start of the next. This generally corresponds to the width of the glyph itself plus any
built-in spacing to the sides. (Although that built-in spacing can be either positive or negative.)

The easiest way to demonstrate this unit is to run a bunch of zeroes together and then set an image to have
a width with the same number of ch units as the number of zeroes, as shown in Figure 5-5:

img {height: lem; width: 25ch;}

This example uses Times.

|

This example uses GGaramond.

|

This example uses Helvetica.
0000000000000000000000000

This example uses Arial.
0000000000000000000000000

This example uses ImpactL.

This example uses Courier.
0000000000000000000000000

Figure 5-5. Character-relative sizing

Given a monospace font, all characters are by definition 1ch wide. In any proportional face type, which
is what the vast majority of Western typefaces are, characters may be wider or narrower than the “0” and
so cannot be assumed to be exactly 1ch wide.

Other relative length units

There are a few other relative length units to be mentioned:

1. ic refers to the advance measure of the “” (CJK water ideograph, U+6C34) glyph found in the
first font that can render it. This is like ch in that it uses an advance measure, but defines a measure

more useful for ideographic languages than the “0” character. If it can’t be calculated for a given
situation, then it’s assumed to be equal to 1em.

2. cap refers to the cap-height which is approximately equal to the height of a capital Latin letter, even
in fonts that do not contain Latin letters. If it can’t be calculated for a given situation, then it’s
assumed to be equal to the font’s ascent height.

3. lhis equal to the computed value of the 1ine-height property of the element on which it is
used.

As of late 2022, only developer preview builds of Firefox supported cap, and preview builds of Chrome
supported 1h.

Root-relative length units

Most of the character-based length units discussed in the previous section have a corresponding root-
relative value. A root-relative value is one that is calculated with respect to the root element of the
document, and thus provide a uniform value no matter what context they’re used in. We’ll discuss the most
widely-supported such unit, and then summarize the rest.

The rem unit

The rem unit is calculated using the font size of the document’s root element. In HTML, that’s the html
element. Thus, declaring any element to have font-size: 1rem; is setting it to have the same font-
size value as the root element of the document.

As an example, consider the following markup fragment. It will have the result shown in Figure 5-6.

<p> This paragraph has the same font size as the root element thanks to
inheritance.</p>
<div style="font-size: 30px; background: silver;">
<p style="font-size: 1em;">This paragraph has the same font size as its parent
element.</p>
<p style="font-size: 1rem;'">This paragraph has the same font size as the root
element.</p>
</div>

This paragraph has the same font size as the root element thanks to inheritance.

This paragraph has the same font size as its parent element.

This paragraph has the same font size as the root element.

Figure 5-6. ems versus rems

In effect, rem acts as a reset for font size: no matter what relative font sizing has happened to the
ancestors of an element, giving it font-size: 1rem; will put it right back where the root element is
set. This will usually be the user’s default font size, unless you (or the user) have set the root element to a
specific font size.

For example, given this declaration, 1rem will always be equivalent to 13pX:

html {font-size: 13px;}

However, given this declaration, 1rem will always be equivalent to three-quarters the user’s default font
size:

html {font-size: 75%;}

In this case, if the user’s default is 16 pixels, then 1rem will equal 12px. If the user has actually set their
default to 12 pixels—and yes, some people do this—then 1rem will equal 9pX; if the default setting is
20 pixels, then 1rem equals 15pX. And so on.

You are not restricted to the value 1rem. Any real number can be used, just as with the em unit, so you
can do fun things like set all of your headings to be multiples of the root element’s font size:

hi {font-size: 2rem;}

h2 {font-size: 1.75rem;}
h3 {font-size: 1.4rem;}

h4a {font-size: 1.1rem;}

h5 {font-size: 1rem;}

hé {font-size: 0.8rem;}

NOTE

font-size: 1remis equivalent to font-size: initial as long as no font size is set for the root element.

Other root-relative units

As mentioned previously, rem is not the only root-relative unit defined by CSS. These are summarized in
Table 5-1.

Table 5-1. Link pseudo-classes

Length Root-relative unit Relative to

em rem Computed font-size

ex rex Computed x-height

ch rch Advance measure of the @ character
cap rcap Height of a Roman capital letter

ic ric Advance measure of the ideograph
1h rlh Computed 1ine-height

Of all the root-relative units, only rem was supported as of late 2022, but it was supported by essentially
all browsers.

Viewport-relative units

Another new addition are the viewport-relative size units. These are calculated with respect to the size of
the viewport—browser window, printable area, mobile device display, etc. The six introduced in the late
2010s were:

Viewport width unit (vw)

Equal to the viewport’s width divided by 100. Therefore, if the viewport is 937 pixels wide, 1vWw is
equal to 9.37pX. If the viewport’s width changes, say by dragging the browser window wider or
more narrow, the value of vw changes along with it.

Viewport height unit (vh)
Equal to the viewport’s height divided by 100. Therefore, if the viewport is 650 pixels tall, 1vh is
equal to 6. 5pX. If the viewport’s height changes, say by dragging the browser window taller or
shorter, the value of vh changes along with it.
Viewport block unit (vb)
Equal to the size of the viewport along the block axis, divided by 100. The block axis is explained in
Chapter 6. In top-to-bottom languages like English or Arabic, vb will be equal to vh by default.
Viewport inline unit (v1)
Equal to the size of the viewport along the inline axis, divided by 100. The inline axis is explained in
Chapter 6. In horizontally written languages like English or Arabic, vi will be equal to vw by default.
Viewport minimum unit (vinin)
Equal to 1/100 of the viewport’s width or height, whichever is lesser. Thus, given a viewport that is
937 pixels wide by 650 pixels tall, 1vmin is equal to 6.5pX.
Viewport maximum unit (vmax)

Equal to 1/100 of the viewport’s width or height, whichever is greater. Thus, given a viewport that is
937 pixels wide by 650 pixels tall, 1vmax is equal to 9. 37pX.

As of late 2022, vb and vi were not supported in browsers other than Firefox.

Note that these are length units like any other, and so can be used anywhere a length unit is permitted. You
can scale the font size of a heading in terms of the viewport, height, for example, with something like h1
{font-size: 10vh; }. This sets the font size to be 1/10 the height of the viewport—a technique
potentially useful for article titles and the like.

These units can be particularly handy for creating full-viewport interfaces, such as those one would

expect to find on a mobile device, because it can allow elements to be sized compared to the viewport
and not any of the elements within the document tree. It’s thus very simple to fill up the entire viewport, or
at least major portions of it, and not have to worry about the precise dimensions of the actual viewport in
any particular case.

Here’s a very basic example of viewport-relative sizing, which is illustrated in Figure 5-7:

div {width: 50vh; height: 33vw; background: gray;}

An interesting (though perhaps not useful) fact about these units is that they aren’t bound to their own
primary axis. Thus, for example, you can declare width: 25vh; to make an element as wide as one-
quarter the height of the viewport.

A paragraph which follows the single div we actually have in this example.

Figure 5-7. Viewport-relative sizing

In 2022, new variants of these units were introduced to accommodate the vagaries of viewports and how
they can be sized, particularly on devices where the user interface may expand and contract based on user
input. These variants are based on four viewport types:

Default

The default viewport size, as defined by the user agent (browser). This viewport type is expected to
correspond to the units vw, vh, vb, vi, vmin, and vmax. The default viewport may correspond to
one of the other viewport types; e.g., the default viewport could be the same as the large viewport, but
that’s up to each browser to decide.

Large

The largest possible viewport after any user-agent interfaces are contracted to their fullest extent. For
example, on a mobile device, the browser chrome may be minimized or hidden most of the time so
that the maximum screen area can be used to show page content. This is the state described by the
large viewport. If you want an element’s size to be determined by the full viewport area, even if that

will lead to it being overlapped by user interface, the large-viewport units are the way to go. The
units corresponding this viewport type are 1vw, 1vh, 1vb, 1vi, 1vmin, and 1vmax.

Small

The smallest possible viewport after any user-agent interfaces are expanded to their fullest extent.
This is the state where the browser’s chrome take up as much screen space as it possibly can, leaving
a minimum space for the page content. If you want to be sure an element’s sizing will take into account
any possible interface actions, use these units. The units corresponding this viewport type are SVw,
svh, svb, svi, svmin, and svmax.

Dynamic

The dynamic viewport is the area in which content is visible, and can change as the user interface
expands or contracts. As an example, consider how the browser interface can appear or disappear on
mobile devices, depending on how the content is scrolled or where on the screen the user taps. If you
want to set lengths based on the size of the viewport at every moment, regardless of how it changes,
these are the units for you. The units corresponding this viewport type are dvw, dvh, dvb, dv1i,
dvmin, and dvmax.

As of late 2022, scrollbars (if any) are ignored for the purposes of calculating all of the previous units.
Thus, the calculated size of svw or dvw will not change if scrollbars appear or disappear, or at least
shouldn’t.

Function values

One of the more recent developments in CSS is an increase in the number of values that are effectively
functions. This can range from doing math calculations to clamping value ranges to pulling values out of
HTML attributes. There are, in fact, a lot of these, listed here:

abs()

acos()
annotation()
asin()
atan()
atan2()
attr()
blur()
brightness()

calc()
character-variant()
circle()

clamp()
color-contrast()
color-mix()
color ()
conic-gradient()
contrast()

cos()

counter ()
counters()
cross-fade()
device-cmyk()
drop-shadow()
element ()
ellipse()

env()

exp()
fit-content()
grayscale()
hs1()

hsla()
hue-rotate()
hwb ()

hypot()
image-set()

image()

inset()
invert()
lab()

lch()
linear-gradient()
log()
matrix()
matrix3d()
max ()

min()
minmax()
mod ()
oklab()
oklch()
opacity()
ornaments()
paint()
path()
perspective()
polygon()
pow()

radial-gradient()

rem()

repeat()
repeat-conic-gradiant()
repeating-linear-gradiant()
repeating-radial-gradient()

rgb()

rgba()
rotate()
rotate3d()
rotatex()
rotateY()
rotatez()
round()
saturate()
scale()
scale3d()
scaleX()
scaleY()
scalez()
sepia()
sign()
sin()
skew()
skewX()
skewY ()
sqrt()
styleset()
stylistic()
swash()
symbols()
tan()
translate()
translate3d()
translateX()

translateY()

translateZ()
url()

e var()

That’s ninety-five different function values. We’ll cover some of them in the rest of this chapter. The rest
will be covered in other chapters, as appropriate for their topics (e.g., the filter functions are described in
XREF HERE).

Calculation values

In situations where you need to do a little math, CSS provides a calc () value. Inside the parentheses,
you can construct simple mathematical expressions. The permitted operators are + (addition), -
(subtraction), * (multiplication), and / (division), as well as parentheses. These follow the traditional
PEMDAS (parentheses, exponents, multiplication, division, addition, subtraction) precedence order,
although in this case it’s really just PMDAS since exponents are not permitted in calc ().

As an example, suppose you want your paragraphs to have a width that’s 2 em less than 90% the width of
their parent element. Here’s how you express that with calc():

p {width: calc(90% - 2em);}

calc() canbe used in any property value where one of the following value types is permitted:
<length>, <frequency>, <angle>, <time>, <percentage>, <number>, and <integer>. You can also
use all these unit types withina calc () value, though there are some limitations to keep in mind.

The basic limitation is that calc () does basic type checking to make sure that units are, in effect,
compatible. The checking works like this:

1. To either side of a + or - sign, both values must have the same unit type, or be a <number> and
<integer> (in which case, the result is a <number>). Thus, 5 + 2.7 is valid, and results in 7. 7.
On the other hand, 5em + 2.7 is invalid, because one side has a length unit and the other does not.
Note that 5em + 20pX is valid, because em and px are both length units.

2. Givena *, one of the values involved must be a <number> (which, remember, includes integer
values). So 2.5rem * 2and 2 * 2.5rem are both valid, and each result in 5rem. On the flip
side, 2.5rem * 2rem is not valid, because the result would be 5rem?, and length units cannot
be area units.

3. Givena /, the value on the right side must be a <number>. If the left side is an <integer>, the
result is a <number>. Otherwise, the result is of the unit type used on the left side. This means that
30em / 2.75isvalid, but 30 / 2.75em is not valid.

4. Furthermore, any circumstance that yields division by zero is invalid. This is easiest to see in a case
like 30pXx/ 0, but there are other ways to get there.

There’s one more notable limitation, which is that whitespace is required on both sides of the + and -
operators, while it is not for * and /. This was done to allow future development of calc () values to
support keywords that contain dashes (e.g., max-content).

Furthermore, it’s valid (and supported) to nest calc () functions inside each other. Thus you can say
something like:

p {width: calc(90% - calc(dlem + 0.1vh));}

Beyond that, the CSS specification requires that user agents support a minimum of 20 terms inside any
single calc () function, where a term is a number, percentage, or dimension (e.g., a length). In situations
where the number of terms somehow exceeds the user agent’s term limits, the entire function is treated as
invalid.

Maximum Values

Calculation is nice, but sometimes you just want to make sure a property is set to one of a number of
values, whichever is smallest. In those cases, the min() function value comes in very handy. Yes, this is
confusing at first, but give us a minute and hopefully it will make sense.

Suppose you have an element you want to make sure is never wider than a certain amount; say, an image
that should be one-quarter the width of the viewport or 200 pixels wide, whichever is smaller. This
allows it to be constrained to 200 pixels of width on wide viewports, but take up to a quarter the width of
smaller viewports. For that, you’d say:

.figure {width: min(25vw, 200px);}

The browser will compute the width of both 25vw and compare that to 200pX, and use whichever is
smaller. If 200pX is smaller than 25% the width of the viewport, then it will be used. Otherwise, the
element will be 25% as wide as the viewport, which could easily be smaller than 1em. Note that
“smaller” in this case means “closest to negative infinity,” not “closest to zero.” Thus, if you compare two
terms that compute to (say) - 1500pX and -2px, min() will pick -1500px.

You can nest min() inside min(), or throw a mathematical expression in there for one of the values,
without having to wrap it in calc (). For that matter, you can put inmax () and clamp(), which we
haven’t even discussed yet. You can supply as many terms as you like: if you want to compare four
different ways of measuring something, picking the minimum, then just separate them with commas. A
slightly contrived example:

.figure {width: min(25vw, 200px, 33%, 50rem - 30px);}

Whichever of those values is computed to be the minimum (closest to negative infinity) will be used, thus
defining a maximum for the width value. The order you list them in doesn’t actually matter, since the
minimum value will always be picked regardless of where it appears in the function.

In general, min() canbe used in any property value that permits <length>, <frequency>, <angle>,

<time>, <percentage>, <number>, or <integer>.

Remember that setting a maximum value on font sizes is an accessibility concern. You should never set a maximum font size using pixels,
because that would likely prevent text zooming by users. You probably shouldn’t use min () for font sizing in any case, but if you do, keep
px lengths out of the values!

Minimum Values

The mirror image of min() is max(), which can be used to set a minimum value for a property. It can
appear the same places min() can, can be nested in the same ways min() can, and is generally just the
same except that it picks the largest (closest to positive infinity) value from among the alternatives given.

As an example, perhaps the top of a page’s design should be a minimum of 100 pixels tall, but it can be
taller if conditions permit. In that case, you could use something like:

header {height: max(100px, 15vh, 5rem);}

Whichever of the values is largest will be used. For a desktop browser window, that would probably be
15vh, unless the base size text is really enormous. For a handheld display, it’s more likely that 5rem or
100px will be the largest value. In effect, this sets a minimum size of 100 pixels tall, since getting either
15vh or 5rem below that value is easily possible.

Remember that setting even a minimum value on font sizes can create an accessibility problem, since a
too-small minimum is still too small. A good way to handle this is to always include 1rem in your
max () expressions for font sizes. Something like this:

.sosumi {font-size: max(1vh, 0.75em, 1rem);}

Alternatively, you could not use max () for font sizing at all. It’s probably best left to box sizing and other
such uses.

Clamping Values

If you’ve already been thinking about ways to nest min() and max() to set upper and lower bounds on
a value, here’s a way to not only do that, but set an “ideal” value as well: clamp (). This function value
takes three parameters representing, in order, the minimum allowed value, preferred value, and maximum
allowed value.

For example, consider some text you want to be about 5% the height of the viewport, while keeping its
minimum the base font size and its maximum three times the text around it. That would be expressed like
so:

Example 5-1.

footer {font-size: clamp(1rem, 2vh, 3em);}

Given those styles and assuming the base font size is 16 pixels, as it is by default in most browsers, then
the footer text will be equal to the base font size up to a viewport height of 800 pixels (16 divided by
.02). If the viewport gets taller, the text will start to get bigger, unless doing so would make it bigger than
3em. If it ever gets to the same size as 3em, then it will stop growing. (This is fairly unlikely, but one
never knows.)

In any case where the maximum value of a clamp () is computed to be smaller than the minimum value,
then the maximum is ignored and the minimum value is used instead.

You can use clamp () anywhere you canuse min() and max(), including nesting them inside each
other. For example:

Example 5-2.

footer {font-size: clamp(1rem, max(2vh, 1.5em), 3em);}

This is basically the same as the previous example, except in this case the preferred value is either 2%
the height of the viewport or 1.5 times the size of the parent element’s text, whichever is larger.

Attribute Values

In a few CSS properties, it’s possible to pull in the value of an HTML attribute defined for the element
being styled. This is done with the attr () function.

For example, with generated content, you can insert the value of any attribute. It looks something like this

(don’t worry about understanding the exact syntax, which we’ll explore in XREF HERE):

p {content: "[" attr(id) "]";}

That expression would prefix any paragraph that has an 1d attribute with the value of that 1d, enclosed in
square brackets. Therefore applying the previous style to the following paragraphs would have the result
shown in Figure 5-8:

<p id="leadoff">This is the first paragraph.</p>
<p>This is the second paragraph.</p>
<p id="conclusion">This is the third paragraph.</p>

[leadoft]This is the first paragraph.
[1This is the second paragraph.

[conclusion|This is the third paragraph.

Figure 5-8. Inserting attribute values

While attr () is supported in the content property value, it isn’t parsed. In other words, if the
attr () returns an image URL from an attribute value, the generated content will be the URL written out
as text, and not the image that lives at that URL. As of late 2022, anyway; there are plans to change things
such that attr () can be parsed (and also be used for all properties, not just content).

Color

One of the first questions every starting web author asks is, “How do I set colors on my page?” Under
HTML, you have two choices: you could use one of a large but limited number of colors with names, such
as red or purple, or employ a vaguely cryptic method using hexadecimal codes. Both of these methods
for describing colors remain in CSS, along with several—and, we think, more intuitive—methods.

Named Colors

Over the years, CSS has added a set of 148 colors that are identified by a human-readable names like
redor firebrickred. CSS calls these, logically enough, named colors. In the early days of CSS,
there were only the 16 basic color keywords defined in HTML 4.01. These are shown in Table 5-2.

Table 5-2. The basic 16 color keywords

aqua gray navy silver black green olive

blue lime purple white fuchsia maroon red

So, let’s say you want all first-level headings to be maroon. The best declaration would be:

hi {color: maroon;}

Simple enough, isn’t it? Figure 5-9 shows a few more examples:

hi {color: silver;}
h2 {color: gray;}
h3 {color: black;}

Salutations!

Howdy-do!

Figure 5-9. Named colors

You’ve probably seen (and maybe even used) color names other than the ones listed earlier. For example,
you could say:

hil {color: lightgreen;}

...and get a light green (but not exactly lime) color applied to h1l elements.

The CSS color specification includes those original 16 named colors in a longer list of 148 color
keywords. This extended list is based on the standard X11 RGB values that have been in use for decades,
and have been recognized by browsers for many years, with the addition of some color names from SVG
(mostly involving variants of “gray” and “grey”) and a memorial color. A table of color equivalents for
all 148 keywords defined in the CSS Color Module Level 4 is given in XREF HERE.

Color Keywords

There are two special keywords that can be used anywhere a color value is permitted. These are
transparent and currentColor.

As its name suggests, transparent defines a completely transparent color. The CSS Color Module
defines it to be equivalent to rgba (0, ©, ©, @), and that’s its computed value. This keyword is not often
used to set text color, for example, but it is the default value for element background colors. It can also be
used to define element borders that take up space, but are not visible, and is often used when defining
gradients—all topics we’ll cover in later chapters.

By contrast, currentColor means “whatever the computed value of color is for this element.”
Consider the following:

main {color: gray; border-color: currentColor;}

The first declaration causes any main elements to have a foreground color of gray. The second
declaration uses currentColor to copy the computed value of color—in this case gray—and
apply it to any borders the main elements might have. Incidentally, currentColor is actually the
default value for border-color, which we’ll cover in Chapter 7.

As with all the named colors, these color names are case-insensitive. currentColor was shown here with
mixed capitalization for legibility, and is generally written that way, again, for legibility.

Fortunately, there are more detailed and precise ways to specify colors in CSS. The advantage is that,
with these methods, you can specify any color in the color spectrum, not just a limited list of named
colors.

Colors by RGB and RGBa

Computers create colors by combining different levels of the primary colors red, green, and blue, a
combination that is often referred to as RGB color. So, it makes sense that you be able to specify your
own combinations of these primary colors in CSS. That solution is a bit complex, but possible, and the
payoffs are worth it because there are very few limits on which colors you can produce. There are four
ways to affect color in this manner.

Functional RGB colors

There are two color value types that use functional RGB notation as opposed to hexadecimal notation.
The generic syntax for this type of color value is rgb (color), where color is expressed using a
triplet of either percentages or numbers. The percentage values can be in the range 0%—100%, and the
integers can be in the range 0—255.

Thus, to specify white and black, respectively, using percentage notation, the values would be:

rgb(100%, 100%, 100%)
rgb (0%, 0%, 0%)

Using the integer-triplet notation, the same colors would be represented as:

rgb (255, 255, 255)
rgh(0,0,0)

An important thing to remember is that you can’t mix integers and percentages in the same color value.
Thus, rgb (255, 66.67%, 50%) would be invalid and thus ignored.

NOTE

In more recent browsers, the separating commas in RGB values can be replaced with simple whitespace. Thus, black can be represented
rgb(® 0 0) orrgh(0% 0% 0%). This is true of all the color values we’ll see throughout the chapter that allow commas, but we’ll
mostly stick to the comma notation for backwards compatibility and clarity’s sake. Also bear in mind that some of the newer color functions
do not allow commas.

Assume you want your hl elements to be a shade of red that lies between the values for red and maroon.
red is equivalent to rgbh (100%, 0%, 0%), whereas maroon is equal to (50%, 0%, 0%). To get a
color between those two, you might try this:

hi {color: rgb(75%,0%,0%);}

This makes the red component of the color lighter than maroon, but darker than red. If, on the other
hand, you want to create a pale red color, you would raise the green and blue levels:

hi {color: rgb(75%,50%,50%);}

The closest equivalent color using integer-triplet notation is:

hi {color: rgb(191,127,127);}

The easiest way to visualize how these values correspond to color is to create a table of gray values. The
result is shown in Figure 5-10:

.one {color: rgb(0%,0%,0%);}

.two {color: rgb(20%,20%,20%),;}
.three {color: rgb(40%,40%,40%);}
.four {color: rgh(60%,60%,60%);}
.five {color: rgh(80%,80%,80%);}
.six {color: rgb(0,0,0);}

.seven {color: rgb(51,51,51);}
.eight {color: rgb(102,102,102);}
.nine {color: rgbh(153,153,153);}
.ten {color: rgb(204,204,204),;}

T TTTTTTTTT

[one] This is a paragraph.
[two] This is a paragraph.
[three] This is a paragraph.

[six] This is a paragraph.
[seven] This is a paragraph.
[eight] This is a paragraph.

Figure 5-10. Text set in shades of gray

Since we’re dealing in shades of gray, all three RGB values are the same in each statement. If any one of
them were different from the others, then a color hue would start to emerge. If, for example,
rgb (50%, 50%, 50%) were modified to be rgh (50%, 50%, 60%), the result would be a medium-

dark color with just a hint of blue.

It is possible to use fractional numbers in percentage notation. You might, for some reason, want to
specify that a color be exactly 25.5 percent red, 40 percent green, and 98.6 percent blue:

h2 {color: rgb(25.5%,40%,98.6%);}

Values that fall outside the allowed range for each notation are clipped to the nearest range edge, meaning
that a value that is greater than 100% or less than 0% will default to those allowed extremes. Thus, the
following declarations would be treated as if they were the values indicated in the comments:

P.one {color: rgb(300%,4200%,110%);} /* 100%,100%,100% */
P.two {color: rgb(0%, -40%, -5000%);} /* 0%,0%, 0% */
p.three {color: rgb(42,444,-13);} /* 42,255,0 */

Conversion between percentages and integers may seem arbitrary, but there’s no need to guess at the
integer you want—there’s a simple formula for calculating them. If you know the percentages for each of
the RGB levels you want, then you need only apply them to the number 255 to get the resulting values.
Let’s say you have a color of 25 percent red, 37.5 percent green, and 60 percent blue. Multiply each of
these percentages by 255, and you get 63.75, 95.625, and 153. Round these values to the nearest integers,
and voila: rgb (64,96, 153).

If you already know the percentage values, there isn’t much point in converting them into integers. Integer
notation is more useful for people who use programs such as Photoshop, which can display integer values
in the Info dialog, or for those who are so familiar with the technical details of color generation that they
normally think in values of 0-255.

RGBa colors

Many years ago, the two functional RGB notations were extended into a functional RGBa notation. This
notation adds an alpha value to the end of the RGB triplets; thus “red-green-blue-alpha” becomes RGBa.
The alpha stands for alpha channel, which is a measure of opacity.

For example, suppose you wanted an element’s text to be half-opaque white. That way, any background
color behind the text would “shine through,” mixing with the half-transparent white. You would write one
of the following two values:

rgba(255 255 255 / 0.5)
rgba(100% 100% 100% / 0.5) /* commas would also be allowed */

To make a color completely transparent, you set the alpha value to 0; to be completely opaque, the correct
value is 1. Thus rgb (0, 0, 0) and rgba (0, 0, 0, 1) will yield precisely the same result (black).
Figure 5-11 shows a series of paragraphs set in increasingly transparent black, which is the result of the
following rules.

p.one {color: rgba(0,0,0,1);}

p.two {color: rgba(0%,0%,0%,0.8);}
p.three {color: rgba(0,0,0,0.6);}
p.four {color: rgba(0%,0%,0%,0.4);}
p.five {color: rgha(0,0,0,0.2),;}

[one] This is a paragraph.
[two] This is a paragraph.

[three] This is a paragraph.

Figure 5-11. Text set in progressive translucency

Alpha values are always real numbers in the range O to 1, or percentages in the range 0% to 100%. Any
value outside that range will either be ignored or reset to the nearest valid alpha value. You cannot use
<percentage> to represent alpha values, despite the mathematical equivalence.

Hexadecimal RGB colors

CSS allows you to define a color using the same hexadecimal color notation so familiar to old-school
HTML web authors:

hi {color: #FF0000;} /* set His to red */

h2 {color: #903BCO;} /* set H2s to a dusky purple */
h3 {color: #000000;} /* set H3s to black */

h4 {color: #808080;} /* set H4s to medium gray */

Computers have been using hex notation for quite some time now, and programmers are typically either
trained in its use or pick it up through experience. Their familiarity with hexadecimal notation likely led
to its use in setting colors in HTML. That practice was carried over to CSS.

Here’s how it works: by stringing together three hexadecimal numbers in the range 00 through FF, you
can set a color. The generic syntax for this notation is #RRGGBB. Note that there are no spaces, commas,
or other separators between the three numbers.

Hexadecimal notation is mathematically equivalent to integer-pair notation. For example,
rgb (255, 255, 255) is precisely equivalent to #FFFFFF, and rgb (51, 102, 128) is the same as

#336680. Feel free to use whichever notation you prefer—it will be rendered identically by most user
agents. If you have a calculator that converts between decimal and hexadecimal, making the jump from
one to the other should be pretty simple.

For hexadecimal numbers that are composed of three matched pairs of digits, CSS permits a shortened
notation. The generic syntax of this notation is #RGB:

hi {color: #000;} /* set H1ls to black */
h2 {color: #666;} /* set H2s to dark gray */
h3 {color: #FFF;} /* set H3s to white */

As you can see from the markup, there are only three digits in each color value. However, since
hexadecimal numbers between 00 and FF need two digits each, and you have only three total digits, how
does this method work?

The answer is that the browser takes each digit and replicates it. Therefore, #F00 is equivalent to
#FFOOO0, #6FA would be the same as #66FFAA, and #FFF would come out #FFFFFF, which is the
same as Wwhite. Not every color can be represented in this manner. Medium gray, for example, would be
written in standard hexadecimal notation as #808080. This cannot be expressed in shorthand; the closest
equivalent would be #888, which is the same as #888888.

Hexadecimal RGBa colors

Hexadecimal notation can have a fourth hex value to represent the alpha channel value. Figure 5-11 shows
a series of paragraphs set in increasingly transparent black, just as we saw in the previous section, which
is the result of the following rules:

p.one {color: #0O0GOGOFF;}
p.two {color: #0000GOCC;}
p.three {color: #00000099;}
p.four {color: #00000066;}
p.five {color: #00000033;}

[one] This is a paragraph.
[two] This is a paragraph.

[three] This is a paragraph.

Figure 5-12. Text set in progressive translucency, redux

As with non-alpha hexadecimal values, it’s possible to shorten a value composed of matched pairs to a
four-digit value. Thus, a value of #663399AA can be written as #639A. If the value has any pairs that
are not repetitive, then the entire eight-digit value must be written out: #663399CA cannot be shortened
to #639CA.

HSL and HSLa colors

HSL (hue-saturation-lightness) color notation is similar to HSB (hue-saturation-brightness), the color

system in image editing software like Photoshop, and just as intuitive. The hue is expressed as an angle
value, saturation is a percentage value from 0 (no saturation) to 100 (full saturation), and lightness is a
percentage value from 0 (completely dark) to 100 (completely light). If you’re intimately familiar with
RGB, then HSL may be confusing at first. (But then, RGB is confusing for people familiar with HSL.)

The hue angle is expressed in terms of a circle around which the full spectrum of colors progresses. It
starts with red at 0 degrees and then proceeds through the rainbow until it comes to red again at 360
degrees.

As for the other two values, saturation measures the intensity of a color. A saturation of 0% always yields
a shade of gray, no matter what hue angle you have set, and a saturation of 100% creates the most vivid
possible shade of that hue (in the HSL color space) for a given lightness.

Similarly, lightness defines how dark or light the color appears. A lightness of 0% is always black,
regardless of the other hue and saturation values, just as a lightness of 100% always yields white.
Consider the results of the following styles, illustrated on the left side of Figure 5-13.

.one {color: hsl(0,0%,0%);}
.two{color: hsl(60,0%,25%);}
.three {color: hsl(120,0%,50%);}
.four {color: hsl(180,0%,75%);}
.five {color: hsl(240,0%,0%);}
.six {color: hsl(300,0%,25%);}
.seven {color: hsl(360,0%,50%);}

T T T T T T T

NOTE

Remember that in more recent browsers, the commas in hs1() values can be replaced with whitespace.

[one] This paragraph’s color has 0% saturation.
[two] This paragraph’s color has 0% saturation.

[three] This paragraph’s color has 0% saturation.

[five] This paragraph’s color has 0% saturation.

[one] This paragraph’s color has 505 saturation.

[two] This paragraph’s color has 50% saturation.

[five] This paragraph’s color has 50% saturation.

[six] This paragraph’s color has 0% saturation. [six] This paragraph’s color has 50% saturation.

[seven] This paragraph’s color has 0% saturation. [seven] This paragraph’s color has 50% saturation.

Figure 5-13. Varying lightness and hues

The gray you see on the left side isn’t just a function of the limitations of print: every one of those
paragraphs is a shade of gray, because every color value has 8% in the saturation (middle) position. The
degree of lightness or darkness is set by the lightness (third) position. In all seven examples, the hue angle
changes, and in none of them does it matter. But that’s only so long as the saturation remains at 0%. If that
value is raised to, say, 50%, then the hue angle will become very important, because it will control what
sort of color you see. Consider the same set of values that we saw before, but all set to 50% saturation, as

illustrated on the right side of Figure 5-13.

Just as RGB has its RGBa counterpart, HSL has an HSLa counterpart. This is an HSL triplet followed by
an alpha value in the range 0—1. The following HSLa values are all black with varying shades of
transparency, just as in “Hexadecimal RGBa colors” (and illustrated in Figure 5-11):

p.one {color: hsla(0,0%,0%,1);}
p.two {color: hsla(0,0%,0%,0.8);}
p.three {color: hsla(0,0%,0%,0.6);}
p.four {color: hsla(0,0%,0%,0.4),;}
p.five {color: hsla(0,0%,0%,0.2);}

Colors with HWB

Colors can also be represented in terms of their Hue, White level, and Black level by using the hwb ()
functional value. This function value accepts hue values expressed as an angle value. After the hue angle,
instead of lightness and saturation, whiteness and blackness values are specified as percentages.

Unlike HSL, however, there is no hwba() function. Instead, the value syntax for hwb () allows an
opacity to be defined after the HWB values, separated from them by a solidus (/). The Opacity can be
expressed either as a percentage or as a real value from O to 1, inclusive. Also unlike HSL, commas are
not supported: the HWB values must be separated by whitespace.

Here are some examples of using HWB notation:

/* Varying shades of red */
hwb (0 40% 20%)

hwb (360 50% 10%)

hwb(0deg 10% 10%)

hwb(Orad 60% 0%)

hwb(0turn 0% 40%)

/* Partially translucent red */
hwb(0 10% 10% / 0.4)
hwb(0 10% 10% / 40%)

Lab colors

Historically, all CSS colors were defined in the SRGB color space, which was more than older display
monitors could represent. Modern displays, on the other hand, can handle about 150% of the the sSRGB
color space, which still isn’t the full range of color humans can perceive, but it’s a lot closer.

In 1931, the Commission Internationale de I’Eclairage (International Commission on Illumination), or
CIE, defined a scientific system for defining colors created via light, as opposed to those created with
paint or dyes. Now, almost a century later, CSS has brought the work of the CIE into its repertoire.

It does this using the 1ab () function value to express color using the CIE L*a*b* (hereafter shortened as
“Lab”) color space. Lab is designed to represent the entire range of color that humans can see. The
lab() function accepts 3 to 4 parameters: lab(L a b / A). Similar to HWB, the parameters are
space separated (no commas allowed) and a solidus (/) precedes alpha value, if provided.

The L (Lightness) component specifies the CIE Lightness, and is a <percentage> between 0%
representing black and 100% representing white, or else a <number> from 0 to 1. The second
component, a, is the distance along the a axis in the Lab colorspace. This axis runs from a purplish red in
the positive direction to a shade of green in the negative direction. The third component, b, is the distance
along the b axis in the Lab colorspace. This axis runs from a yellow in the positive direction to a blue-
violet in the negative direction.

The fourth, optional parameter is the opacity, with a value between 0 and 1 inclusive, or 0 to 100%
inclusive. If omitted, the opacity defaults to 1 (100%), or full opacity.

Here are some examples of Lab color expressed in CSS.

lab(29.2345% 39.3825 -20.0664);
lab(52.2345% 40.1645 59.9971);
lab(52.2345% 40.1645 59.9971 / .5);

The main reason to bring Lab (and LCH, which we’ll discuss in a moment) colors into CSS is that they
are systematically designed to be perceptually uniform. What the means is, color values that share a
given coordinate will seem consistent in terms of that coordinate. Two colors with different hues but the
same lightness will appear to have similar lightnesses. Two colors with the same hue but different
lightnesses will appear to be shades of a single hue. This is often not the case with RGB and HSL values,
so Lab and LCH represent a big improvement.

They’re also defined to be device-independent, so you should be able to specify colors in these color
spaces and get a visually consistent result from one device to another.

As of late 2022, only WebKit supported 1ab ().

LCH colors

LCH, for “Lightness Chroma Hue”, is a version of Lab designed to represent the entire spectrum of human
vision. It does this using a different notation: Lch(L C H / A). The main difference is that C and H
are polar coordinates, rather than linear values along color axes.

The L (Lightness) component is the same as the CIE Lightness, and is a <percentage> between 0%
representing black and 100% representing white.

The C (Chroma amount) component roughly represents the “amount of color”. Its minimum value is 0, and
there is no defined maximum. Negative C values are clamped to zero.

The H (Hue angle) component is essentially a combination of the a and b values in 1ab (). The value 0
points along the positive “a” axis (toward purplish red), 90 points along the positive “b” axis (toward
mustard yellow), 180 points along the negative “a” axis (toward greenish cyan), and 270 points along

the negative “b” axis (toward sky blue). This component loosely corresponds to HSL’s Hue, but the hue
angles differ.

The optional A (alpha) component can be a <number> between 0 and 1, or else a <percentage>, where
the number 1 corresponds to 100% (full opacity). If present, it is preceded by a solidus (/).

lch(56% 132 331)
lch(52% 132 8)
lch(52% 132 8 / 50%)

To give an example of the capabilities of LCH, 1ch(52% 132 8) is a very bright magenta equivalent
to rgh(118.23% -46.78% 40.48%). Notice the large red value and the negative green value,
which places the color outside the SRGB color space. If you supplied that RGB value to a browser, it
would clamp the value to rgb(100% 0% 40.48%). This is within the sSRGB color space, but is
visually quite distinct from the color defined by 1ch(52% 132 8).

As of late 2022, Firefox did not yet support 1ch(), support was just coming to Chrome, and it had been present for a while in Safari.

Oklab and Okich

There are improved versions of Lab and LCH called Oklab and Oklch, and these will be supported by
CSS using the oklab () and oklch () functional values. Oklab was developed by taking a large set of
visually similar colors and performing a numerical optimization on them, yielding a color space with
better hue linearity and uniformity, and better chroma uniformity, than the CIE color spaces. Oklch is a
polar-coordinate version of Oklab, just as LCH is to Lab.

Because of this improved uniformity, Oklab and Oklch will be the default for color-interpolation
calculations in CSS going foward. However, as of the time of writing in late 2022, only Safari supported
the oklab () and oklch() CSS functional values, and that only recently.

color()

The color () function value allows a color to be specified in a named colorspace, rather than the
implicit SRGB colorspace. It accepts four space-separated parameters, as well as an optional fifth
opacity value preceded by a solidus (/).

The first parameter is a predefined, named color space. Possible values as of early 2022 include srgb,
srgb-linear,display-p3,a98-rgb, prophoto-rgb, rec2020, xyz, xyz-d50, and Xyz-
d65 . The three values that follow are specific to the color space declared in the first parameter. Some
color spaces may allow these values to be percentages, while others may not.

As an example, the following values should yield the same color:

#7654CD

rgb(46.27% 32.94% 80.39%)

lab(44.36% 36.05 -58.99)

color(xyz-d50 0.2005 0.14089 0.4472)
color(xyz-d65 0.21661 0.14602 0.59452)

It is easily possible to declare a color that lies outside the gamut of a given color space. For example,
color(display-p3 -0.6112 1.0079 -0.2192); is outside the display-p3 gamut. It’s still a
valid color, just not one that can be expressed in that color space. In the case where a color value is valid
but outside the gamut, it will be mapped to the closest color that lies inside the color space’s gamut.

In cases where a color’s value is straight up invalid, then the color used is opaque black.

As of late 2022, Firefox did not yet support color ('), support was just coming to Chrome, and it had been present for a while in Safari.

Applying Color

Since we’ve just gone through all the different possible color formats, let’s take a brief detour to talk
about the property that uses color values the most often: color.

COLOR
Values <color>
Initial value User agent-specific
Applies to All elements

Computed value As specified
Inherited Yes

Animatable Yes

This property accepts as a value any valid color type, such as #FFCCOO or
rgba(100%, 80%, 0%, 0.5).

For nonreplaced elements like paragraphs or em elements, color sets the color of the text in the
element, as illustrated in Figure 5-14, which is the result of the following code:

<p style="color: gray;'">This paragraph has a gray foreground.</p>
<p>This paragraph has the default foreground.</p>
This paragraph has a gray foreground.
This paragraph has the default foreground.
Figure 5-14. Declared color versus default color

In Figure 5-14, the default foreground color is black. That doesn’t have to be the case, since the user

might have set her browser (or other user agent) to use a different foreground (text) color. If the browser’s
default text color was set to green, the second paragraph in the preceding example would be green, not
black—but the first paragraph would still be gray.

You need not restrict yourself to such basic operations. There are plenty of ways to use color. You
might have some paragraphs that contain text warning the user of a potential problem. In order to make
this text stand out more than usual, you might decide to color it red. Just apply a class of warn to each
paragraph that contains warning text (<p class="warn'>) and the following rule:

p.warn {color: red;}

In the same document, you might decide that any unvisited hyperlinks within a warning paragraph should
be green:

p.warn {color: red;}
p.warn a {color: green;}

Then you change your mind, deciding that warning text should be dark red, and that unvisited links in such
text should be medium purple. The preceding rules need only be changed to reflect the new values, as
illustrated in Figure 5-15, which is the result of the following code:

p.warn {color: #600;}
p.warn a {color: #400040;}

Plutonium

Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all costs. This can be
accomplished by keeping the various masses separate.

Comments
It's best to avoid using plutonium at all if it can be avoided.

Figure 5-15. Changing colors

Another use for color is to draw attention to certain types of text. For example, boldfaced text is
already fairly obvious, but you could give it a different color to make it stand out even further—Ilet’s say,
maroon:

b, strong {color: maroon;}

Then you decide that you want all table cells with a class of highlight to contain light yellow text:

td.highlight {color: #FF9;}

If you don’t set a background color for any of your text, you run the risk that a user’s setup won’t combine
well with your own. For example, if a user has set their browser’s background to be a pale yellow, like
#FFC, then the previous rule would generate light yellow text on a pale yellow background. Far more
likely is that it’s still the default background of white, against which light yellow is still going to be hard
to read. It’s therefore generally a good idea to set foreground and background colors together. (We’ll talk
about background colors very shortly.)

Affecting Form Elements
Setting a value for color should (in theory, anyway) apply to form elements. Declaring select
elements to have dark gray text should be as simple as this:

select {color: rgb(33%,33%,33%);}

This might also set the color of the borders around the edge of the select element, or it might not. It all
depends on the user agent and its default styles.

You can also set the foreground color of input elements—although, as you can see in Figure 5-16, doing

so would apply that color to all inputs, from text to radio button to checkbox inputs:

select {color: rgb(33%,33%,33%);}
input {color: red;}

This is a select list
Option 1 () Option 2 & Option 3) Option 4
Submit me, O user

Figure 5-16. Changing form element foregrounds

Note in Figure 5-16 that the text color next to the checkboxes is still black. This is because the rules
shown assign styles only to elements like 1nput and select, not normal paragraph (or other) text.

Also note that the checkmark in the checkbox is black. This is due to the way form elements are handled in
some web browsers, which typically use the form widgets built into the base operating system. Thus,
when you see a checkbox and checkmark, they really aren’t content in the HTML document—they’re user
interface widgets that have been inserted into the document, much as an image would be. In fact, form
inputs are, like images, replaced elements. In theory, CSS does not style the contents of replaced
elements.

In practice, the line is a lot blurrier than that, as Figure 5-16 demonstrates. Some form inputs have the
color of their text and even portions of their UI changed, while others do not. And since the rules aren’t

explicitly defined, behavior is inconsistent across browsers. In short, form elements are deeply tricky to
style and should be approached with extreme caution.

Inheriting Color

As the definition of color indicates, the property is inherited. This makes sense, since if you declare p
{color: gray; }, youprobably expect that any text within that paragraph will also be gray, even if
it’s emphasized or boldfaced or whatever. If you want such elements to be different colors, that’s easy
enough, as illustrated in Figure 5-17, which is the result of the following code:

em {color: red;}
p {color: gray;}

This 1s a paragraph which 1s, for the most part,
utterly undistinguished —but its emphasized text is

quite another story altogether.
Figure 5-17. Different colors for different elements

Since color is inherited, it’s theoretically possible to set all of the ordinary text in a document to a color,
such as red, by declaring body {color: red;}. This should make all text that is not otherwise
styled (such as anchors, which have their own color styles) red.

Angles

Since we just recently finished talking about hue angles in a number of color value types, this would be a
good time to talk about angle units. Angles in general are represented as <angle>, which is a <number>
followed by one of four unit types:

deg
Degrees, of which there are 360 in a full circle.

grad

Gradians, of which there are 400 in a full circle. Also known as grades or gons.

rad

Radians, of which there are 2rt (approximately 6.28) in a full circle.

turn

Turns, of which there is one in a full circle. This unit is mostly useful when animating a rotation and
you wish to have it turn multiple times, such as 10t urn to make it spin 10 times. (Sadly, the
pluralization turns is invalid, at least as of early 2022, and will be ignored.)

To help understand the relationsihp between these different angle types, Table 5-3 shows how some
angles are expressed in the various angle units.

Table 5-3. Angle equivalents

Degrees Gradians Radians Turns

0deg Ograd Orad Oturn
45deg 50grad 0.785rad 0.125turn
90deg 100grad 1.571rad 0.25turn
180deg 200grad 3.142rad 0.5turn
270deg 300grad 4.712rad 0.75turn
360deg 400grad 6.283rad 1turn

Time and Frequency

In cases where a property needs to express a period of time, the value is represented as <time> and is a
<number> followed by either S (seconds) or ms (milliseconds.) Time values are most often used in

transitions and animations, either to define durations or delays. The following two declarations will have
exactly the same result:

alhref] {transition-duration: 2.4s;}
alhref] {transition-duration: 2400ms;}

Time values are also used in aural CSS, again to define durations or delays, but support for aural CSS is
extremely limited as of this writing.

Another value type historically used in aural CSS is <frequency>, which is a <number> followed by
either Hz (hertz) or kHz (kilohertz). As usual, the unit identifiers are case-insensitive, so Hz and hz are
equivalent. The following two declarations will have exactly the same result:

hi {pitch: 128hz;}
hi {pitch: 0.128khz;}

Unlike with length values, for time and frequency values the unit type is always required, even when the
value is s or Ohz.

Ratios

There are a couple of situations where it’s necessary to express a ratio of two numbers, in which case a
<ratio> value is used. These values are represented as two positive <number> values separated by a
solidus (/), plus optional whitespace.

The first integer refers to the width (inline-size) of an element, and the second to the height (block-size).
Thus, to express a height-to-width ratio of 16 to 9, you can write 16/9 or 16 / 9.

As of late 2022, there is no facility to express a ratio as a single real number (e.g., 1.777 instead of
16/9), nor to use a colon separator instead of a solidus (e.g., 16:9).

Position

A position value is how you specify the placement of an origin image in a background area, and is
represented as <position>. Its syntactical structure is rather complicated:

[
left | center | right | top | bottom | <percentage> | <length>] |

left | center | right | <percentage> | <length>]

top | center | bottom | <percentage> | <length>] |

center | [left | right] [<percentage> | <length>]1?] &&
center | [top | bottom] [<percentage> | <length>]?]

o

]

That might seem a little nutty, but it’s all down to the subtly complex patterns that this value type has to
allow.

If you declare only one value, such as 1eft or 25%, then the second value is set to center. Thus,
left is the same as left center, and 25% is the same as 25% center.

If you declare (either implicitly, as above, or explicitly) two values, and the first one is a <length> or
<percentage>, then it is always considered to be the horizontal value. This means that given 25%

35pXx, the 25% is a horizontal distance and the 35pX is a vertical distance. If you swap them to say
35px 25%, then 35px is horizontal and 25% is vertical. This means that if you write 25% left or
35px right, the entire value is invalid because you have supplied two horizontal distances and no
vertical distance. (Similarly, a value of right left or top bottomis invalid and will be ignored.)
On the other hand, if you write left 25% or right 35pX, there is no problem because you’ve given
a horizontal distance (with the keyword) and a vertical distance (with the percentage or length).

If you declare four values (we’ll deal with three just in a moment), then you must have two lengths or
percentages, each of which is preceded by a keyword. In this case, each length or percentage specifies an
offset distance, and each keyword defines the edge from which the offset is calculated. Thus, right
10px bottom 30px means an offset of 10 pixels to the left of the right edge, and an offset of 30
pixels up from the bottom edge. Similarly, top 50% left 35pXx means a 50 percent offset from the
top and a 35-pixels-to-the-right offset from the left.

You can only declare three position values with the background-position property. If you declare
three values, the rules are the same as for four, except the fourth offset is set to be zero (no offset). Thus
right 20px topisthesameas right 20px top O.

Custom Properties

If youve used a preprocessor like Less or Sass, you’ve probably created variables to hold values. CSS
itself has this capability as well. The technical term for this is custom properties, even though what these
really do is create sort of variables in your CSS.

Here’s a basic example, with the result shown in Figure 5-18:

html {
--base-color: #639;
--highlight-color: #AEA;

}

hi {color: var(--base-color);}
h2 {color: var(--highlight-color);?}

Heading 1

Main text.

More text.

Figure 5-18. Using custom values to color headings

There are two things to absorb here. The first is the definition of the custom values - -base-color and
--highlight-color. These are not some sort of special color types. They’re just names that were
picked to describe what the values contain. We could just as easily have said:

html {
--alison: #639;
--david: #AEA;

}

hi {color: var(--alison);}
h2 {color: var(--david);}

You probably shouldn’t do that sort of thing, unless you’re literally defining colors that specifically
correspond to people named Alison and David. (Perhaps on an “About Our Team” page.) It’s always
better to define custom identifiers that are self-documenting—things like main-color or accent-

color orbrand-font-face.

The important thing is that any custom identifier of this type begins with two hyphens (- -). It can then be
invoked later on using a var () value type. Note that these names are case-sensitive, so - -main -
color and - -Main-color are completely separate identifiers.

These custom identifiers are often referred to as “CSS variables,” which explains the var () pattern. An
interesting feature of custom properties is their ability to scope themselves to a given portion of the DOM.
If that sentence made any sense to you, it probably gave a little thrill. If not, here’s an example to illustrate
scoping, with the result shown in Figure 5-19:

html {
--base-color: #666;

}
aside {
--base-color: #CCC;

}

hi {color: var(--base-color);}

<body>
<hi>Heading 1</hi><p>Main text.</p>
<aside>

<hi>Heading 1</h1><p>An aside.</p>
</aside>

<hi>Heading 1</hi><p>Main text.</p>

</body>

Heading 1

Main text.

An aside.

Heading 1

Main text.

Figure 5-19. Scoping custom values to certain contexts

Notice how the headings are a dark gray outside the aside element and a light gray inside. That’s
because the variable - -base-color was updated for aside elements. The new custom value applies
to any h1 inside an aside element.

There are a great many patterns possible with CSS variables, even if they are confined to value
replacement. Here’s an example suggested by Chriztian Steinmeier combining variables with the calc ()
function to create a regular set of indents for unordered lists:

html {
--gutter: 3ch;
--offset: 1;

}
ul 1i {margin-left: calc(var(--gutter) * var(--offset));}

ul ul 1i {--offset: 2;}
ul ul ul 1i {--offset: 3;}

This particular example is basically the same as writing;

ul 1i {margin-left: 3ch;}
ul ul 1i {margin-left: 6ch;}
ul ul ul 1i {margin-left: 9ch;}

The difference is that with variables, it’s simple to update the - -gutter multiplier in one place and
have everything adjust automatically, rather than having to retype three values and make sure all the math
is correct.

Custom property fallbacks

When you’re setting a value using var (), you can specify a fallback value. For example, you could say
that if a custom property isn’t defined, you want a regular value used instead like so:

ol 1i {margin-left: var(--list-indent, 2em);}

Given that, if - -1ist-indent isn’t defined, was determined to be invalid, or is explicitly set to
initial, 2em will be used instead. You just get the one fallback, and it can’t be another custom
property name.

That said, it can be another var () expression, and that nested var () can contain another var () as its
fallback, and so on to infinity. So let’s say you’re using a pattern library that defines colors for various
interface elements. If those aren’t available for some reason, then you could fall back to a custom-
property value defined by your basic site stylesheet. Then, if that’s also not available, you could fall back
to a plain color value. It would look something like this:

.popup {color: var(--pattern-modal-color, var(--highlight-color, maroon));}

The thing to watch out for here is that if you manage to create an invalid value, the whole things gets

blown up and the value is either inherited or set to its initial value, depending on whether the property in
question is usually inherited or not, as if it were set to unset (see “unset”).

Suppose we wrote the following invalid var () values.

{

--list-color: hsl(23, 25%, 50%),;

--list-indent: 5vw;
}
1i {

color: var(--list-color, --base-color, gray);

margin-left: var(--list-indent, --left-indent, 2em);
}

In the first case, the fallback is - -base-color, gray as a single string, not something that’s parsed,
so it’s invalid. Similarly, in the second case, the fallback is the invalid - -1left-indent, 2em.In
either case, if the first custom property is valid, then the invalid fallback doesn’t matter, because the
browser never gets to it. But if, say, - -1ist-indent doesn’t have a value, then the browser will go to
the fallback, and here that’s invalid. So what happens next?

For the color, since the property color is inherited, the list items will inherit their color from their
parent, almost certainly an 01 or ul element. If the parent’s color value is fuchsia, then the list
items will be fuchsia. For the left margin, the property margin-left is not inherited, so the left
margins of the list items will be set to the initial value of margin-left, whichis 0. So the list items
will have no left margin.

This also happens if you try to apply a value to a property that can’t accept those kinds of values.
Consider:

--list-color: hsl(23, 25%, 50%),;
--list-indent: 5vw;

}
1i {
color: var(--list-indent, gray);
margin-left: var(--list-color, 2em);
}

Here, everything looks fine at first glance, except the color property is being given a length value, and
the margin-left property is being given a color value. As a result, the fallbacks of gray and 2em
are not used. This is because the var () syntax is valid, so the result is the same as if we declared
color: 5vwandmargin-left: hsl(23, 25%, 50%), both of which are tossed out as
invalid.

This means the outcome will be the same as we saw before: the list items will inherit the color value
from their parents, and their left margins will be set to the initial value of zero, just as if the given values
were unset.

Summary

As we’ve seen, CSS provides a wide range of value and unit types. These units can all have their
advantages and drawbacks, depending on the circumstances in which they’re used. We’ve already seen
some of those circumstances, and their nuances, will be discussed throughout the rest of the book, as
appropriate.

Chapter 6. Basic Visual Formatting

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official release
of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub repo will be made active
later on.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at rfernando@oreilly.com.

You’ve likely experienced the frustration of having your intended layout not rendered as expected. You
then added 27 style rules to get it perfect, but maybe you didn’t really know which rule solved your
problem. With a model as open and powerful as that contained within CSS, no book could hope to cover
every possible way of combining properties and effects. You will undoubtedly go on to discover new
ways of using CSS. With a thorough grasp of how the visual rendering model works, however, you’ll be
better able to determine whether a behavior is a correct (if unexpected) consequence of the rendering
engine CSS defines.

Basic Boxes

At its core, CSS assumes that every element generates one or more rectangular boxes, called element
boxes. (Future versions of the specification may allow for nonrectangular boxes, and indeed there have
been proposals to change this, but for now everything is still rectangular.)

Each element box has a content area at its center. This content area is surrounded by optional amounts of
padding, borders, outlines, and margins. These areas are considered optional because they could all be
set to a size of zero, effectively removing them from the element box. An example content area is shown in
Figure 6-1, along with the surrounding regions of padding, borders, and margins.

mailto:rfernando@oreilly.com

margin area
m 0rcler area

padaing area

l content area

Figure 6-1. The content area and its surroundings

Before looking at the properties that can alter the space taken up by elements, let’s cover the vocabulary
needed to fully understand how elements are laid out and take up space.

A Quick Primer

First, we’ll quickly review the kinds of boxes we’ll be discussing, as well as some important terms that
are needed to follow the explanations to come:

Block flow direction

Also known as the block axis. This is the direction along which block-level element boxes are
stacked. In many languages, including all European and European-derived languages, this direction is
from top to bottom. In CJK (Chinese/Japanese/Korean) languages, this can be either right-to-left or
top-to-bottom. The actual block flow direction is set by the writing mode, which is discussed in

Chapter 11.

Inline base direction

Also known as the inline axis. This is the direction along which lines of text are written. In Romanic
languages, among others, this is left-to-right. In languages such as Arabic or Hebrew, the inline base
direction is right-to-left. In CJK (Chinese/Japanese/Korean) languages, this can be either top-to-
bottom or left-to-right. As with block flow, the inline base direction is set by the writing mode.

Normal flow

The default system by which elements are placed inside the browser’s viewport, based on the parent’s
writing mode. Most elements are in the normal flow, and the only way for an element to leave the
normal flow is to be floated, positioned, or made into a flexible box, grid layout, or table element.

The discussions in this chapter will cover elements in the normal flow, unless otherwise stated.

Block box

This is a box generated by an element such as a paragraph, heading, or div. These boxes generate
“blank spaces” both before and after their boxes when in the normal flow so that block boxes in the
normal flow stack along the block flow axis, one after another. Pretty much any element can be made
to generate a block box by declaring display: block, though there are other ways to make
elements generate block boxes (e.g, float them or make them flex items).

Inline box

This is a box generated by an element such as strong or span. These boxes are laid out along the
inline base direction, and do not generate “line breaks” before or after themselves. An inline box
longer than the inline size of its element will (by default, if it’s non-replaced) wrap to multiple lines.
Any element can be made to generate an inline box by declaring display: inline.

Nonreplaced element

This is an element whose content is contained within the document. For example, a paragraph (p) is a
nonreplaced element because its textual content is found within the element itself.

Replaced element

This is an element that serves as a placeholder for something else. The classic example of a replaced
element is the 1img element, which simply points to an image file that is inserted into the document’s
flow at the point where the 1img element itself is found. Most form elements are also replaced (e.g.,
<input type='"radio">).

Root element

This is the element at the top of the document tree. In HTML documents, this is the element <html1>.
In XML documents, it can be whatever the language permits: for example, the root element of RSS
files is <rss>, whereas in an SVG document, the root element is <svg>.

The Containing Block

There is one more kind of box that we need to examine in detail, and in this case enough detail that it
merits its own section: the containing block.

Every element’s box is laid out with respect to its containing block. In a very real way, the containing
block is the “layout context” for a box. CSS defines a series of rules for determining a box’s containing
block.

For a given element, the containing block forms from the content edge of the nearest ancestor element that
generates a list-item or block box, which includes all table-related boxes (e.g., those generated by table
cells). Consider the following markup:

<body>
<div>
<p>This is a paragraph.</p>
</div>
</body>

In this very simple markup, the containing block for the p element’s block box is the div element’s block
box, as that is the closest ancestor element box that has a block or a list item box (in this case, it’s a block
box). Similarly, the div’s containing block is the body’s box. Thus, the layout of the p is dependent on
the layout of the div, which is in turn dependent on the layout of the body element.

And above that in the document tree, the layout of the body element is dependent on the layout of the
html element, whose box creates what is called the initial containing block. It’s unique in that the
viewport—the browser window in screen media, or the printable area of the page in print media—
determines the dimensions of the initial containing block, not the size of the content of the root element.
This matters because the content can be shorter, and usually longer, than the size of the viewport. Most of
the time it doesn’t make a difference, but when it comes to things such as fixed positioning or viewport
units, the difference is real.

Now that we understand some of the terminology, we can address the properties that make up Figure 6-1.
The various margin, border, and padding features, such as border -style, can be set using various
side-specific long-hand properties, such as margin-inline-start or border-bottom-width.
(The outline properties do not have side-specific properties; a change to an outline property effects all
four sides.)

The content’s background—a color or tiled image, for example—is applied within the padding and
border areas by default, but this can be changed. The margins are always transparent, allowing the
background(s) of any parent element(s) to be visible. Padding and borders cannot be of a negative length,
but margins can. We’ll explore the effects of negative margins later on.

Borders are most often generated using defined styles, witha border-style suchas solid,
dotted, or inset, and their colors are set using the border -color property. If no color is set, the
value defaults to currentColor. Borders can also be generated from images. If a border style has
gaps of some type, as with border-style: dashed or with a border generated from a partially
transparent image, then the element’s background is visible through those gaps by default, though it is
possible to clip the background to stay inside the border (or the padding).

Altering Element Display

You can affect the way a user agent displays by setting a value for the property display

DISPLAY

Values [<display-outside> | <display-inside>]| <display-listitem> | <display-internal> | <display-box> |
<display-legacy>

Definitions See below
Initial value inline
Applies to All elements

Computed value As specified
Inherited No

Animatable No

<display-outside>

block |inline|run-in

<display-inside>

flow|flow-root |table|flex|grid|ruby

<display-listitem>

list-item && <display-outside>? && [flow|flow-root]?

<display-internal >

table-row-group|table-header-group|table-footer-group|table-row|
table-cell |table-column-group|table-column|table-caption|ruby-
base |ruby-text |ruby-base-container |ruby-text-container

<display-box>

contents|none

<display-legacy>

inline-block|inline-list-item|inline-table|inline-flex|inline-
grid

We’re going to ignore the ruby- and table-related values, since they’re far too complex for this chapter.
We’ll also temporarily ignore the value 11st-item, since it’s very similar to block boxes and will be
explored in detail in XREF HERE. For now, we’ll spend a moment talking about how altering an
element’s display role can alter layout.

Changing Roles

When it comes to styling a document, it’s sometimes handy to be able to change the type of box an element
generates. For example, suppose we have a series of links in a nav that we’d like to lay out as a vertical
sidebar:

<nav>
WidgetCo Home
Products
Services
Widgety Fun!
Support
About Us
Contact
</nav>

By default, the links will generate inline boxes, and thus get sort of mushed together into what looks like a
short paragraph of nothing but links. We could put all the links into their own paragraphs or list items, or
we could just make them all block-level elements, like this:

nav a {display: block;}

This will make every a element within the navigation element hav generate a block box, instead of their
usual inline box. If we add on a few more styles, we could have a result like that shown in Figure 6-2.

WidegetCo Home
Products
Services
Widgety Fun!
Support

About Us
Contact

Figure 6-2. Changing the display role from inline to block

Changing display roles can be useful in cases where you want the navigation links to be inline elements if
the CSS isn’t available (perhaps by failing to load), but to lay out the same links as block-level elements
in CSS-aware contexts. You could also present the links as inline on desktop and block on mobile, or vice
versa. With the links laid out as blocks, you can style them as you would div or p elements, with the
advantage that the entire element box becomes part of the link.

You may also want to take elements and make them inline. Suppose we have an unordered list of names:

<ul id="rollcall'">
Bob C.</1li>
Marcio G.</1li>
Eric M.</1li>
Kat M.</1li>
Tristan N.</1li>
Arun R.</1li>
Doron R.</1i>
Susie W.</1li>

Given this markup, say we want to make the names into a series of inline names with vertical bars
between them (and on each end of the list). The only way to do so is to change their display role. The
following rules will have the effect shown in Figure 6-3:

#rollcall 1i {display: inline; border-right: 1px solid; padding: 0 0.33em;}
#rollcall 1i {border-left: 1px solid;}

| Bob C.

Marcio G. | Eric M.| Kat M. | Tristan N. | Arun R.| Doron R.| Susie W. |
Figure 6-3. Changing the display role from list-item to inline

Be careful to note that you are, for the most part, changing the display role of elements—not changing their
inherent nature. In other words, causing a paragraph to generate an inline box does not turn that paragraph
into an inline element. In HTML, for example, some elements are block while others are inline. While a
span can easily be placed inside a paragraph, a span should not be wrapped around a paragraph.

We said “for the most part” because while CSS mostly impacts presentation and not content, CSS
properties can impact accessibility in more ways than just color contrast. For example, changing the
display value can impact how an element is perceived by assistive technologies. Setting an element’s
display property to none removes the element from the accessibility tree. Setting the display
property on a <table> to grid may cause the table to be interpreted as something other than a data
table, removing normal table keyboard navigation, and making the table inaccessible as a data table to
screen reader users. (This shouldn’t happen, but it does in some browsers.)

This can be mitigated by setting the role ARIA (Accessible Rich Internet Applications) attribute for the
table and all its descendants, but in general, any time a change you make in CSS forces you to make
changes in ARIA roles, you should take a moment to consider what you’re doing to see if there isn’t a
better way.

Block Boxes

Block boxes behave in predictable, yet sometimes surprising, ways. The handling of box placement along
the block and inline axes can differ, for example. In order to fully understand how block boxes are
handled, you must clearly understand a number of aspects of these boxes. They are shown in detail in
Figure 6-4, which illustrates placement in two different writing modes.

left-to-right, top-o-bottom writing

block-tart outer edge

iNmnline-start outer edge

inline-start rmoargin

inline-stort border

block-start margin

kst oder —

block-start padding

\ block-start inner edee

inlinesize _
Width

inline-start inner edge
inline-end inner edse

inline-start padding
inline-end paodding
inline-end border

block size
——f———————— . —
height

block-end inner edge \

block-end padding

!]
3

¢
+

e 521 e mmm—

block-end margin

infline-end margirn

inline-end outer edgse

block-end outer edge

aHp® a231No pusa-3Do|q

top-to-hottom, right-to-{eft writing

Inling-start outer edge

inling-stort margin
e jnig-stort borger ey

'

\ iniestortpodding

Inline-start inner edge
N
03 >
U'] c
EEEU QY Uag'a
e 8ag O ERQ
R T
I TR
Jyae S
Qn.n'i' 58 Y 2
[\ cny M
SU‘QE : mbu-i
1 0 Qg blocksize 50 2 ¢ 3
¢ 434 widh TRSd
334 a3

- inline-end inner edge
¢ ilineend podding .
N 1ne-en oy

4

inline-gnd margin

SHpo Jolno jJdegs Soolg

inline-end outer edge

Figure 6-4. The complete box model in two different writing modes

As shown in Figure 6-4, there are block directions and inline directions, and we also have block sizes
and inline sizes. Block and inline sizes are descriptions of the size of the content area (by default) along
the block and inline axes.

By contrast, the width (sometimes referred to as the “physical width”) of a block box is defined to be the
distance between the inner edges of the content area (again, by default) along the horizontal axis (left to
right), regardless of the writing direction, and the height (“physical height”) is the distance along the
vertical axis (top to bottom). There are properties available to set all these sizes, which we’ll talk about
shortly.

Something important to note in Figure 6-4 is the use of “start” and “end” to describe various parts of the
element box. For example, there’s a “block-start margin” and a “block-end margin.” The start edge is the
edge that you come to first as you move along an axis.

This may be more clear if you look at Figure 6-5 and trace your finger along each axis from arrow tail to
tip. As you move along a block axis, the first edge you come to for each element is that element’s block-
start edge. As you pass out of the element, you move through the block-end edges. Similarly, as you move
along an inline axis, you go through the inline-start edges, across the inline dimension of the content, and
then out the inline-end edges. Try it for each of the three examples.

F—Fire 285 T ST

Mok

Y P o VP al—— > i —

—

== |

F—Dc = rrrporfee= - = FLlis

Teop > o> £ ¥FTacdr77r Fea>F

>l i

e 4

B> laac <

ine s

Jon Eeloain

Figure 6-5. The block and inline axis directions for three common writing modes

Logical element sizing

Because CSS recognizes block and inline axes for elements, it provides properties that let you set an
explicit element size along each axis.

Values
Initial value
Applies to

Percentages

Computed value

Inherited

Animatable

BLOCK-SIZE, INLINE-SIZE

<length> | <percentage> | min-content | max-content | fit-content |auto
auto
All elements except nonreplaced inline elements, table rows, and row groups

Calculated with respect to the length of the element’s containing block along the block-flow axis (for block-si
ze) or inline-flow axis (for inline-size)

For auto and percentage values, as specified; otherwise, an absolute length, unless the property does not apply
to the element (then auto)

No

Yes

These properties allow you to set the size of an element along its block axis, or to constrain the lengths of
lines of text along the inline axis, regardless of the direction of text flow. If you say block-size:
500pX, then the element’s block size will be five hundred pixels wide, even if that leads to content
spilling out of the element box. (We’ll discuss that in more detail later in the chapter.)

Consider the following, which has the results shown in Figure 6-6 when applied in various writing

modes.

p {inline-size: 25ch;}

been set to 25 ach.
text. Its iNnlimne—-—axis size has
T his is a paragraph with some

T his is a paragraph withh some
text. Its inline—-axis size has
been set to 25 ch.

=
o o
o> L =
e —
iy, oo <D
—— o=
e
— -= -
— e ——
. S FE
o0 ad L)
g = [|
5 . —
Fe =] e (-
<> — me—
S — B
oS > <))
> 4> <«
— ><
—_— ra D) <D
— i — <

As seen in Figure 6-6, the elements are sized consistently along their inline axis, regardless of the writing
direction. If you tilt your head to the side, you can see that the lines wrap in exactly the same places. This
yields a consistent line length across all writing modes.

Similarly, you can set a block size for elements. This is used a bit more often for replaced elements like
images, but it can be used in any circumstance that makes sense. Take this as an example:

p img {block-size: 1.5em;}

Having done that, any img element found inside a p element will have its block size set to one and a half
times the size of the surrounding text. (This works on images because they’re inline replaced elements; it
wouldn’t work on inline non-replaced elements.) You could also use block-size to constrain the
block length of grid layout items to be a minimum or maximum size, such as this:

#maingrid > nav {block-size: clamp(2rem, 4em, 25vh);}

It should be said that usually, block size is determined automatically, because it’s not often that elements
in the normal flow have an explicitly-set block size. For example, if an element’s block flow is top-to-
bottom and it’s eight lines long, and each line is an eighth of an inch tall, then its block size will be one
inch. If it’s 10 lines tall, then the block size is instead 1.25 inches. In either case, as long as the block -
size is auto, the block size is determined by the content of the element, not by the author. This is
usually what you want, particularly for elements containing text. When the block-size is explicitly
set, if there isn’t enough content to fill the box, there will be empty space inside the box; if there is more
content than can fit, the content may overflow the box or scrollbars may appear.

Content-based sizing values

Beyond the lengths and percentages you saw in the last section for setting block and inline sizes, there are
a few keywords that provide content-based sizing:

max-content

Take up the most space possible to fit in the content, even suppressing line-wrapping in the case of
text content.

min-content

Take up the least space possible to fit in the content.

fit-content

Take up the amount of space determined by calculating the values of max-content, min-
content, and regular content sizing, taking the maximum of min-content and regular sizing, and
then taking the minimum of max-content and whichever value was the maximum of min -
content and regular sizing. Yes, that all sounds a bit confusing, but we’ll explain it in a moment.

If you’ve worked at all with CSS Grid (covered in XREF HERE), then you may recognize these

keywords, as they were originally defined as ways to size grid items. Now they’re making their way into
other areas of CSS. Let’s consider the first two keywords, which are demonstrated in Figure 6-7.

T g th some s it s e s oot

Figure 6-7. Content sizing

In the first case, the short wide one, that paragraph is set to max-content, and that’s what happened.
The paragraph was made as wide as needed to fit all of the content. It’s as narrow as it is only because
there isn’t much content. Had we added another three sentences, the single line of text would have just
kept going and going with no line-wrapping, even if it ran right off the page (or out of the browser
window).

For the second case, the content is as narrow as possible without forcing breaks or hyphens inside words.
In this particular case, that means the element is just wide enough to fit the word “paragraph,” which is
the longest word in the content. For every other line of text in the example, the browser places as many
words as will fit into the space needed for “paragraph,” and goes to the next line when it runs out of
room. If we added “antidisestablishmentarianism” to the text, then the element would become just wide
enough to fit that word, and every other line of text would very likely contain multiple words.

Notice that, at the end of the min-content example in Figure 6-7, the browser took advantage of the
presence of the hypheninmin-content to trigger a line-wrap there. Had it not made that choice, then
min-content would almost certainly have been the longest piece of content in the paragraph, and the
element’s width would have been set to that length. This means that if your content contains symbols that
browsers understand to be natural line-wrapping points (e.g., spaces and hyphens), they’ll likely be
considered in the min-content calculations. If you want to squeeze the element width down even
further, you can enable auto-hyphenating of words with the hyphens property (see Chapter 11).

For some more examples of min-content sizing, see Figure 6-8.

ollwing
sife
et
()
nlne

ollwing &

e nges

Dece of e

ollowing s e ongst pece

ofnine content

atidisesan] hme naranism, nine content

ollwing sthe
st pce

Figure 6-8. Minimum content sizing

The third keyword, fit-content, is interesting in that it does its best to fit the element to the content.
What that means in practice is that if there is only a little content, the element’s inline size (usually its
width) will be just big enough to enclose it, as if max-content were used. If there’s enough content to
wrap to multiple lines or otherwise threaten to overflow the element’s container, the inline size stops
there. This is illustrated in Figure 6-9.

ot Dot o b
DRI IR e

I S 1 T
skt

Figure 6-9. Fit-content sizing

In each case, the element is fit to the content without overspilling the element’s container. At least, that’s
what happen with elements in the normal flow. The behavior can be quite different in flexbox and grid
contexts, and will be further explored in later chapters.

Minimum and maximum logical sizing

If you’d like to set minimum and maximum bounds on block or inline sizes, there are some properties to
help you out.

MIN-BLOCK-SIZE, MAX-BLOCK-SIZE, MIN-INLINE-SIZE, MAX-INLINE-SIZE

Values Same as for block-size and inline-size
Initial value 0

Applies to Same as for block-size and inline-size
Percentages Same as for block-size and inline-size

Computed value Same as for block-size and inline-size
Inherited No

Animatable Yes

These properties can be very useful when you know you want upper and lower bounds on the sizing of an
element’s box, and are willing to allow the browser to do whatever it wants as long as it obeys those
restrictions. As an example, you might set part of a layout like so:

main {min-inline-size: min-content; max-inline-size: 75ch;}

That keeps the <main> element from getting any narrower than the widest bit of inline content, whether
that’s a long word or an illustration or something else. It also keeps the <main> element from getting any
wider than around 75 characters, thus keeping line lengths to a readable amount.

It’s also possible to set bounds on block sizing. A good example is limiting any image embedded in the
normal flow to be its intrinsic size up to a certain point. The following CSS would have the effects shown

in Figure 6-10.

#cbl img {max-block-size: 2em;}
#cb2 img {max-block-size: lem;}

e woies

gEt

ames e st e

A sl

Height and Width

If you’ve used CSS for a while or are maintaining legacy code, you’re probably used to thinking of “top
margin” and “bottom margin.” That’s because, originally, all box model aspects were described in terms
of their physical directions: top, right, bottom, and left. You can still work with the physical directions!
CSS has simply added new, more text-aware directions to the mix.

If you were to change inline-size to width in the previous code example, then you’d get a result
more like that shown in Figure 6-11 (in which the vertical writing modes are clipped off well short of
their full height).

Figure 6-11. Sizing elements’ width

In Figure 6-11, the elements are made 40ch wide horizontally, regardless of their writing mode. Each
element’s height has been automatically determined by the content, the specifics of the writing mode, and
SO on.

TIP

When you use block and inline properties like block - size instead of physical directions like height, should your design be applied to
content translated to other languages, the layout will automatically adjust to your intentions.

HEIGHT, WIDTH

Values <length> | <percentage> | min-content | max-content | fit-content |auto

Initial value auto

Applies to All elements except nonreplaced inline elements, table rows, and row groups

Percentages Calculated with respect to the vertical height (for height) or horizontal width (for width) of the containing

block; for height, set to auto if the height of its containing block is auto

Computed value For auto and percentage values, as specified; otherwise, an absolute length, unless the property does not apply
to the element (then auto)

Inherited No

Animatable Yes

height and width are what’s known as physical properties. This means they refer to physical
directions, as opposed to the writing-dependent directions of block size and inline size. Thus, height
really does refer to the distance from the top to the bottom of the element’s inner edge, regardless of the
direction of the block axis.

In writing with a horizontal inline axis, such as English or Arabic, if bothinline-size and width
are set on the same element, the one declared later will take precedence over the first one declared. The
same is true if block-size and height are both declared; if origin, layer, and specifity are the same,
the one declared last takes precedence. In vertical writing modes, inline-size corresponds to
height, and block-size towidth.

Setting a block box’s height or width as a <length> means it will be that length tall or wide, regardless
of the content within it. If you set an element that generates a block box to width: 200px, then it will
be 200 pixels wide, even if it has a 500-pixel-wide image inside it.

Setting the value of width to a <percentage> means the width of the element will be that percentage of
its containing block’s width. If you set a paragraph to width: 50% and its containing block is 1,024
pixels wide, then the paragraph’s width will be computed to 512 pixels.

Things are similar for height, except this only works if the containing block has an explicitly set height.
If the containing block’s height is automatically set, then a percentage value is treated as auto instead, as
seen in the #cb4 example in Figure 6-12.

NOTE

The handling of auto top and bottom margins is different for positioned elements, as well as flexible-box and grid elements. The
differences will be covered in the chapters on those topics.

Here are some examples of these values and combinations, with the result shown in Figure 6-12.

[idA="cb"] {border: 1px solid;} /* "cb" for "containing block" */

#cbl {width: auto;}
#cb2 {width: 400px;}
#cb3 {width: 400px;}

#cb4 {height: auto;}
#chb5 {height: 300px;}
#ch6 {height: 300px;}

#cbl p {width: auto;}
#cb2 p {width: 300px;}
#cb3 p {width: 50%;}

#cb4 p {height: 50%;}
#cb5 p {height: 200px;}
#ch6 p {height: 50%;}

obl ch eb3

Figure 6-12. Heights and widths

You can also use max-content and min-content with the height property, but in top-to-bottom
block flows, both are same as height: auto. In writing modes where the block axis is horizontal,
then setting these values for height will have similar effects as setting them for width in vertical
block flows.

Another important note: these properties don’t apply to inline nonreplaced elements. For example, if you
try to declare a height and width for a hyperlink that’s in the normal flow and generates an inline box,
CSS-conformant browsers must ignore those declarations. Assume the following rules:

a {color: red; background: silver; height: 15px; width: 60px;}

You’ll end up with red unvisited links on silver backgrounds whose height and width are determined by
the content of the links. The links will not have content areas that are 15 pixels tall by 60 pixels wide, as
these must be ignored when applied to inline non-replaced element. If, on the other hand, you add a
display value, suchas inline-block or block, then height and width will set the height and
width of the links’ content areas.

Altering box sizing

If it seems little weird to use height and width (and block-size and inline-size) to describe
the sizing of the element’s content area instead of its visible area, you can make things more intuitive by
using the property box-sizing.

BOX-SIZING
Values content-box | border-box
Initial value content-box
Applies to All elements that accept width or height values

Computed value As specified
Inherited No

Animatable No

This property changes what the values of the height, width, block-size, and inline-size
properties actually do.

box-sizing changes what the values of the block-size and inline-size properties actually
do. If you declare inline-size: 400px and don’t declare a value for box-sizing, then the
element’s content area will be 400 pixels in the inline direction and any padding, borders, and so on will

be added to that. If, on the other hand, you declare box-sizing: border-box, then the element box
will be 400 pixels from the inline-start border edge to the inline-end border edge; any inline-start or -end
border or padding will be placed within that distance, thus shrinking the inline size of the content area.
This is illustrated in Figure 6-13.

Put another way, if you declare width: 400px and don’t declare a value for box-sizing, then the
element’s content area will be 400 pixels wide and any padding, borders, and so on will be added to that.
If, on the other hand, you declare box-sizing: border-box, then the element box will be 400
pixels from the left outer border edge to the right outer border edge; any left or right border or padding
will be placed within that distance, thus shrinking the width of the content area (again, as seen in

Figure 6-13).

We’re talking about the boX - s1zing property here because, as stated, it applies to “all elements that
accept width or height values” (because it was defined before logical properties were
commonplace). That’s most often elements generating block boxes, though it also applies to replaced
inline elements like images, as well as inline-block boxes.

Having established how to size elements in both logical and physical ways, let’s widen our scope and
look at all the properties that affect block sizing.

Block-Axis Properties

In total, block-axis formatting is affected by seven related properties: margin-block-start,
border-block-start, padding-block-start, height, padding-block-end,
border-block-end, and margin-block-end. These properties are diagrammed in Figure 6-14.
These properties will all be covered in detail in Chapter 7; here, we will talk about the general principles
and behavior of these properties before looking at the details of their values.

The block-start and -end padding and borders must be set to specific values, or else they default to a
width of zero, assuming no border style is declared. If border -style has been set, then the thickness
of the borders is set to be medium, which is set to three pixels wide in all known browsers. Figure 6-14
provides an illustration in two different writing modes for remembering which parts of the box may have
a value of auto and which may not.

margin-—-block-start(auto)

border—-block—stcrt

praoaoddingg-block-start

4

block—-size(auto)

v

prodding-Bblock-emnd

border-block-eemnd

rmrargin-block-emnddauto)

\
\

morgin-block-tart{auto)

\

\

\
\
\
\

i

\
\
\
\

\

g = s
s = = S
[] = sm — - L]
— -—> Fa =] —>
= =1 — -
< — Qs —r—

- = —— ~Fa — 0
0] = 3 TSy
= = — =
= = o =
=1 = - =
= = =

\

\

\
\

W 0o 0 1] —

[
[

\
\
\
\

margin-block-end(auto)

!
/
/
!

\

!

Figure 6-14. The seven properties of block-axis formatting, and which of them can be set to auto

Interestingly, if either margin-block-start ormargin-block-end is set to auto for a block
box in the normal flow, but not both, they both evaluate to 0. A value of 0, unfortunately, prevents easy
block-direction centering of normal-flow boxes in their containing blocks (though such centering is fairly
straightforward in flex or grid layout).

block-size must be set to auto or to a nonnegative value of some type; it can never be less than zero.

Auto block sizing

In the simplest case, a normal-flow block box with block-size: auto is rendered just tall enough to
enclose the line boxes of its inline content (including text). If an auto-block-size, normal-flow block box
has only block-level children and has no block-edge padding or borders, the distance from its first child’s
border-start edge to its last child’s border-end edge will be the box’s block size. This is the case because
the margins of the child elements can “stick out” of the element that contains them thanks to what’s known
as margin collapsing, which we’ll talk about later.

However, if a block-level element has either block-start or -end padding, or block-start and -end borders,
then its block size will be the distance from the block-start margin edge of its first child to the block-end
margin edge of its last child:

<div style="block-size: auto;

background: silver;'">

<p style="margin-block-start: 2em; margin-block-end: 2em;">A paragraph!</p>
</div>
<div style="block-size: auto; border-block-start: 1px solid;

border-block-end: 1px solid; background: silver;">
<p style="margin-block-start: 2em; margin-block-end: 2em;">
Another paragraph!</p>

</div>

Both of these behaviors are demonstrated in Figure 6-15.
If we changed the borders in the previous example to padding, the effect on the block size of the div
would be the same: it would still enclose the paragraph’s margins within it.

A paragraph!

Another paragraph!

Figure 6-15. Auto block sizes with block-level children

Percentage Heights

We saw earlier how length-value block sizes are handled, so let’s spend a moment on percentages. If the
block size of a normal-flow block box is set to a percentage value, then that value is taken as a percentage
of the block size of the box’s containing block, assuming the container has an explicit, non-auto block
size of its own. Given the following markup, the paragraph will be 3 em long along the block axis:

<div style="block-size: 6em;">
<p style="block-size: 50%;'">Half as tall</p>
</div>

In cases where the block size of the containing block is not explicitly declared, percentage block sizes are
reset to auto. If we changed the previous example so that the block-size of the div is auto, the
paragraph will now have its block size determined automatically

<div style="block-size: auto;">
<p style="block-size: 50%;'">NOT half as tall; block size reset to auto</p>
</div>

These two possibilities are illustrated in Figure 6-16. (The spaces between the paragraph borders and the
div borders are the block-start and -end margins on the paragraphs.)

Paragraph half as tall Paragraph NOT half as tall; height reset to auto

Figure 6-16. Percentage block sizes in different circumstances

Before we move on, take a closer look at the first example in Figure 6-16, the half-as-tall paragraph. It
may be half as tall, but it isn’t centered along the block axis. That’s because the containing div is 6 em
tall, which means the half-as-tall paragraph is 3 em tall. It has block-start and -end margins of 1 em thanks
to the browser’s default styles, so its overall block size is 5 em. That means there is actually 2 em of
space between the block end of the paragraph’s visible box and the div’s block-end border, not 1 em.
This is illustrated in detail in Figure 6-17.

- osane

Figure 6-17. Block-axis sizing and placement in detail

Handling Content Overflow

Given that it’s possible to set elements to be specific sizes, it becomes possible to make an element too
small for its content to fit inside. This is more likely to arise if block sizes are explicitly defined, but it
can also happen with inline sizes, as we’ll see in later sections. If this sort of thing does happen, you can
exert some control over the situation with the over flow shorthand property.

OVERFLOW

Values [visible|hidden|clip|scroll|auto]{1,2}
Initial value visible
Applies to Block-level and replaced elements

Computed value As specified
Inherited No

Animatable No

The default value of visible means that the element’s content may be visible outside the element’s box.
Typically, this leads to the content running outside its own element box, but not altering the shape of that
box. The following markup would result in Figure 6-18:

div#sidebar {block-size: 7em; background: #BBB; overflow: visible;}

If overflow is setto hidden, the element’s content is clipped at the edges of the element box. With the
hidden value, there is no way to get at the parts of the content that are clipped off.

If overflow is setto clip, the element’s content is also clipped—that is, hidden—at the edges of the
element box, with no way to get at the parts that are clipped off, except via programmatic means such as
JavaScript’s HTMLElement .offsetLeft property. This forces the designer to build their own
mechanisms for scrolling or panning content to make the clipped-off content available.

If overflowis setto scroll, the overflowing content is clipped, but the content can be made
available to the user via scrolling methods, including a scroll bar (or set of them). One possibility is
depicted in Figure 6-18.

If scroll is used, the panning mechanisms (e.g., scroll bars) should always be rendered. To quote the
specification, “this avoids any problem with scrollbars appearing or disappearing in a dynamic
environment.” Thus, even if the element has sufficient space to display all its content, the scroll bars may
still appear and take up space (though they may not).

In addition, when printing a page or otherwise displaying the document in a print medium, the content may
be displayed as though the value of overflow were declared to be visible.

Figure 6-18 illustrates these over flow values, with two of them combined in a single example.

0l

ifn | Ly

sl

> ——
m — ——= <i>
S e = = = s
—— —— —— _<A> i

<A> —S,——™

o = & e ——— S ——
sy = = = <>

E e E =

— <A >]

— = e — —_ == <>

= o - <> = — _—
= — = = = =
m..nuu.. ..n-m.u.. — = = ——— ===
<l >» o e L= & T < o —_—
— — S _— = === = — <=>
—us — <u> — m —— — - ~—
<o L — i == _— —— e,
> — —— <> —1 — ———
s o - — — — <> — —

Figure 6-18. Methods for handling overflowing content

Finally, there is overflow: auto. This allows UAs (user agents)_ to determine which of the
previously-described behaviors to use, although UAs are encouraged to provide a scrolling mechanism
whenever necessary. This is a potentially useful way to use overflow, since user agents could interpret it
to mean “provide scroll bars only when needed.” (They may not, but generally do.)

Single-Axis Overflow

Two properties make up the over f1ow shorthand. You can define the overflow behavior along the X
(horizontal) and Y (vertical) directions separately, either by setting them both in overflow, or by using
the overflow-x and overflow-y properties.

OVERFLOW-X, OVERFLOW-Y

Values visible|hidden|clip|scroll|auto
Initial value visible
Applies to Block-level and replaced elements

Computed value As specified
Inherited No

Animatable No

By setting the overflow behavior separately along each axis, you’re essentially deciding where scrollbars
will appear, and where they won’t. Consider the following, which is rendered in Figure 6-19.

div.one {overflow-x: scroll; overflow-y: hidden;}
div. two {overflow-x: hidden; overflow-y: scroll;}
div.three {overflow-x: scroll; overflow-y: scroll;}

=

]

B

r—l 3]
— — <> - Z
P :
et m — < s i L
—l —— ;
<l > -E W —— . < n.nl.h

= —_ee——e,e == =2 . 5
= R ~— ——— = - :
l|ll s ——— <l > S <> — g
e — <o > — e <<l > TR 1w
- - <> < < > _— e —— 2
—

=
- £
-3 o
N X
e ————
= = —_— —_—— > —=— - —_— <
.ﬂ-mu._ — _— e == <> — me
Tl > W -— i — ’
_ Y — ”nl..ll-n ——— —— .= = - — @M
ﬂ e —
-— — — — — e =— = L op
== e —_—— = — =9 o3
L= IHII“III: S _—— O <S5 S.°
—— — <> <> I|||||Ia_u S g
- — —_— - £3
—_— ——— —u <> _ = ...n.:._.W :
= >8
>
g3
n e R —
————s — o = =2 L - Y ; w mln.u. 2 =2 n
— — - S m
e s = T I> —_— = . @ =
— = . v o0 S5
CA> e @
ﬂ [«P]
<i> <i> — e —— = ;
Illn-n.ﬂ.l -— — —_— —_ —=a> .
Eu ____
= <> —
= <A> ——-— W
L —_— | — <TIA> "= 5
= = —_ T p —— . -
e —
- . — lus
— e — —— f— <> > L ——

In the third case, where scroll was set for both axes, there is access to the overflowing content via
scrolling, but also an unnecessary scrollbar (which is empty) for the X axis. This is equivalent to simply
declaring overflow: scroll.

Which brings us to the true nature of overf1low: it’s a shorthand property that brings overflow-Xx and
overflow-y together under one roof. The following is exactly equivalent to the previous example, and
will have the same result shown in Figure 6-19.

div.one {overflow: scroll hidden;}
div. two {overflow: hidden scroll;}
div.three {overflow: scroll;} /* 'scroll scroll' would also work */

As you see, you can give over flow two keywords, which are always in the order X, then Y. If only one
value is given, then it’s used for both the X and Y axes. This is why scroll and scroll scroll are
the same thing, as values of overflow. Similarly, hidden would be the same as saying hidden
hidden.

Negative Margins and Collapsing

Believe it or not, negative margins are possible. The base effect is to move the margin-edge inward
toward the center of the element’s box. Consider:

p.neg {margin-block-start: -50px; margin-block-end: 0;
border: 3px solid gray;}

<div style="width: 420px; background-color: silver; padding: 10px;
margin-block-start: 50px; border: 1px solid;">
<p class="neg">
A paragraph.
</p>

A div.
</div>
As we see in Figure 6-20, the paragraph has been pulled upward by its negative block-start margin. Note

that the content of the <div> that follows the paragraph in the markup has also been pulled up the block
axis by 50 pixels.

A paragraph.
r#k(ﬂv.

Figure 6-20. The effects of a negative top margin

Now compare the following markup to the situation shown in Figure 6-21:

p.neg {margin-block-end: -50px; margin-block-end: 0;
border: 3px solid gray;}

<div style="width: 420px; margin-block-start: 50px;">
<p class="neg">
A paragraph.
</p>
</div>
<p>
The next paragraph.
</p>

"[!;af: pmtgmpﬁgraph :

Figure 6-21. The effects of a negative block-end margin

What’s happening in Figure 6-21? The elements following the div are placed according to the location of
the block-end margin edge of the div, which is 50px higher than it would be without the negative margin.
As Figure 6-21 shows, the block-end of the diV is actually above the visual block-end of its child
paragraph. The next element after the div is the appropriate distance from the block-end of the div.

Collapsing Block Axis Margins

An important aspect of block-axis formatting is the collapsing of adjacent margins, which is a way of
comparing adjacent margins in the block direction, and then using only the largest of those margins to set
the distance between the adjacent block elements. Note that collapsing behavior applies only to margins.
Padding and borders never collapse.

An unordered list, where list items follow one another along the block axis, is a perfect environment for
studying margin collapsing. Assume that the following is declared for a list that contains five items:

1i {margin-block-start: 10px; margin-block-end: 15px;}

Each list item has a 10-pixel block-start margin and a 15-pixel block-end margin. When the list is
rendered, however, the visible distance between adjacent list items is 15 pixels, not 25. This happens
because, along the block axis, adjacent margins are collapsed. In other words, the smaller of the two
margins is eliminated in favor of the larger. Figure 6-22 shows the difference between collapsed and
uncollapsed margins.

List item #1

F15px
F15px

e The second list item

Item the third

List item #1

.
_—25px
e The second list item |
_—25px
e Item the third [

Figure 6-22. Collapsed versus uncollapsed margins

User agents will collapse block-adjacent margins as shown in the first list in Figure 6-22, where there are
15-pixel spaces between each list item. The second list shows what would happen if browsers didn’t
collapse margins, resulting in 25-pixel spaces between list items.

Another word to use, if you don’t like “collapse,” is “overlap.” Although the margins are not really
overlapping, you can visualize what’s happening using the following analogy.

If you prefer visual analogies, imagine that each element, such as a paragraph, is a small piece of paper
with the content of the element written on it. Around each piece of paper is some amount of clear plastic,
which represents the margins. The first piece of paper (say an h1 piece) is laid down on the canvas. The
second (a paragraph) is laid below it along the block axis and then slid upwards along that axis until the
edge of one piece’s plastic touches the edge of the other’s paper. If the first piece of paper has half an inch
of plastic along its block-end edge, and the second has a third of an inch along its block-start, then when
they slide together, the first piece’s block-end plastic will touch the block-start edge of the second piece
of paper. The two are now done being placed on the canvas, and the plastic attached to the pieces is
overlapping.

Collapsing also occurs where multiple margins meet, such as at the end of a list. Adding to the earlier
example, let’s assume the following rules apply:

ul {margin-block-end: 15px;}
1i {margin-block-start: 10px; margin-block-end: 20px;}
hi {margin-block-start: 28px;}

The last item in the list has a block-end margin of 20 pixels, the block-end margin of the ul is 15 pixels,
and the block-start margin of a succeeding h1 is 28 pixels. So once the margins have been collapsed, the
distance between the end of the last 11 in the list and the beginning of the h1 is 28 pixels, as shown in

Figure 6-23.

leading up to the end of the list item, as well as the end
of the list itself. .
} ii 5px

20px

26px

Figure 6-23. Collapsing in detail

If you add a border or padding to a containing block, this causes the margins of its child elements to be
entirely contained within it. We can see this behavior in operation by adding a border to the ul element in
the previous example:

ul {margin-block-end: 15px; border: 1px solid;}
1i {margin-block-start: 10px; margin-block-end: 20px;}
hi {margin-block-start: 28px;}

With this change, the block-end margin of the 11 element is now placed inside its parent element (the
ul). Therefore, the only margin collapsing that takes place is between the ul and the h1, as illustrated in

Figure 6-24.

o A list item.

o Another list item.

A Heading-1

Figure 6-24. Collapsing (or not) with borders added to the mix

Negative margin collapsing is slightly different. When a negative margin participates in margin
collapsing, the browser takes the absolute value of the negative margin and subtracts it from any adjacent
positive margins. In other words, the negative length is added to the positive length(s), and the resulting
value is the distance between the elements, even if that distance is a negative length. Figure 6-25 provides
some concrete examples.

This paragraph has a bottom margin of 0 (zero).

This paragraph has a top margin of 0 (zer0).

This]Jdl"dgl"dph has a bottom margin of 0. 75em (three-

Tﬁ‘.‘?-ﬂ‘_‘?ﬁgf_‘!!"_f_‘_h_‘?f‘_ a top margin of ~1em (negative one em). |

This pdmgrdph has a bottom margin of -0.75 {negdtwe three

EﬁI‘;IE paraﬂrdph %qu a tnp mdrgm nf ﬂ (zern}

Figure 6-25. Examples of negative block-axis margins

Now let’s consider an example where the margins of a list item, an unordered list, and a paragraph are all
collapsed. In this case, the unordered list and paragraph are assigned negative margins:

1i {margin-block-end: 20px;}
ul {margin-block-end: -15px;}

hi {margin-block-start:)

The negative margin of the greatest magnitude (- 18pX) is added to the largest positive margin (20pX),
yielding 20px - 18px = 2pX. Thus, there are only two pixels between the block-end of the list item’s
content and the block-start of the h1’s content, as we can see in Figure 6-26.

o A list item.

o Another list item.

A Heading-1

Figure 6-26. Collapsing margins and negative margins, in detail

When elements overlap each other due to negative margins, it’s hard to tell which elements are on top of
others. You may also have noticed that very few of the examples in this section use background colors. If
they did, the background color of a following element might overwrite the content of a preceding element.
This is expected behavior, since browsers usually render elements in order from beginning to end, so a
normal-flow element that comes later in the document can generally be expected to overwrite an earlier
element, assuming the two end up overlapping.

Inline-Axis Formatting

Laying out elements along the inline axis can be more complex than you’d think. Part of the complexity has
to do with the default behavior of box - sizing. With the default value of content -box, the value
given for inline-size affects the inline width of the content area, not the entire visible element box.
Consider the following example, where the inline axis runs left to right:

<p style="inline-size: 200px;">wideness?</p>

This makes the paragraph’s content area 200 pixels wide. If we give the element a background, this will
be quite obvious. However, any padding, borders, or margins you specify are added to the width value.
Suppose we do this:

<p style="inline-size: 200px; padding: 10px; margin: 20px;'">wideness?</p>

The visible element box is now 220 pixels in inline size, since we’ve added 10 pixels of padding to
every side of the content. The margins will now extend another 20 pixels to both inline sides for an
overall element inline size of 260 pixels. This is illustrated in Figure 6-27.

260px ——————

wideness?

Figure 6-27. Additive padding and margin

If we change the styles to use box-sizing: border -box, then the results will be different. In that
case, the visible box will be 200 pixels wide along the inline axis with a content inline size of 180 pixels,
and a total of 40 pixels of margin on the inline sides, giving an overall box inline size of 240 pixels, as
illustrated in Figure 6-28.

———— 240px

wideness?

Figure 6-28. Subtractive padding

In either case, there is a rule in the CSS specification that says the sum of the inline components of a block
box in the normal flow always equals the inline size of the containing block (which is why, as we’ll see in
just a bit, margin: auto centers content in the inline direction). Let’s consider two paragraphs within
a div whose margins have been set to be 1em, and whose box - sizing value is the default
content-box. The content size (the value of inline-size) of each paragraph in this example, plus
its inline-start and -end padding, borders, and margins, will always add up to the inline size of the div’s
content area.

Let’s say the inline size of the div is 3@em. That makes the sum total of the content size, padding,
borders, and margins of each paragraph 30 em. In Figure 6-29, the “blank” space around the paragraphs is
actually their margins. If the div had any padding, there would be even more blank space, but that isn’t
the case here.

(s 5 gt ih e et g e v, The
et oL 1 marms a e e

T 5 pagrgn w1 Jem e e e . The
e of i s e,

nline width of their containing block

Inline-axis Properties

The seven properties of inline formatting are margin-inline-start, border-inline-start,
padding-inline-start, inline-size, padding-inline-end, padding-inline-
end, and padding-inline-end, and are diagrammed in Figure 6-30.

The values of these seven properties must add up to the inline size of the element’s containing block,
which is usually the value of inline-size for a block element’s parent (since block-level elements

nearly always have block-level elements for parents).

Of these seven properties, only three may be set to auto: the inline size of the element’s content, and the
inline-start and -end margins. The remaining properties must be set either to specific values or default to a
width of zero. Figure 6-30 shows which parts of the box can take a value of auto and which cannot.
(That said, CSS is forgiving: If any part that can’t accept auto is erroneously set to auto, it will default
to 0.)

Mok

FTifi«gFf 22— —FTFT Faeopgo>r— T Lo T Tcor 77 >

L rrrpoyle==_- C 8 3ir e =, A e =

rrrrrrre c2ci= B

F<cor e—sr7. ﬂ\\ﬁm

]
S 1> [= LY =
e — —_— |n T
1> I'Jlnﬂ-w.llﬂl,.,v e —. -
= = = =
= = =
= s
=" s
Eplaclc e=aaa>ci ==
—
= —
—
—_—
=
==
=
=
o
P —
_ =
vllll
==
e ——
=

B> lacclac =ma>cil =

Elamnes Erg8h P

i s
e

Figure 6-30. The seven properties of inline-axis formatting, and which of them can be set to auto

inline-size must either be set to auto or a nonnegative value of some type. When you do use auto
in inline-axis formatting, different effects can occur.

Using auto

There can be situations where it makes a lot of sense to explicitly set one or more of the inline margins
and size to be auto. By default, the two inline margins are set to O and the inline size is set to auto.
Let’s explore how moving the auto around can have different effects, and why.

Only One auto

If you set one of inline-size,margin-inline-start,ormargin-inline-end to a value
of auto, and give the other two properties specific values, then the property that is set to auto is set to
the length required to make the element box’s overall inline size equal to the parent element’s content
inline size.

In other words, let’s say the sum of the seven inline-axis properties must equal 500 pixels, no padding or

borders are set, the inline-end margin and inline size are set to 100pX, and the inline-start margin is set
to auto. The inline-start margin will thus be 300 pixels wide:

div {inline-size: 500px;}
p {margin-inline-start: auto; margin-inline-end: 100px;
inline-size: 100px;} /* inline-start margin evaluates to 300px */

In a sense, aut o can be used to make up the difference between everything else and the required total.
However, what if all three of these properties (both inline margins and the inline size) are set to 100pX
and none of them are set to auto?

In the case where all three properties are set to something other than auto—or, in CSS parlance, when
these formatting properties have been overconstrained—then the margin at the inline-end is always
forced to be auto. This means that if both inline margins and the inline size are set to 100pX, then the
user agent will reset the inline-end margin to auto. The inline-end margin’s width will then be set
according to the rule that one auto value “fills in” the distance needed to make the element’s overall
inline size equal that of its containing block’s content inline size. Figure 6-31 shows the result of the
following markup in left-to-right languages like English:

div {inline-size: 500px;}
p {margin-inline-start: 100px; margin-inline-end: 100px;
inline-size: 100px;} /* inline-end margin forced to be 300px */

o —————

a paragraph
100px —— 100px —i 300px

Figure 6-31. Overriding the inline-end margin’s value

If both side margins are set explicitly, and inline-size is setto auto, then inline-size will be
whatever value is needed to reach the required total (which is the content inline size of the parent
element). The results of the following markup are shown in Figure 6-32:

p {margin-inline-start: 100px; margin-inline-end: 100px;
inline-size: auto;}

The case shown in Figure 6-32 is the most common case, since it is equivalent to setting the margins and
not declaring anything for the inline-size. The result of the following markup is exactly the same as
that shown in Figure 6-32:

p {margin-inline-start: 100px; margin-inline-end: 100px;} /* same as before */

500px

a paragraph
— 100px —| 300px I 100px —

Figure 6-32. Automatic inline sizing

You might be wondering what happens if box-sizing is set to padding-box. In that case, all the
same principles described here apply, which is why this section only discussed inline-size and the
inline-side margins without introducing any padding or borders.

In other words, the handling of inline-size: auto in this section and the following sections is the
same regardless of the value of box-sizing. The details of what gets placed where inside the box -
sizing-defined box may vary, but the treatment of aut o values does not, because box-sizing
determines what inline-size refers to, not how it behaves in relation to the margins.

More Than One auto

Now let’s see what happens when two of the three properties (1nline-size, margin-inline-
start,and margin-inline-end) are set to auto. If both margins are set to auto but the
inline-size is setto a specific length, as shown in the following code, then they are set to equal
lengths, thus centering the element within its parent along the inline axis. This is illustrated in Figure 6-33.

div {inline-size: 500px;}
p {inline-size: 300px; margin-inline-start: auto; margin-inline-end: auto;}
/* each margin is 100 pixels, because (500-300)/2 = 100 */

500px

a paragraph
— 100px —]| 300px I 100px —

Figure 6-33. Setting an explicit inline size

Another way of sizing elements along the inline axis is to set one of the inline margins and the inline-
size to auto. Inthis case, the margin set to be auto is reduced to zero:

div {inline-size: 500px;}
p {margin-inline-start: auto; margin-inline-end: 100px; inline-size: auto;}
/* 1nline-start margin evaluates to 0; inline-size becomes 400px */

The inline-size is then set to the value necessary to make the element fill its containing block; in the
preceding example, it would be 400 pixels, as shown in Figure 6-34.

500px

a paragraph
400px | 100px

Figure 6-34. What happens when both the inline-size and the inline-start margin are auto

Too Many autos

Finally, what happens when all three properties are set to auto? The answer: both margins are set to
zero, and the inline-size is made as wide as possible. This result is the same as the default situation,
when no values are explicitly declared for margins or the inline size. In such a case, the margins default to
zero and the inline-size defaults to auto.

Note that since inline margins do not collapse (unlike block margis, as discussed earlier), the padding,
borders, and margins of a parent element can affect the inline layout its children. The effect is indirect in
that the margins (and so on) of an element can induce an offset for child elements. The results of the
following markup are shown in Figure 6-35:

div {padding: 50px; background: silver;}
p {margin: 30px; padding: 0; background: white;}

80px — a paragraph — 80px

Figure 6-35. Offset is implicit in the parent’s margins and padding

Negative Margins

As seen in the section on block-axis margins, it’s possible to set negative values for inline-axis margins.
Setting negative inline margins can result in some interesting effects.

Remember that the total of the seven inline-axis properties always equals the inline size of the content
area of the parent element. As long as all inline properties are zero or greater, an element’s inline size can
never be greater than its parent’s content area inline size. However, consider the following markup,
depicted in Figure 6-36:

div {inline-size: 500px; border: 3px solid black;}
p.wide {margin-inline-start: 10px; margin-inline-end: -50px;
inline-size: auto;}

a paragraph

Figure 6-36. Wider children through negative margins

Yes indeed, the child element is wider than its parent along the inline axis! This is mathematically correct.
If we solve for inline size:

10pz + 04 0 + 540pz + 0 4+ 0 — 50px = 500pz

The 540pxX is the evaluationof inline-size: auto, whichis the number needed to balance out the
rest of the values in the equation. Even though it leads to a child element sticking out of its parent, it all
works because the values of the seven properties add up to the required total.

Now, let’s add some borders to the mix:

div {inline-size: 500px; border: 3px solid black;}
p.wide {margin-inline-start: 10px; margin-inline-end: -50px;
inline-size: auto; border: 3px solid gray;}

The resulting change will be a reduction in the evaluated width of inline-size:
10pz + 3pz + 0 4 534px + 0 + 3pz — 50pz = 500px

Or, if we rearrange the equation to solve for the content size instead of setting it up to solve for the width
of the parent:

500pz — 10px — 3px — 3px + 50px = 534px

If we were to introduce padding, then the value of inline-size would drop even more (assuming
box-sizing: content-box).

Conversely, it’s possible to have auto inline-end margins evaluate to negative amounts. If the values of
other properties force the inline-end margin to be negative in order to satisfy the requirement that

elements be no wider than their containing block, then that’s what will happen. Consider:

div {inline-size: 500px; border: 3px solid black;}
p.wide {margin-inline-start: 10px; margin-inline-end: auto;
inline-size: 600px; border: 3px solid gray;}

The equation works out like this:
500px — 10px — 600px — 3pz — 3pz = —116pzx

In this case, the inline-end margin evaluates to -116pX. No matter what explicit value it’s given in the
CSS, it will still be forced to - 116pX because of the rule stating that when an element’s dimensions are
overconstrained, the inline-end margin is reset to whatever is needed to make the numbers work out
correctly.

Let’s consider another example, illustrated in Figure 6-37, where the inline-start margin is set to be
negative:

div {inline-size: 500px; border: 3px solid black;}
p.wide {margin-inline-start: -50px; margin-inline-end: 10px;
inline-size: auto; border: 3px solid gray;}

a paragraph

Figure 6-37. Setting a negative inline-start margin

With a negative inline-start margin, not only does the paragraph spill beyond the borders of the <div>,
but it also spills beyond the edge of the browser window itself!

Remember: padding, borders, and content widths (and heights) can never be negative. Only margins can
be less than zero.

Percentages

When it comes to percentage values for the inline size, padding, and margins, the same basic rules we
discussed in previous sections apply. It doesn’t really matter whether the values are declared with lengths
or percentages.

Percentages can be very useful. Suppose we want an element’s content to be two-thirds the inline size of
its containing block, the padding sides to be 5% each, the inline-start margin to be 5%, and the inline-end
margin to take up the slack. That would be written something like:

<p style="inline-size: 67%;
padding-inline-end: 5%; padding-inline-start: 5%;
margin-inline-end: auto; margin-inline-start: 5%;'">
playing percentages</p>

The inline-end margin would evaluate to 18% (100% - 67% - 5% - 5% - 5%) of the width of the
containing block.

Mixing percentages and length units can be tricky, however. Consider the following example:

<p style="inline-size: 67%; padding-inline-end: 2em; padding-inline-start: 2em;
margin-inline-end: auto; margin-inline-start: 5em;">mixed lengths</p>

In this case, the element’s box can be defined like this:
S5em+ 0+ 2em+67% + 2 em+ 0 + auto = containing block width

In order for the inline-end margin’s inline size to evaluate to zero, the element’s containing block must be
27.272727 em wide (with the content area of the element being 18.272727 em wide) along the inline axis.
Any wider than that and the inline-end margin will evaluate to a positive value. Any narrower and the
inline-end margin will be a negative value.

The situation gets even more complicated if we start mixing length-value unity types, like this:

<p style="inline-size: 67%;
padding-inline-end: 15px; padding-inline-start: 10px;
margin-inline-end: auto; margin-inline-start: 5em;'">more mixed lengths</p>

And, just to make things more complex, borders cannot accept percentage values, only length values. The
bottom line is that it isn’t really possible to create a fully flexible element based solely on percentages
unless you’re willing to avoid using borders or use approaches such as flexible box layout. That said, if
you do need to mix percentages and length units, using the calc () and minmax () value functions can
be a life-changer, or at least a layout-changer.

Replaced Elements

So far, we’ve been dealing with the inline-axis formatting of nonreplaced block boxes in the normal flow
of text. Replaced elements are a bit simpler to manage. All of the rules given for nonreplaced blocks hold
true, with one exception: if inline-size is auto, thenthe inline-size of the element is the
content’s intrinsic width. (“Intrinsic” means the original size; the size the element is by default when no
external factors are applied to it.) The image in the following example will be 20 pixels wide because
that’s the width of the original image:

If the actual image were 100 pixels wide instead, then the element (and thus the image) would be laid out
as 100 pixels wide.

It’s possible to override this rule by assigning a specific value to inline-size. Suppose we modify

the previous example to show the same image three times, each with a different width value:

This is illustrated in Figure 6-38.

Figure 6-38. Changing replaced element inline sizes

Note that the block size of the elements also increases. When a replaced element’s inline-size is
changed from its intrinsic width, the value of block-size is scaled to match, maintaining the object’s
initial aspect ratio, unless block-size has been set to an explicit value of its own. The reverse is also
true: if block-sizeis set, but inline-size is left as auto, then the inline size is scaled
proportionately to the change in block size.

List items

List items have a few special rules of their own. They are typically preceded by a marker, such as a round
bullet mark or a number.

The marker attached to a list item element can be either outside the content of the list item or treated as an
inline marker at the beginning of the content, depending on the value of the property 1ist-style-
position, as illustrated in Figure 6-39.

Al vl i e e
e e e on e,

it

0\t e, Th i s s ot e i markers, hich means e ke
1 i ik ¢t e ekement o s et e e

0 Anoler it .
Al

Figure 6-39. Markers outside and inside the list

If the marker stays outside the content, then it is placed some distance from the inline-start content edge of
the content. No matter how the list’s styles are altered, the marker stays the same distance from the content
edge.

Remember that list-item boxes define containing blocks for their descendant boxes, just like regular block
boxes.

NOTE

List markers are discussed in more detail, including how to create and style them using the : :marker pseudo-element, in XREF HERE.

Box Sizing With Aspect Ratios

There may be times when you want to size an element by is aspect ratio, which means its block and inline
sizes exists in a specific ratio. Old TVs used to have a 4-to-3 width-to-height ratio, for example; HD
video resolutions have a 16:9 aspect ratio. You might want to force elements to be square while still
letting their sizes flex. In these cases, the aspect -ratio property can help.

ASPECT-RATIO

Values auto | <ratio>
Initial value auto
Applies to All elements except inline boxes and internal table and ruby boxes

Computed value If <ratio>, a pair of numbers; otherwise auto
Inherited No

Animatable Yes

Let’s say we know we’ll have a bunch of elements, and we don’t know how wide or tall each will be, but
we want them all to be squares. First, pick an axis you want to size on. We’ll use height here. Make
sure the other axis is auto-sized, and set an aspect ratio, like this:

.gallery div {width: auto; aspect-ratio: 1/1;}

Figure 6-40 shows the same set of HTML, both with and without the previous CSS applied.

o | T |

t kol |

Figure 6-40. A gallery with and without aspect ratios defined

The ratio is maintained over the distances defined by box-sizing (see “Altering box sizing”), so given
the following CSS, the result will be an element whose outer border distances are in an exact 2:1 ratio.

.cards div {height: auto; box-sizing: border-box; aspect-ratio: 2/1,;}

The default value, auto, means that boxes that have an intrinsic aspect ratio — boxes generated by
images, for example — will use that aspect ratio. For elements that don’t have an intrinsic aspect ratio,
such as most HTML elements like <div>, <p>, and so on, the axis sizes of the box will be determined
by the content.

Inline Formatting

Inline formatting isn’t as simple as formatting block-level elements, which just generate block boxes and
usually don’t allow anything to coexist with them. By contrast, look inside a block-level element, such as
a paragraph. You may well ask, how was the size and wrapping of each line determined? What controls
their arrangement? How can I affect it?

Line Layout

In order to understand how lines are generated, first consider the case of an element containing one very
long line of text, as shown in Figure 6-41. Note that we’ve put a border around the line by wrapping the
entire line in a span element and then assigning it a border style:

span {border: 1px dashed black;}

This is text held within a span element which is inside a containing element (a

Figure 6-41. A single-line inline element

Figure 6-41 shows the simplest case of an inline element contained by a block-level element. It’s no
different in its way than a paragraph with two words in it.

In order to get from this simplified state to something more familiar, all we have to do is determine how
wide (along the inline axis) the element should be, and then break up the line so that the resulting pieces
will fit into the content inline size of the element. Therefore, we arrive at the state shown in Figure 6-42.

This is text held within a span element which is inside a containing
element (a paragraph, in this case). The border shows the boundaries of the
span element.

Figure 6-42. A multiple-line inline element

Nothing has really changed. All we did was take the single line and break it into pieces, and then stack
those pieces one after the other along the direction of the block flow.

In Figure 6-42, the borders for each line of text also happen to coincide with the top and bottom of each
line. This is true only because no padding has been set for the inline text. Notice that the borders actually
overlap each other slightly; for example, the bottom border of the first line is just below the top border of
the second line. This is because the border is actually drawn on the next pixel to the outside of each line.
Since the lines are touching each other, their borders overlap as shown in Figure 6-42.

NOTE

For simplicity’s sake, we’re going to use terms like “top” and “bottom” when talking about the edges of line boxes. In this context, the top
of a line box is the one closest to the block-start, and the bottom of a line box is the one closest to the block-end. Similarly, “tall” and “short”
will refer to the size of line boxes along the block axis.

If we alter the span styles to have a background color, the actual placement of the lines becomes more
clear. Consider Figure 6-43, which shows four paragraphs in each of two different writing modes, and the
effects of different values of text -align (see Chapter 11), by each paragraph having the backgrounds
of its lines filled in.

T his pparascraph assurmes the sty le te><t— =a LEagnm = :
MTeFtz o which causaes=s the line boxaes swithhinm the aelerraenit !
Tt limme uvap aalonsr the left innmner content adsase of thhe i
ﬂU...N.FHWMF.WﬂN.FHU.H.H;

M his pparacraph assuames the sty le texx<t—= Ligm =6
radght : . s>which causaes the lime boxae=s withinm thaei
=—lerracermt to lizTne wap alormses thhihe rissmhit iTnmnnaer <cocoriataeTrxTat ..w.nl.ﬂ.w..w
of the prarazosraph

I T This parasraph assumes the sty le tes>x<t—a Lignm =

i cenmnter : . s> vhich causaes Thhe linme bhboxaes s~ ithhhinm thhhs :
elcerricrit toy liTre w1 their caenmnters wWith thhe cemmter o f thie

<ottt arcaeaa o thhae p»arasra=aphbha o

TTThis parasraph 2 =©@assuames the sty le tTte<t—a=a Lbagrm =
i uu=st a9 Fys = - ~~Th i< causces Tthhe linme o< ae= ~>~ ithinm th <
elermmaent to malizmn their imlime—sStart aanndad imlime—cand aedsaes!
HArIu. tTthie IimTIlinnce—=s=t:art aricd —c—racd ITTAIrT1IcT < o310 Tt adssa=s o LHHJ.PW
HUNHN.W%NHU.H.H T he exacaeprticon is the Ilast lTlinme bhao=x< . .Iur\H)PAU_.m..-w

WHHHHFHHW];WH.H& W.ﬂﬂmm Auﬂﬂu.mm.. H.I.FAU.,H nnnﬂhwmu /u,..\wﬂu....! HHI.F;P.U MHHHMH.H..W|WHL.FQW
cCcomtent codaoe of the pparasrrapbh o :

a> a= — M a» a> == e
et -_ r—— e P qlm — _ a=
a— = mnv i e = = = === =
a > i S i a» — e — =
u|.m o> —— == = : = — p— as — —_——
T M= 2= = B —— = = =S = —
e e == S : = = = = 5= e
e = F—] H — =23 == o
s S - a > = e = 1 =—
=2== = —_— =——] = — = — as =
— Tre— = = - 5= = S a=> _
== a> = — [2= = a
== —— = [— = — — m a=»
— S a= . a— = e— —_—
[—— e = - £ — — —r
= — a— - m ey a_ —— —
= = —_ — = e T S = Vﬂm
- — -— = —_— P -— = =5 =
e = —_— = — S S ==
e = = = = we = = = =
<1 > - — —_— — —— i -—— _— ., —=—
———l —_— i = 5 =
{ o ey = = a> = Al ==
o 1|.ﬁ_IU. ||..- n"nb ulvn” H. Wﬂ“ﬂv e H—I .m —r
MJ = P =] = e == = = = e =
| =l i —— — — e r— = == =
=, —a m— = [& a> e — = =
e = = = — = = e = s T—
| — — a> — s — e R —— T a>
B — e a> = ﬂﬂ” == T —| e e =
T a—— = — e a= = a> =" =1 == as
== a a> S= = = = = == = W=
e | p= - = =
a P = = e — e m To— at
= = F— e P = — a= -
e F—] — a-> a— =] [as m L
a= a= = a> = = o= F— = - -
ﬂl\Hvu o —_— 2 — a> —— a F—1 n”U.HlU_ m
= a> P —— -3 == p=— L — —
= = = = = = =- E =
=t - = E— _—y
=i m —— F == sl m = muv = m —_ ==
- C o — = e =
m = = —_ = == = = = o -
e == : — .Im e R = = - =
= = I = = = = B =

Figure 6-43. Showing lines in different alignments and writing modes

As Figure 6-43 shows, not every line reaches to the edge of its parent paragraph’s content area, which has
been denoted with a dashed gray border. For the left-aligned paragraph, the lines are all pushed flush
against the left content edge of the paragraph, and the end of each line happens wherever the line is
broken. The reverse is true for the right-aligned paragraph. For the centered paragraph, the centers of the
lines are aligned with the center of the paragraph.

In the last case, where the value of text-alignis justify, each line (except the last) is forced to be
as wide as the paragraph’s content area so that the line’s edges touch the content edges of the paragraph.
The difference between the natural length of the line and the width of the paragraph’s content area is made
up by altering the spacing between letters and words in each line. Therefore, the value of word -
spacing can be overridden when the text is justified. (The value of letter -spacing cannot be
overridden if it is a length value.)

That pretty well covers how lines are generated in the simplest cases. As you’re about to see, however,
the inline formatting model is far from simple.

Basic Terms and Concepts

Before we go any further, let’s review some terms of inline layout, which will be crucial in navigating the
following sections:

Anonymous text

This is any string of characters that is not contained within an inline element. Thus, in the markup <p>
I'm so happy!</p>, the sequences “ I’'m ” and “ happy!” are anonymous text.
Note that the spaces are part of the text, since a space is a character like any other.

Em box

This is defined in the given font, otherwise known as the character box. Actual glyphs can be taller or
shorter than their em boxes. In CSS, the value of font - size determines the height of each em box.

Content area

In nonreplaced elements, the content area can be one of two things, and the CSS specification allows
user agents to choose which one. The content area can be the box described by the em boxes of every
character in the element, strung together; or it can be the box described by the character glyphs in the
element. In this book, we use the em box definition for simplicity’s sake, and that’s what is used by
most browsers. In replaced elements, the content area is the intrinsic height of the element plus any
margins, borders, or padding.

Leading

Leading (pronounced “led-ing”) is the difference between the values of font-size and 1ine-
height. This difference is divided in half, with one half applied to the top and one half to the bottom
of the content area. These additions to the content area are called, perhaps unsurprisingly, half-

leading. Leading is applied only to nonreplaced elements.

Inline box

This is the box described by the addition of the leading to the content area. For nonreplaced elements,
the height of the inline box of an element will be exactly equal to the value of the 1ine-height
property. For replaced elements, the height of the inline box of an element will be exactly equal to the
content area, since leading is not applied to replaced elements.

Line box

This is the shortest box that bounds the highest and lowest points of the inline boxes that are found in
the line. In other words, the top edge of the line box is placed along the top of the highest inline box
top, and the bottom of the line box is placed along the bottom of the lowest inline box bottom.
Remember that “top” and “bottom” are considered with respect to the block flow direction.

CSS also contains a set of behaviors and useful concepts that fall outside of the preceding list of terms
and definitions:

e The content area of an inline box is analogous to the content box of a block box.
e The background of an inline element is applied to the content area plus any padding.
e Any border on an inline element surrounds the content area plus any padding.

¢ Padding, borders, and margins on nonreplaced inline elements have no vertical effect on the inline
elements or the boxes they generate; that is, they do not affect the height of an element’s inline box
(and thus the line box that contains the element).

e Margins and borders on replaced elements do affect the height of the inline box for that element and,
by implication, the height of the line box for the line that contains the element.

One more thing to note: inline boxes are vertically aligned within the line according to their values for the
property vertical-align (see Chapter 11).

Before moving on, let’s look at a step-by-step process for constructing a line box, which you can use to
see how the various pieces of a line fit together to determine its height.

Determine the height of the inline box for each element in the line by following these steps:

1. Find the values of font-size and 1ine-height for each inline nonreplaced element and text
that is not part of a descendant inline element and combine them. This is done by subtracting the
font-size fromthe 1ine-height, which yields the leading for the box. The leading is split in
half and applied to the top and bottom of each em box.

2. Find the value of height, along with the values for the margins, padding, and borders along the
block-start and block-end edges of each replaced element, and add them together.

3. Figure out, for each content area, how much of it is above the baseline for the overall line and how
much of it is below the baseline. This is not an easy task: you must know the position of the baseline

for each element and piece of anonymous text and the baseline of the line itself, and then line them all
up. In addition, the block-end edge of a replaced element sits on the baseline for the overall line.

4. Determine the vertical offset of any elements that have been given a value for vertical-align.
This will tell you how far up or down that element’s inline box will be moved along the block axis,
and that will change how much of the element is above or below the baseline.

5. Now that you know where all of the inline boxes have come to rest, calculate the final line box
height. To do so, just add the distance between the baseline and the highest inline box top to the
distance between the baseline and the lowest inline box bottom.

Let’s consider the whole process in detail, which is the key to intelligently styling inline content.

Line Heights

First, know that all elements have a 1ine-height, whether it’s explicitly declared or not. This value
greatly influences the way inline elements are displayed, so let’s give it due attention.

A line’s height (or the height of a line box) is determined by the height of its constituent elements and other
content, such as text. It’s important to understand that 1ine-height actually affects inline elements and
other inline content, not block-level elements—at least, not directly. We canseta 1ine-height value
for a block-level element, but the value will have a visual impact only as it’s applied to inline content
within that block-level element. Consider the following empty paragraph, for example:

<p style="line-height: 0.25em;'"></p>

Without content, the paragraph won’t have anything to display, so we won’t see anything. The fact that this
paragraph has a 1ine-height of any value—be it @ . 25em or 251n—makes no difference without
some content to create a line box.

We canseta 1ine-height value for a block-level element and have that apply to all of the content
within the block, whether it’s contained in an inline element or anonymous text. In a certain sense, then,
each line of text contained within a block-level element is its own inline element, whether or not it’s
surrounded by tags. If you like, picture a fictional tag sequence like this:

<p>
<line>This is a paragraph with a number of</line>
<line>lines of text that make up the</line>
<line>contents.</line>

</p>

Even though the 1ine tags don’t actually exist, the paragraph behaves as if they did, and each line of text
“inherits” styles from the paragraph. You only bother to create 1ine-height rules for block-level
elements so you don’t have to explicitly declare a 1ine-height for all of their inline elements,
fictional or otherwise.

The fictional 1ine element actually clarifies the behavior that results from setting 1ine-height ona
block-level element. According to the CSS specification, declaring 1ine-height on a block-level

element sets a minimum line box height for the content of that block-level element. Declaring
p.spacious {line-height: 24pt; } means that the minimum heights for each line box is 24
points. Technically, content can inherit this line height only if an inline element does so. Most text isn’t
contained by an inline element. If you pretend that each line is contained by the fictional 1ine element,
the model works out very nicely.

Inline Nonreplaced Elements

Building on our formatting knowledge, let’s move on to the construction of lines that contain only
nonreplaced elements (or anonymous text). Then you’ll be in a good position to understand the differences
between nonreplaced and replaced elements in inline layout.

NOTE

In this section, we’ll use “top” and “bottom” to label where half-leading is placed and how line boxes are placed together. Always
remember that these terms are in relation to the direction of block flow: the “top” edge of an inline box is the one closest to the block-start
edge, and the “bottom” edge of an inline box is closest to its block-end edge. Similarly, “height” means the the distance along the inline box’s
block axis, and “width” the distance along its inline axis.

Building the Boxes

First, for an inline nonreplaced element or piece of anonymous text, the value of font - size determines
the height of the content area. If an inline element has a font -size of 15px, then the content area’s
height is 15 pixels because all of the em boxes in the element are 15 pixels tall, as illustrated in Figure 6-
44.

l n l n e e e m.e n 15px content areq

em boxes

Figure 6-44. Em boxes determine content area height

The next thing to consider is the value of 1ine-height for the element, and the difference between it
and the value of font -size. If an inline nonreplaced element has a font -size of 15px and a
line-height of 21pX, then the difference is six pixels. The user agent splits the six pixels in half and
applies half (3 pixels) to the top and half (3 pixels) to the bottom of the content area, which yields the
inline box. This process is illustrated in Figure 6-45.

75P’; Eggffm i n l i n e e l eme nt 21px inline box

(ontentarea half-leading

Figure 6-45. Content area plus leading equals inline box

Now, let’s break stuff so we can better understand how line height works. Assume the following is true:

<p style="font-size: 12px; line-height: 12px;">

This is text, some of which is emphasized, plus other text

which is <strong style='"font-size: 24px;">strongly emphasized
and which is

larger than the surrounding text.

</p>

In this example, most of the text has a font - size of 12pXx, while the text in one inline nonreplaced
element has a size of 24px. However, all of the text has a 1ine-height of 12pXx since 1ine-
height is aninherited property. Therefore, the strong element’s 1ine-height is also 12pXx.

Thus, for each piece of text where both the font-size and 1ine-height are 12px, the content
height does not change (since the difference between 12pXx and 12pX is zero), so the inline box is 12
pixels high. For the strong text, however, the difference between 1ine-height and font-size is
-12pxX. This is divided in half to determine the half-leading (- 6pX), and the half-leading is added to
both the top and bottom of the content height to arrive at an inline box. Since we’re adding a negative
number in both cases, the inline box ends up being 12 pixels tall. The 12-pixel inline box is centered
vertically within the 24-pixel content height of the element, so the inline box is actually smaller than the
content area.

So far, it sounds like we’ve done the same thing to each bit of text, and that all the inline boxes are the
same size, but that’s not quite true. The inline boxes in the second line, although they’re the same size,
don’t actually line up because the text is all baseline-aligned (see Figure 6-46), a concept we’ll discuss
later in the chapter.

Since inline boxes determine the height of the overall line box, their placement with respect to each other
is critical. The line box is defined as the distance from the top of the highest inline box in the line to the
bottom of the lowest inline box, and the top of each line box butts up against the bottom of the line box for
the preceding line.

In Figure 6-46, there are three boxes being laid out for a single line of text: the two anonymous text boxes
to either side of the strong element, and the Strong element itself. Because the enclosing paragraph

has a 1ine-height of 12px, each of the three boxes will have a 12-pixel-tall inline box. These inline
boxes are centered within the content area of each box. The boxes then have their baselines lined up, so
the text all shares a common baseline.

But because of where the inline boxes fall with respect to those baselines, the inline box of the Strong
element is a little bit higher than the inline boxes of the anonymous text boxes. Thus, the distance from the
top of the strong’s inline box to the bottoms of the anonymous inline boxes is more than 12 pixels,
while the visible content of the line isn’t completely contained within the line box.

which is L and which is| —15pxline box

| contert-area

inline box

Figure 6-46. Inline boxes within a line

After all that, the middle line of text is placed between two other lines of text, as depicted in Figure 6-47.
The bottom edge of the first line of text is placed against the top edge of the line of text we saw in

Figure 6-46. Similarly, the top edge of the third line of text is placed against the bottom edge of the middle
line of text. Because the middle line of text has a slightly taller line box, the result is that the lines of text
look irregular, because the distances between the three baselines are not consistent.

This is text some of wi ich is emphasjzed, plys other text

which 1s S I'Oll v emp AS1ZEA and which is

larger than the surmundmg text.

Figure 6-47. Line boxes within a paragraph

NOTE

In just a bit, we’ll explore ways to cope with this behavior and methods for achieving consistent baseline spacing. (Spoiler: Unitless values
for the win!)

Vertical Alignment

If we change the vertical alignment of the inline boxes, the same height determination principles apply.
Suppose that we give the st rong element a vertical alignment of 4pX:

<p style="font-size: 12px; line-height: 12px;">

This is text, some of which is emphasized, plus other text

which is <strong style='"font-size: 24px; vertical-align: 4px;">strongly
emphasized and that is

larger than the surrounding text.

</p>

That small change raises the Strong element four pixels, which pushes up both its content area and its
inline box. Because the st rong element’s inline box top was already the highest in the line, this change
in vertical alignment also pushes the top of the line box upward by four pixels, as shown in Figure 6-48.

This is text, some of wiﬁ:h is emphasized, plys other text
. strongly emphasize

larger than the surrounding text.

and which 1s

Figure 6-48. Vertical alignment affects line box height

NOTE
A formal definition for vertical-align can be found in Chapter 11.

Let’s consider another situation. Here, we have another inline element in the same line as the strong text,
and its alignment is other than the baseline:

<p style="font-size: 12px; line-height: 12px;">

This is text, some of which is emphasized,

plus other text that is <strong style="font-size: 24px; vertical-align: 4px;">
strong and tall and is

larger than the surrounding text.

</p>

Now we have the same result as in our earlier example, where the middle line box is taller than the other
line boxes. However, notice how the “tall” text is aligned in Figure 6-49.

This is text, some of which is emphasized|

plus other text that is Strong and tall

iarger than the surrounding text.

and 1s

Figure 6-49. Aligning an inline element to the line box

In this case, the top of the “tall” text’s inline box is aligned with the top of the line box. Since the “tall”
text has equal values for font-size and 1ine-height, the content height and inline box are the
same. However, consider this:

<p style="font-size: 12px; line-height: 12px;">

This is text, some of which is emphasized,

plus other text that is <strong style="font-size: 24px; vertical-align: 4px;">
strong and
tall and is
 larger than the surrounding text.

</p>

Since the 1ine-height for the “tall” text is less than its font - size, the inline box for that element
is smaller than its content area. This tiny fact changes the placement of the text itself, because the top of its
inline box must be aligned with the top of the line box for its line. Thus, we get the result shown in

Figure 6-50.

This is text, some of which is emphasized |

L{:U.l
plus other text that is Strong and

larger than the surrounding text.

and 1s

Figure 6-50. Text protruding from the line box (again)

In relation to the terms we’ve been using in this chapter, the effects of the assorted keyword values of
vertical-align are:

top
Aligns the top (block-start edge) of the element’s inline box with the top of the containing line box.

bottom

Aligns the bottom (block-end edge) of the element’s inline box with the bottom of the containing line
box.

text-top
Aligns the top (block-start edge) of the element’s inline box with the top of the parent’s content area.

text-bottom

Aligns the bottom (block-end edge) of the element’s inline box with the bottom of the parent’s content
area.

middle

Aligns the vertical midpoint of the element’s inline box with @ . 5eXx above the baseline of the parent.

super

Moves the content area and inline box of the element upward along the block axis. The distance is not
specified and may vary by user agent.

sub

The same as super, except the element is moved downward along the block axis instead of upward.

<percentage>

Shifts the element up or down the block axis by the distance defined by taking the declared percentage
of the element’s value for 1ine-height.

Managing the line-height

In previous sections, you saw that changing the 1ine-height of aninline element can cause text from
one line to overlap another. In each case, though, the changes were made to individual elements. So how
can you affect the 1ine-height of elements in a more general way in order to keep content from
overlapping?

One way to do this is to use the em unit in conjunction with an element whose font - size has changed.
For example:

p {line-height: ilem;}
strong {font-size: 250%; line-height: lem;}

<p>
Not only does this paragraph have "normal" text, but it also

contains a line in which some big text is found.

This large text helps illustrate our point.

</p>

By settinga 1ine-height for the strong element, we increase the overall height of the line box,
providing enough room to display the Strong element without overlapping any other text and without
changing the 1ine-height of all lines in the paragraph. We use a value of 1em so that the 1ine-
height for the strong element will be set to the same size as Strong’s font-size. Remember,
line-height is setinrelation to the font - size of the element itself, not the parent element. The
results are shown in Figure 6-51.

Not only does this paragraph have “normal” text, but it also

contains a line in which Some big teXt is found.

This large text helps illustrate our point.

Figure 6-51. Assigning the line-height property to inline elements

Make sure you really understand the previous sections, because things will get trickier when we try to add
borders. Let’s say we want to put five-pixel borders around any hyperlink:

a {border: 5px solid blue;}

If we don’t set a large enough 1ine-height to accommodate the border, it will be in danger of
overwriting other lines. We could increase the size of the inline box for hyperlinks using 1ine-height,
as we did for the strong element in the earlier example; in this case, we’d just need to make the value
of 1ine-height 10 pixels larger than the value of font-size for those links. However, that will be

difficult if we don’t actually know the size of the font in pixels.

Another solution is to increase the 1ine-height of the paragraph. This will affect every line in the
entire element, not just the line in which the bordered hyperlink appears:

p {line-height: 1.8em;}
a {border: 5px solid blue;}

Because there is extra space added above and below each line, the border around the hyperlink doesn’t
impinge on any other line, as shown in Figure 6-52.

Not only does this paragraph have “normal” text, but it also
contains a line in which Ja hyperlinkj is found.

This large text helps illustrate our point.

Figure 6-52. Increasing line-height to leave room for inline borders

This approach works because all of the text is the same size. If there were other elements in the line that
changed the height of the line box, our border situation might also change. Consider the following;

p {font-size: 14px; line-height: 24px;}
a {border: 5px solid blue;}
strong {font-size: 150%; line-height: 1.5em;}

Given these rules, the height of the inline box of a Strong element within a paragraph will be 31.5
pixels (14 x 1.5 x 1.5), and that will also be the height of the line box. In order to keep baseline spacing
consistent, we must make the p element’s 1ine-height equal to or greater than 32px.

Baselines and line heights

The actual height of each line box depends on the way its component elements line up with one another.
This alignment tends to depend very much on where the baseline falls within each element (or piece of
anonymous text) because that location determines how the inline boxes are arranged vertically.

Consistent baseline spacing tends to be more of an art than a science. If you declare all of your font sizes
and line heights using a single unit, such as ems, then you have a good chance of consistent baseline
spacing. If you mix units, however, that feat becomes a great deal more difficult, if not impossible. As of
mid-2022, there are proposals for properties that would let authors enforce consistent baseline spacing
regardless of the inline content, which would greatly simplify certain aspects of online typography. None
of these proposed properties have been implemented, which makes their adoption a distant hope at best.

Scaling Line Heights

The best way to set 1ine-height, as it turns out, is to use a raw number as the value. This method is
best because the number becomes the scaling factor, and that factor is an inherited, not a computed,
value. Let’s say we want the 1ine-height s of all elements in a document to be

one and a half times their “font-size. We would declare:

body {line-height: 1.5;}

This scaling factor of 1.5 is passed down from element to element, and, at each level, the factor is used as
a multiplier of the font - size of each element. Therefore, the following markup would be displayed as
shown in Figure 6-53:

p {font-size: 15px; line-height: 1.5;}
small {font-size: 66%;}
strong {font-size: 200%;}

<p>This paragraph has a line-height of 1.5 times its font-size. In addition,
any elements within it <small>such as this small element</small> also have
line-heights 1.5 times their font-size...and that includes this big
element right here. By using a scaling factor, line-heights scale
to match the font-size of any element.</p>

In this example, the line height for the small element turns out to be 15 pixels, and for the sStrong
element, it’s 45 pixels. If we don’t want our big Strong text to generate too much extra leading, we can
give itits own 1ine-height value, which will override the inherited scaling factor:

p {font-size: 15px; line-height: 1.5;}
small {font-size: 66%;}
strong {font-size: 200%; line-height: 1lem;}

This paragraph has a line-height of 1.5 times its font-size. In addition, any elements

within it such as this small element also have line-heights 1.5 times their font-size...and that

includes thlS blg element l'lght hel‘e By using a scaling

factor, line-heights scale to match the font-size of any element.

Figure 6-53. Using a scaling factor for line-height

Adding Box Properties

As you may recall from previous discussions, while padding, margins, and borders may all be applied to
inline nonreplaced elements, these properties have no impact on the height of the inline element’s line
box.

The border edge of inline elements is controlled by the font-size, not the 1ine-height. In other
words, if a span element has a font-size of 12px and a 1ine-height of 36pX, its content area
is 12px high, and the border will surround that content area.

Alternatively, we can assign padding to the inline element, which will push the borders away from the text
itself:

span {padding: 4px;}

Note that this padding does not alter the actual shape of the content height, and so it will not affect the
height of the inline box for this element. Similarly, adding borders to an inline element will not affect the
way line boxes are generated and laid out, as illustrated in Figure 6-54 (both with and without the four-

pixel padding).

P —
P —— =N S —_—
= B
- —J1_= = 2=
l — | e B | e - — —_—
e S — lm b — [— = =
—— — W ——— — —1__»
= —— = —— B = —
—_— 1 = = I M — S P ——
.a”wlu —— — [— =1 B ——
— e e — 1 =2 o> o —
—— ———— N 5 —1__= e —— —_— [
-_— i | M R —— ——— fF—1 e e
= i p—— - — =— == G
F — — | b P= =
P— —— | - § =
=T > i -1 <= . sy L
—__= - = - =] —-— pord _
—] = | —— p— | =
— —] = — 2] —————
—— L E = = m = =
] — I — —— — = =
- < — — —— —_—
—_— == — == = = 1
= = == =—=| =]
s | = — =| {==| E ==1 T=—=
= S Ry = = 1 == e —_ e
— I = — — r 1 I= = 1
— = i ——] = P _— =
— — == — L — f— fe——l ——
e Il' ” ﬂ V
— f— L S— P Bl — N 3
|||IA.|| =l 1 _— | _—— — 1 ==
[— ——— nu- — o —_— < —
— .n-lu.n | = —~ =21= —— E—3]
<= —— — - — 1
== |E| = |=| =] =] |=T |=
= —_— = P W == —_— == T
R ——
—— —
g -— —=s
—— T —— — = b
— = |- = | = e = == —
e ——————— el
—— —l__» ——— W e b — —_l__»
—— = - —_— p—— knu. = nu-...lju..m
= —— aulu..u k. ~— f— i : 3
—_— —_— = — — P — L
- —— == = i _—— —_—
== [— =7 E=— — e = s TeEiee
-— - = ey _— 1= -1 .nu-ha”uu-
e — - =4 - —
= — f— [—— f—1 - m =
— —— = P — — —_—
P — _— 2 —— —_— i - —_— Tt
- — = == —] = ——
= = — = — == a— —
P — e e m— - —— [— m
T m — — === f— L m— 3
e | - —_—— % — e m - _ﬂﬂlu-
— = = —= = = = et .
— = e == = — —t— =
— m — - = =
H ol ——— p— — - == = Inm.u =
et — o E— a = - = A E— T =
= _ s =1 == — e =1 —_—
- —_— P — —— e B —_
= i == — = = N —— === e
. -_— L=] ———— a_— =5 ——
—_ f—— e —— L ——1 —— g
e m— ‘aa - —— [— g — —
- = — —_ —— —— —1__» = :
o = - —1__= - — = f — ——
— —_— = pe— = — — e = T———
= 5= == p—— a > — L — [—
— p— ﬂ”
= m — —1 = F—t —
e —
—_— P — = —— = — -

Figure 6-54. Padding and borders do not alter line-height

As for margins, they do not, practically speaking, apply to the block edges of an inline nonreplaced
element, as they don’t affect the height of the line box. The inline ends of the element are another story.

Recall the idea that an inline element is basically laid out as a single line and then broken up into pieces.
So, if we apply margins to an inline element, those margins will appear at its beginning and end: these are
the inline-start and inline-end margins, respectively. Padding also appears at these edges. Thus, although
padding and margins (and borders) do not affect line heights, they can still affect the layout of an
element’s content by pushing text away from its ends. In fact, negative inline-start and -end margins can
pull text closer to the inline element, or even cause overlap, as Figure 6-55 shows.

So, what happens when an inline element has a background and enough padding to cause the lines’
backgrounds to overlap? Take the following situation as an example:

p {font-size: 15px; line-height: lem;}
p span {background: #FAA;
padding-block-start: 10px; padding-block-end: 10px;}

All of the text within the span element will have a content area 15 pixels tall, and we’ve applied 10
pixels of padding to the top and bottom of each content area. The extra pixels won’t increase the height of
the line box, which would be fine, except there is a background color. Thus, we get the result shown in

Figure 6-55.

the borders on

drawn in document order: “This will cause

that the line boxes are

(koS o gik s g

«1__» —_— L —
m { em— L ~m—
¢|..,.“«” — — T
P.
= - —__—» =
—— AH-l.HIﬂ —— .uilul.!”
m o em— e —
e — = = H....Jm.l!.” ——s
— =
e - _— == T—
== = === = —_——
— — :
55— [——— —_— — T _»
== -— — D .”|l|u..u =
- ——] -=——— —_— —
— — - > ——— P—
— —_— - A ~—] >
——] == — =
—— e . —_— —_—
-—— e - _ fm—
<1 =< ey - ———
— — - —» - =
— _= f= I - ey =
e W—”ﬂ =
=5 —_— a = = —
o B — e & > W R ——
— L —] -—
— — - o p—
— - - —1 = - =
== —= g2 — =
—— -— m —_ L —
<a__»
a__—»
™
—s
———— [—
= — —_— ==
nulu-h -I.I -1 —— -1 =
— —— —1__= — —_—s —_—
= == — = = ==
Tt == —— =a
— m _— | ~— [—
— —— = — —
e - - [—3 & 2
lm - <1 - —_—
— M = = B j——.
<1_» —— - E S =
— — [— - e — ___»
— R b —— Com— -
— —_— — R —— 1=
— [mem— — e — —t
—— mm” > e > L omm—
gﬂ- = ——t % R —— [——
S —_— — -l — n”u.u.”u
- ill." — —_— L & > = o —
== " nﬂuﬂ —_ - = E] =
L e | R -_— -1
= N = == = =
a_—» a_—» E—
-l . ~— — e - —__
P — — — a— — —
— — . mﬂ' - aa_—» a_» =
- ey — M m : = = e
— — — —
m <1 = m —— [[—

CSS explicitly states

subsequent lines to paint over the borders and text of previous lines.” The same principle applies to
backgrounds as well, as Figure 6-55 shows.

Changing Breaking Behavior

In the previous section, you saw that when an inline nonreplaced element is broken across multiple lines,
it’s treated as if it were one long single-line element that’s sliced into smaller boxes, one slice per line
break. That’s actually just the default behavior, and it can be changed via the property box -
decoration-break.

BOX-DECORATION-BREAK

Values slice|clone
Initial value slice
Applies to All elements

Computed value As specified
Inherited No

Animatable No

The default value, slice, is what we saw in the previous section. The other value, clone, causes each
fragement of the element to be drawn as if it were a standalone box. What does that mean? Compare the
two examples in Figure 6-56, in which exactly the same markup and styles are treated as either sliced or
cloned.

Many of the differences may be apparent, but a few are perhaps more subtle. Among the effects are the
application of padding to each element’s fragment, including at the ends where the line breaks occurred.
Similarly, the border is drawn around each fragment individually, instead of being broken up.

[v e S
il i i
W i i'"""'"b'|'d'§'§"6'6’r’&'é’i"éﬁ'd" g
1 hgﬂl Thlpy R i
bg il hrlshce (et oo gdendo{each
1t

P
Iteguetd expecledl I

oldanoe st i

I

3ﬁnd, which?

1.1t
L
I iy

d cloned inline fragments

More subtly, notice how the background-image oning changes between the two. In the sliced
ersion, background images are sliced 1 gw ith ev ythl g else, meanin, gth only fth fragments

contains the origin image. In the cloned v n, however, each ba kgr und a its own copy, so each

has its own origin image. This means, for mpl that even if we hav onrepeated background image,

it will appear once in each fragment instead of only in one fragment.

The box-decoration-break property will most often be used with inline boxes, but it actually
applies in any situation where there’s a break in an element—for example, when a page break interrupts
an element in paged media. In such a case, each fragment is a separate slice. If we set box -
decoration-break: clone, then eachbox fragment will be treated as a copy when it comes to
borders, padding, backgrounds, and so on. The same holds true in multicolumn layout: if an element is
split by a column break, the value of box-decoration-break will affect how it is rendered.

Glyphs Versus Content Area

Even in cases where you try to keep inline nonreplaced element backgrounds from overlapping, it can still
happen, depending on which font is in use. The problem lies in the difference between a font’s em box and
its character glyphs. Most fonts, as it turns out, don’t have em boxes whose heights match the character

glyphs.

That may sound very abstract, but it has practical consequences. The “painting area” of an inline
nonreplaced element is left to the user agent. If a user agent takes the em box to be the height of the content
area, then the background of an inline nonreplaced element will be equal to the height of the em box
(which is the value of font -size). If a user agent uses the maximum ascender and descender of the
font, then the background may be taller or shorter than the em box. Therefore, you could give an inline
nonreplaced element a 1ine-height of 1em and still have its background overlap the content of other
lines.

Inline Replaced Elements

Inline replaced elements, such as images, are assumed to have an intrinsic height and width; for example,
an image will be a certain number of pixels high and wide. Therefore, a replaced element with an
intrinsic height can cause a line box to become taller than normal. This does not change the value of
line-height for any element in the line, including the replaced element itself. Instead, the line box is
made just tall enough to accommodate the replaced element, plus any box properties. In other words, the
entirety of the replaced element—content, margins, borders, and padding—is used to define the element’s
inline box. The following styles lead to one such example, as shown in Figure 6-57:

p {font-size: 15px; line-height: 18px;}

img {block-size: 30px; margin: 0; padding: ©; border: none;}
This paragraph contains an img element. This element has been given a
height that is larger than a typical line box height for this paragraphs, 5

which leads to potentially unwanted consequences. The extra space you see
between lines of text is to be expected.

Figure 6-57. Replaced elements can increase the height of the line box but not the value of line-height

Despite all the blank space, the effective value of 1ine-height has not changed, either for the
paragraph or the image itself. 1ine-height has no effect on the image’s inline box. Because the image
in Figure 6-57 has no padding, margins, or borders, its inline box is equivalent to its content area, which
is, in this case, 30 pixels tall.

Nonetheless, an inline replaced element still has a value for 1ine-height. Why? In the most common
case, it needs the value in order to correctly position the element if it’s been vertically aligned. Recall
that, for example, percentage values for vertical-align are calculated with respect to an element’s 1ine -
height. Thus:

p {font-size: 15px; line-height: 18px;}
img {vertical-align: 50%;}

<p>The image in this sentence
will be raised 9 pixels.</p>

The inherited value of 1ine-height causes the image to be raised nine pixels instead of some other
number. Without a value for 1ine-height, it wouldn’t be possible to perform percentage-value
vertical alignments. The height of the image itself has no relevance when it comes to vertical alignment;
the value of 1ine-height is all that matters.

However, for other replaced elements, it might be important to pass ona 1ine-height value to
descendant elements within that replaced element. An example would be an SVG image, which can use
CSS to style text found within the image.

Adding Box Properties

After everything we’ve just been through, applying margins, borders, and padding to inline replaced
elements almost seems simple.

Padding and borders are applied to replaced elements as usual; padding inserts space around the actual
content and the border surrounds the padding. What’s unusual about the process is that these two things
actually influence the height of the line box because they are part of the inline box of an inline replaced
element (unlike inline nonreplaced elements). Consider Figure 6-58, which results from the following
styles:

img {block-size: 50px; inline-size: 50px;}
img.one {margin: 0; padding: 0; border: 3px dotted;}
img.two {margin: 10px; padding: 10px; border: 3px solid;}

Note that the first line box is made tall enough to contain the image, whereas the second is tall enough to
contain the image, its padding, and its border.

This paragraph contains two img elements. i5oo%. These elements have been

o=

given styles that lead to potentially unwanted consequences. The
extra space you see between lines of text is to be expected.

Figure 6-58. Adding padding, borders, and margins to an inline replaced element increases its inline box

Margins are also contained within the line box, but they have their own wrinkles. Setting a positive
margin is no mystery; it will make the inline box of the replaced element taller. Setting negative margins
has a similar effect: it decreases the size of the replaced element’s inline box. This is illustrated in
Figure 6-59, where we can see that a negative top margin is pulling down the line above the image:

img.two {margin-block-start: -10px;}

Negative margins operate the same way on block-level elements, as shown earlier in the chapter. In this
case, the negative margins make the replaced element’s inline box smaller than ordinary. Negative
margins are the only way to cause inline replaced elements to bleed into other lines, and it’s why the
boxes that replaced inline elements generate are often assumed to be inline-block.

o3

"
This paragrap ns two img elements. iYeoat. 2 These elements have been

o=

given styles that lead to potentially unwanted consequences. The
extra space you see between lines of text is to be expected.

Figure 6-59. The effect of negative margins on inline replaced elements

Replaced Elements and the Baseline

You may have noticed by now that, by default, inline replaced elements sit on the baseline. If you add
bottom (block-end) padding, a margin, or a border to the replaced element, then the content area will
move upward along the block axis. Replaced elements do not have baselines of their own, so the next best
thing is to align the bottom of their inline boxes with the baseline. Thus, it is actually the outer block-end
margin edge that is aligned with the baseline, as illustrated in Figure 6-60.

olven styles T thﬂtTlea{i to
10px bottom margin baseline

Figure 6-60. Inline replaced elements sit on the baseline

This baseline alignment leads to an unexpected (and unwelcome) consequence: an image placed in a table
cell all by itself should make the table cell tall enough to contain the line box containing the image. The
resizing occurs even if there is no actual text, not even whitespace, in the table cell with the image.
Therefore, the common sliced-image and spacer-GIF designs of years past can fall apart quite
dramatically in modern browsers. (We know that you don’t create such things, but this is still a handy
context in which to explain this behavior.) Consider the simplest case:

td {font-size: 12px;}

<td></td>

Under the CSS inline formatting model, the table cell will be 12 pixels tall, with the image sitting on the
baseline of the cell. So there might be three pixels of space below the image and eight above it, although
the exact distances would depend on the font family used and the placement of its baseline.

This behavior is not confined to images inside table cells; it will also happen in any situation where an
inline replaced element is the sole descendant of a block-level or table-cell element. For example, an
image inside a d1iv will also sit on the baseline.

Here’s another interesting effect of inline replaced elements sitting on the baseline: if we apply a negative
bottom (block-end) margin, the element will actually get pulled downward because the bottom of its
inline box will be higher than the bottom of its content area. Thus, the following rule would have the
result shown in Figure 6-61:

p img {margin-block-end: -10px;}

"
This paragraph contains two img elements. i2ios.2 These elements have been

given styles 5 that lead to potentially unwanted consequences. The
extra space you sce petween lines of text is to be expected.

Figure 6-61. Pulling inline replaced elements down with a negative block-end margin

This can easily cause a replaced element to bleed into following lines of text, as Figure 6-61 shows.

Inline-Block Elements

As befits the hybrid look of the value name inline-block, inline-block elements are indeed a hybrid
of block-level and inline elements.

An inline-block element relates to other elements and content as an inline box just as an image would:
Inline-block elements are formatted within a line as a replaced element. This means the bottom (block-
end) edge of the inline-block element will rest on the baseline of the text line by default and will not line
break within itself.

Inside the inline-block element, the content is formatted as though the element were block-level. The
properties width and height apply to the element (and thus so does box-sizing), as they do to any
block-level or inline replaced element, and those properties will increase the height of the line if they are
taller than the surrounding content.

Let’s consider some example markup that should help make this clearer:

<div id="one">
This text is the content of a block-level level element. Within this
block-level element is another block-level element. <p>Look, it's a block-level
paragraph.</p> Here's the rest of the DIV, which is still block-level.

</div>

<div id="two">
This text is the content of a block-level level element. Within this
block-level element is an inline element. <p>Look, it's an inline
paragraph.</p> Here's the rest of the DIV, which is still block-level.

</div>

<div id="three">
This text is the content of a block-level level element. Within this
block-level element is an inline-block element. <p>Look, it's an inline-block
paragraph.</p> Here's the rest of the DIV, which is still block-level.

</div>

To this markup, we apply the following rules:

div {margin: d1em 0; border: 1px solid;}

p {border: 1px dotted;}

div#one p {display: block; inline-size: 6em; text-align: center;}
div#two p {display: inline; inline-size: 6em; text-align: center;}

div#three p {display: inline-block; inline-size: 6em; text-align: center;}

The result of this stylesheet is depicted in Figure 6-62.

This text is the content of a block-level level element. Within
this block-level element is another block-level element.

Look, 1t's a
block-level
paragraph.

Here's the rest of the DIV, which is still block-level.

This text is the content of a block-level level element. Within
this block-level element is an inline element. Look, it's an inline

This text is the content of a block-level level element. Within
this block-level element 1s an inline-block element.

Look, it's an
inline-block
paragraph. | Here's the rest of the DIV, which is still block-

level.

Figure 6-62. The behavior of an inline-block element

Notice that in the second div, the inline paragraph is formatted as normal inline content, which means
width and text-align getignored (since they do not apply to inline elements). For the third div,
however, the inline-block paragraph honors both properties, since it is formatted as a block-level
element. That paragraph’s margins also force its line of text to be much taller, since it affects line height
as though it were a replaced element.

If an inline-block element’s width is not defined or explicitly de